Skip to main content

Gene Therapy and HIV-1 Infection

Experimental Approaches, Shortcomings, and Possible Solutions

  • Chapter
Human Retroviral Infections

Part of the book series: Infectious Agents and Pathogenesis ((IAPA))

  • 112 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Johnston, M. I., Allaudeen, H. S., and Sarver, N., 1989, HIV proteinase as a target for drug action, Trends Pharmacol. Sci. 10:305–307.

    Article  PubMed  CAS  Google Scholar 

  2. Erickson, J. W., and Burt, S. R, 1996, Structural mechanisms of HIV drug resistance, Annu.Rev.Pharmacol. Toxicol. 36:545–571.

    Article  PubMed  CAS  Google Scholar 

  3. de Clercq, E., 1996, Non-nucleoside reverse transcriptase inhibitors (NNRTIS) for the treatment of human immunodeficiency virus type 1 (HIV-1 infections: Strategies to overcome drug resistance development, Med. Res. Rev. 16:125–157.

    PubMed  Google Scholar 

  4. Sandstrom, P. A., and Folks, T. M., 1996, New strategies for treating AIDS, Bioessays 18:343–346.

    Article  PubMed  CAS  Google Scholar 

  5. Fulcher, D., and Clezy, K., 1996, Antiretroviral therapy, Med. J. Aust. 164:607.

    PubMed  CAS  Google Scholar 

  6. Richman, D., 1992, HIV drug resistance, AIDS Res. Hum. Retrovir 8:1065–1071.

    PubMed  CAS  Google Scholar 

  7. Baltimore, D., 1995, The enigma of HIV infection, Cell 82:175–176.

    Article  PubMed  CAS  Google Scholar 

  8. Embretson, J. E., Zupanic, M., Ribas, J. L., Burke, A., Racz, P., Tenner-Racz, K., and Haase, A. T., 1993, Massive covert infection of helper T lymphocytes and macrophages by HIV during incubation period of AIDS, Nature 362:359–362.

    Article  PubMed  CAS  Google Scholar 

  9. Pantaleo, G., Graziosi, C., Demarest, J. F., Butini, L., Montroni, M., Fox, C. H., Orenstein, J. M., Kotler, D. P., and Fauci, A. S., 1993, HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease, Nature 362:355–358.

    Article  PubMed  CAS  Google Scholar 

  10. Baltimore, D., 1988, Intracellular immunization, Nature 235:395–396.

    Google Scholar 

  11. Dropulic, B., and Jeang, K.-T., 1994, Gene therapy for human immunodeficiency virus infection: Genetic antiviral strategies and targets for intervention, Hum. Gene Ther. 5:927–939.

    Article  PubMed  CAS  Google Scholar 

  12. Yu, M., Poeschla, E., and Wong-Staal, F., 1994, Progress towards gene therapy for HIV infection, Gene Ther. 1:13–26.

    PubMed  CAS  Google Scholar 

  13. Kaplan, J. C., and Hirsch, M. S., 1994, Therapy other than reverse transcriptase inhibitors for HIV infection, Clin. Lab. Med. 14:367–391.

    PubMed  CAS  Google Scholar 

  14. Gilboa, E., and Smith, C., 1994, Gene therapy for infectious diseases: The AIDS model, Trends Genet. 10:139–144.

    Article  PubMed  CAS  Google Scholar 

  15. Anderson, W. F., 1994, Gene therapy for AIDS, Hum. Gene Ther. 5:149–150.

    PubMed  CAS  Google Scholar 

  16. Sarver, N., and Rossi, J., 1993, Gene therapy: A bold direction for HIV-1 treatment, AIDS Res. Hum. Retrovir. 9:483–487.

    PubMed  CAS  Google Scholar 

  17. Bahner, I., Zhou, C., Yu, X. J., Hao, Q. L., Guatelli, J. C., and Kohn, D. B., 1993, Comparison of transdominant inhibitory mutant human immunodeficiency virus type 1 genes expressed by retroviral vectors in human T lymphocytes, J. Virol. 67:3199–3207.

    PubMed  CAS  Google Scholar 

  18. Blaese, R. M., 1995, Steps toward gene therapy: 2. Cancer and AIDS, Hosp. Pract. (Off. Ed.) 30:37–45.

    Google Scholar 

  19. Bridges, S. H., and Sarver, N., 1995, Gene therapy and immune restoration for HIV disease, Lancet 345:427–432.

    PubMed  CAS  Google Scholar 

  20. Bunnell, B. A., and Morgan, R. A., 1996, Gene therapy for AIDS, Mol. Cells 6:l–12.

    Google Scholar 

  21. Cohen, J., 1996, Gene therapy—New role for HIV—A vehicle for moving genes into cells, Science 272:195.

    PubMed  CAS  Google Scholar 

  22. Ho, A. D., Li, X. Q., Lane, T. A., Yu, M., Law, P., and Wong-Staal, F., 1995, Stem cells as vehicles for gene therapy—Novel strategy for HIV infection, Stem Cells 13:100–105.

    Article  PubMed  Google Scholar 

  23. Pomerantz, R. J., and Trono, D., 1995, Genetic therapies for HIV infections: Promise for the future, AIDS 9:985–993.

    PubMed  CAS  Google Scholar 

  24. Stein, C. A., and Cheng, Y. C., 1993, Antisense oligonucleotides as therapeutic agents: Is the bullet really magical? Science 261:1004–1012.

    PubMed  CAS  Google Scholar 

  25. Agrawal, S., 1992, Antisense oligonucleotides as antiviral agents, Trends Biotechnol. 10:152–158.

    Article  PubMed  CAS  Google Scholar 

  26. Castanotto, D., Rossi, J. J., and Sarver, N., 1994, Antisense catalytic RNAs as therapeutic agents, Adv. Pharmacol. 25:289–317.

    PubMed  CAS  Google Scholar 

  27. Rossi, J. J,, and Sarver, N., 1992, Catalytic antisense RNA (ribozymes): Their potential and use as anti-HIV-1 therapeutic agents, Adv. Exp. Med. Biol. 312:95–109.

    PubMed  CAS  Google Scholar 

  28. Rothenberg, M., Johnson, G., Laughlin, C., Green, I., Cradock, J., Sarver, N., and Cohen, J. S., 1989, Oligodeoxynucleotides as anti-sense inhibitors of gene expression: Therapeutic implications, J. Natl. Cancer Inst. 81:1539–1544.

    PubMed  CAS  Google Scholar 

  29. Cohen, J. S., 1991, Antisense oligonucleotides as antiviral agents, Antiviral Res. 16:121–133.

    Article  PubMed  CAS  Google Scholar 

  30. Bahner, I., Kearns, K., Hao, Q. L., Smogorzewska, E. M., and Kohn, D. B., 1996, Transduction of human CD34+ hematopoietic progenitor cells by a retroviral vector expressing an RRE decoy inhibits human immunodeficiency virus type 1 replication in myelomonocytic cells produced in long-term culture, J. Virol. 70:4352–4360.

    PubMed  CAS  Google Scholar 

  31. Biasolo, M. A., Radaelli, A., Del Pup, L., Franchin, E., De Giuli-Morghen, C., and Palu, G., 1996, A new antisense tRNA construct for the genetic treatment of human immunodeficiency virus type 1 infection, J. Virol. 70:2154–2161.

    PubMed  CAS  Google Scholar 

  32. Larsson, S., Hotchkiss, G., Su, J., Kebede, T., Andang, M., Nyholm, T., Johansson, B., Sonnerborg, A., Vahlne, A., Britton, S., and Ahrlund-Richter, L., 1996, A novel ribozyme target site located in the HIV-1 nefopen reading frame, Virorogy 219:161–169.

    CAS  Google Scholar 

  33. Heusch, M., Kraus, G., Johnson, P., and Wong-Staal, F., 1996, Intracellular immunization against sivmac utilizing a hairpin ribozyme, Virology 216:241–244.

    Article  PubMed  CAS  Google Scholar 

  34. Poeschla, E. M., and Wong-Staal, F., 1995, Gene therapy and HIV disease, AIDS Clin. Rev. 1–45.

    Google Scholar 

  35. Chuah, M. K., Vandendriessche, T., Chang, H. K., Ensoli, B., and Morgan, R. A., 1994, Inhibition of human immunodeficiency virus type-I by retroviral vectors expressing antisense-TAR, Hum. Gene Ther. 5:1467–1475.

    PubMed  CAS  Google Scholar 

  36. Yu, M., Poeschla, E., Yamada, O., Degrandis, P., Leavitt, M. C., Heusch, M., Yees, J. K., Wong-Staal, F., and Hampel, A., 1995, In vitro and in vivo characterization of a second functional hairpin ribozyme against HIV-1, Virology 206:381–386.

    Article  PubMed  CAS  Google Scholar 

  37. Leavitt, M. C., Yu, M., Yamada, O., Kraus, G., Looney, D., Poeschla, E., and Wong-Staal, F., 1994, Transfer of an anti-HIV-1 ribozyme gene into primary human lymphocytes, Hum. Gene Ther. 5:1115–1120.

    PubMed  CAS  Google Scholar 

  38. Poeschla, E., and Wong-Staal, F., 1994, Antiviral and anticancer ribozymes, Cur. Opin. Oncol. 6:601–606.

    CAS  Google Scholar 

  39. Sullivan, S. M., 1994, Development of ribozymes for gene therapy, J. Invest. Dermatol. 103:85s–89s.

    Article  PubMed  CAS  Google Scholar 

  40. Yu, M., Ojwang, J., Yamada, O., Hampel, A., Rapapport, J., Looney, D., and Wong-Staal, F., 1993, A hairpin ribozyme inhibits expression of diverse strains of human immunodeficiency virus type 1, Proc. Natl. Acad. Sci. USA 90:6340–6344.

    PubMed  CAS  Google Scholar 

  41. Weerasinghe, M., Liem, S. E., Asad, S., Read, S. E., and Joshi, S., 1991, Resistance to human immunodeficiency virus type 1(HIV-1) infection in human CD4+ lymphocytederived cell lines conferred by using retroviral vectors expressing an HIV-1 RNA-specific ribozyme, J. Virol. 65:5531–5534.

    PubMed  CAS  Google Scholar 

  42. Leavitt, M. C., Yu, M., Wong-Staal, F., and Looney, D.J., 1996, Ex vivo transduction and expansion of CD4(+) lymphocytes from HlV+ donors—Prelude to a ribozyme gene therapy trial, Gene Ther. 3:599–606.

    PubMed  CAS  Google Scholar 

  43. Wong-Staal, F., 1995, Ribozyme gene therapy for HIV infection—Intracellular immunization of lymphocytes and CD34+ cells with an anti-HIV-1 ribozyme gene, Adv. Drug Deliv. Rev. 17:363–368.

    Article  CAS  Google Scholar 

  44. Lisziewicz, J., Sun, D., Lisziewicz, A., and Gallo, R. C., 1995, Antitat gene therapy: A candidate for late-stage AIDS patients, Gene Ther. 2:218–222.

    PubMed  CAS  Google Scholar 

  45. Cesbron, J. Y., Agut, H., Gosselin, B., Candotti, D., Raphael, M., Puech, F., Grandadam, M., Debre, P., Capron, A., and Autran, B., 1994, Scid-hu mouse as a model for human lung HIV-1 infection, C.R. Acad. Sci. III 317:669–674.

    PubMed  CAS  Google Scholar 

  46. Bahner, I., Kearns, K, Hao, Q. L., Smogorzewska, E. M., and Kohn, D. B., 1996, Transduction of human CD34(+) hematopoietic progenitor cells by a retroviral vector expressing an RRE decoy inhibits human immunodeficiency virus type 1 replication in myelomonocytic cells produced in long-term culture, J. Virol. 704352–4360.

    PubMed  CAS  Google Scholar 

  47. Lee, S. W., Gallardo, H. F., Gilboa, E., and Smith, C., 1994, Inhibition ofhuman immunodeficiencyvirus type 1 in human T cells by a potent rev response element decoy consisting of the 13-nucleotide minimal rev-binding domain, J. Virol. 68:8254–8264.

    PubMed  CAS  Google Scholar 

  48. Smythe, J. A., Sun, D., Thomson, M., Markham, P. D., Reitz, M. S., Jr., Gallo, R. C., and Lisziewicz, J., 1994, A rev-inducible mutant gag gene stably transferred into T lymphocytes: An approach to gene therapy against human immunodeficiency virus type 1 infection, Proc. Natl. Acad. Sci. USA 91:3657–3661.

    PubMed  CAS  Google Scholar 

  49. Matsuda, Z., Yu, X., Yu, Q. C., Lee, T. H., and Essex, M., 1993, Avirion-specific inhibitory molecule with therapeutic potential for human immunodeficiency virus type 1, Proc. Natl. Acad. Sci. USA 90:3544–3548.

    PubMed  CAS  Google Scholar 

  50. Lisziewicz, J,, Sun, D., Smythe, J., Lusso, P., Lori, F., Louie, A., Markham, P., Ross, J., Reitz, M., and Gallo, R. C., 1993, Inhibition of human immunodeficiencyvirus type 1 replication by regulated expression of a polymeric tat activation response RNA decoy as a strategy for gene therapy in AIDS, Proc. Natl. Acad. Sci. USA 90:8000–8004.

    PubMed  CAS  Google Scholar 

  51. Brother, M. B., Chang, H. K., Lisziewicz, J., Su, D., Murty, L. C., and Ensoli, B., 1996, Block of tat-mediated transactivation of tumor necrosis factor beta gene expression by polymeric-TAR decoys, Virology 222252–256.

    Article  PubMed  CAS  Google Scholar 

  52. Chang, H. K, Gendelman, R., Lisziewicz, J., Gallo, R C., and Ensoli, B., 1994, Block of HIV-1 infection by a combination of antisense tat RNA and TAR decoys: A strategy for control of HIV-1, Gem Ther. 1:208–216.

    CAS  Google Scholar 

  53. Sullenger, B. A., Gallardo, H. F., Ungers, G. E., and Gilboa, E., 1990, Overexpression of TAR sequences renders cells resistant to HIV replication, Cell 63:601–608.

    Article  PubMed  CAS  Google Scholar 

  54. Trono, D., Feinberg, M. B., and Baltimore, D., 1988, HIV-1 gag mutants can dominantly interfere with the replication of wild-type virus, Cell 59:113–120.

    Google Scholar 

  55. Buchschacher, G. L., Freed, E. O., and Panganiban, A. T., 1992, Cells induced to express a human immunodeficiency virus type 1 envelope mutant inhibit the spread of the wildtype virus, Hum. Gene Ther. 3:391–397.

    PubMed  Google Scholar 

  56. Freed, E. O., Delwart, E. L., Buchschacher, G. L., and Panganiban, A. T., 1992, Amutation in the human immunodeficiency virus type 1 transmembrane glycosylation gp41 dominantly interferes with fusion and infectivity, Proc. Natl. Acad. Sci. USA 89:70–74.

    PubMed  CAS  Google Scholar 

  57. Wu, X., Liu, H., Xiao, H., Conway, J. A., and Kappes, J. C., 1996, Inhibition of human and simian immunodeficiency virus protease function by targeting vpx-protease-mutant fusion protein into viral particles, J. Virol. 70:3378–3384.

    PubMed  CAS  Google Scholar 

  58. Ragheb, J. A., Bressler, P., Daucher, M., Chiang, L., Chuah, M. K, Vandendriessche, T., and Morgan, R. A., 1995, Analysis of transdominant mutants ofthe HIV type 1 rev protein for their ability to inhibit rev function, HIV type 1 replication, and their use as anti-HIV gene therapeutics, AIDS Res. Hum. Retrovir. 11:1343–1353.

    PubMed  CAS  Google Scholar 

  59. Liu, J., Woffendin, C., Yang, Z. Y., and Nabel, G. J., 1994, Regulated expression of a dominant negative form of rev improves resistance to HIV replication in T cells, Gene Ther. 1:32–37.

    PubMed  CAS  Google Scholar 

  60. Lori, F., Lisziewicz, J., Smythe, J., Cara, A., Bunnag, T.A., Curiel, D., and Gallo, R. C., 1994, Rapid protection against human immunodeficiency virus type 1 (HIV-1) replication mediated by high efficiency non-retroviral delivery of genes interfering with HIV-1 tat and gag, Gene Ther. 1:27–31.

    PubMed  CAS  Google Scholar 

  61. Liem, S. E., Ramezani, A., Li, X., and Joshi, S., 1993, The development and testing of retroviral vectors expressing transdominant mutants of HIV-1 proteins to confer anti-HIV-1 resistance, Hum. Gene Ther. 4:625–634.

    PubMed  CAS  Google Scholar 

  62. Caputo, A., Grossi, M. P., Bozzini, R., Rossi, C., Betti, M., Marconi, P. C., Barbantibrodano, G., and Balboni, P. G., 1996, Inhibition ofHIV-1 replication and reactivation from latency by tat transdominant negative mutants in the cysteine rich region, Gene Ther. 3:235–245.

    PubMed  CAS  Google Scholar 

  63. Dinges, M. M., Cook, D. R., King, J., Curiel, T.J., Zhang, X. Q., and Harrison, G. S., 1995, HIV-regulated diphtheria toxin α chain gene confers long-term protection against HIV type 1 infection in the human promonocytic cell line U937, Hum. Gene Ther. 6:1437–1445.

    PubMed  CAS  Google Scholar 

  64. Curiel, T.J., Cook, D. R., Wang, Y., Hahn, B. H., Ghosh, S. R, and Harrison, G. S., 1993, Long-term inhibition of clinical and laboratory human immunodeficiency virus strains in human T-cell lines containing an HIV-regulated diphtheria toxin a chain gene, Hum. Gene Ther. 4:741–747.

    PubMed  CAS  Google Scholar 

  65. Caruso, M., and Klatzmann, D., 1992, Selective killing of CD4+ cells harboring a human immunodeficiency virus-inducible suicide gene prevents viral spread in an infected cell population, Proc. Natl. Acad. Sci. USA 89:182–186.

    PubMed  CAS  Google Scholar 

  66. Caruso, M., 1996, Gene therapy against cancer and HIV infection using the gene encoding herpes simplex virus thymidine kinase, Mol. Med.Today 2:212–217.

    PubMed  CAS  Google Scholar 

  67. Dinges, M. M., Cook, D. R., King, J., Curiel, T. J., Zhang, X. Q., and Harrison, G. S., 1995, HIV-regulated diphtheria toxin a chain gene confers long-term protection against HIV type 1 infection in the human promonocytic cell line U937, Hum. Gene Ther. 6:1437–1445.

    PubMed  CAS  Google Scholar 

  68. Brady, H.J., Miles, C. G., Pennington, D.J., and Dzierzak, E. A., 1994, Specific ablation of human immunodeficiency virus Tat-expressingcells by conditionally toxic retroviruses, Proc. Natl. Acad. Sci. USA 91:365–369.

    PubMed  CAS  Google Scholar 

  69. Vandendriessche, T., Chuah, M. R, and Chiang, L., Chang, H. R, Ensoli, B., and Morgan, R. A., 1995, Inhibition ofclinical human immunodeficiencyvirus (HIV) type 1 isolates in primary CD4+ T lymphocytes by retroviral vectors expressing anti-HIV genes, J. Virol. 69:4045–4052.

    PubMed  CAS  Google Scholar 

  70. Morgan, R. A., Baler-Bitterlich, G., Ragheb, J. A., Wong-Staal, F., Gallo, R.C., and Anderson, W. F., 1994, Further evaluation ofsoluble CD4 as an anti-HIV type 1 gene therapy: Demonstration of protection of primary human peripheral blood lymphocytes from infection by HIV type 1, AIDS Res. Hum. Retrovir. 10:1507–1515.

    PubMed  CAS  Google Scholar 

  71. Morgan, R. A., Looney, D.J., Muenchau, D. D., Wong-Staal, F., Gallo, R. C., and Anderson, W. F., 1990, Retroviralvectors expressing soluble CD4: Apotential gene therapy for AIDS, AIDSRes. Hum. Retrovir. 6183–191.

    Google Scholar 

  72. Bird, R. E., Hardman, K. D., Jacobson, J. W., Johnson, S., Kaufmann, B. M., Lee, S.-M., Lee, T., Pope, S. H., Riordan, G. S., and Whitlow, M., 1988, Single-chain antigen-binding proteins, Science 242:423–426.

    PubMed  CAS  Google Scholar 

  73. Whitlow, M., and Filpula, D., 1991, Single-chain Fv proteins and their fusion proteins, Meth.Enzymol. 2:1–9.

    Google Scholar 

  74. Duan, L., and Pomerantz, R.J., 1996, Intracellular antibodies for HIV-1 gene therapy, Sci. Med. 3:24–36.

    CAS  Google Scholar 

  75. Chen, S. Y., Bagley, J., and Marasco, W. A., 1994, Intracellular antibodies as a new class of therapeutic molecules for gene therapy, Hum. Gene Ther. 5:595–601.

    PubMed  CAS  Google Scholar 

  76. Chen, S. Y., Khouri, Y., Bagley, J., and Marasco, W. A., 1994, Combined intra-and extracellular immunization against human immunodeficiency virus type 1 infection with a human anti-gp120 antibody, Proc. Natl. Acad. Sci. USA 91:5932–5936.

    PubMed  CAS  Google Scholar 

  77. Buonocore, L., and Rose, J. K., 1993, Blockade ofhuman immunodeficiency virus type 1 production in CD4+ T cells by an intracellular CD4 expressed under control of the viral long terminal repeat, Proc. Natl. Acad. Sci. USA 90:2695–2699.

    PubMed  CAS  Google Scholar 

  78. Duan, L., Zhang, H., Oakes, J. W., Bagasra, O., and Pomerantz, R.J., 1994, Molecular and virological effects of intracellular anti-rev single-chain variable fragments on the expression of various human immunodeficiency virus-1 strains, Hum. Gene Ther. 5:1315–1324.

    PubMed  CAS  Google Scholar 

  79. Levy-Mintz, P., Duan, L., Zhang, H., Hu, B., Dornadula, G., Zhu, M., Kulkosky, J., Bizub Bender, D., Skalka, A.-M., and Pomerantz, R. J., 1996, Intracellular expression of singlechain variable fragments to inhibit early stages of the viral life cycle by targeting human immunodeficiency virus type 1 integrase, J. Virol. 70:8821–8832.

    PubMed  CAS  Google Scholar 

  80. Pomerantz, RJ., Bagasra, O., and Baltimore, D., 1992, Cellular latency ofhuman immune deficiency virus type 1, Curr. Opin. Immunol. 4:475–480.

    PubMed  CAS  Google Scholar 

  81. Muzyczka, N., 1992, Use of adeno-associated virus as a general transduction vector for mammaliancells, Curr. Top. Microbiol. Immunol. 158:97–129.

    PubMed  CAS  Google Scholar 

  82. Hallek, M., and Wendtner, C. M., 1996, Recombinant adeno-associated virus (RAAV) vectors for somatic gene therapy-Recent advances and potential clinical applications, Cytokines Mol. Ther. 269–79.

    Google Scholar 

  83. Miller, A. D., 1990, Retrovirus packaging cells, Hum. Gene Ther. 1:5–14.

    PubMed  CAS  Google Scholar 

  84. Morgan, R A, and Andserson, W. F., 1993, Human gene therapy, Annu. Rev. Biochem. 62:191–217.

    Article  PubMed  CAS  Google Scholar 

  85. Dornburg, R, 1995, Reticuloendotheliosisviruses and derivedvectors, Gene Ther. 2:301–310.

    PubMed  CAS  Google Scholar 

  86. Temin, H. M., 1986, Retrovirus vectors for gene transfer: Efficient integration into and expression of exogenous DNA in vertebrate cell genomes, in: Gene Transfer (R. Kucherlapati, ed.), Plenum Press, New York, pp. 144–187.

    Google Scholar 

  87. Gilboa, E., 1990, Retroviral gene transfer: Applications to human gene therapy, Prog. Clin. Biol. Res. 352301–311.

    Google Scholar 

  88. Eglitis, M. A., and Anderson, W. F., 1988, Retroviral vectors for introduction ofgenes into mammalian cells, Biotechniques6:608–614.

    PubMed  CAS  Google Scholar 

  89. Gunzburg, W.H., and Salmons, B., 1996, Development of retroviral vectors as safe, targeted gene delivery systems, J. Mol. Med. JMM 74:171–182.

    CAS  Google Scholar 

  90. Orlic, D., Girard, L.J., Jordan, C. T., Anderson, S. M., Cline, A. P., and Bodine, D. M., 1996, The level of mRNA encoding the amphotropic retrovirus receptor in mouse and human hematopoietic stem cells is low and correlates with the efficiency of retrovirus transduction, Proc. Natl. Acad. Sci. USA 93:11097–11102.

    Article  PubMed  CAS  Google Scholar 

  91. Hunter, E., and Swanstrom, R., 1990,Retrovirusenvelopeglycoproteins, Curr. Top. Microbiol. Immunol. 157:187–253.

    PubMed  CAS  Google Scholar 

  92. Young, J. A. T., Bates, P., Willert, R, and Varmus, H. E., 1990, Efficient incorporation of human CD4 protein into avian leukosis virus particles, Science 250:1421–1423.

    PubMed  CAS  Google Scholar 

  93. Matano, T., Odawara, T., Iwamoto, A., and Yoshikura, H., 1995, Targeted infection of a retrovirus bearing a CD4-envchimera into human cells expressing human immunodeficiency virus type 1,J. Gen. Virol. 76:3165–3169.

    Article  PubMed  CAS  Google Scholar 

  94. Etienne-Julan, M., Roux, P., Carillo, S., Jeanteur, P., and Piechaczyk, M., 1992, The efficiency of cell targeting by recombinant retroviruses depends on the nature of the receptor and the composition of the artificial cell-virus linker, J. Gen. Virol. 73:3251–3255.

    PubMed  CAS  Google Scholar 

  95. Roux, P., Jeanteur, P., and Piechaczyk, M., 1989, A versatile and potentially general approach to the targeting of specific cell types by retroviruses: Application to the infection of human by means of major histocompatibility complex class I and class I-antigens by mouse ecotropic murine leukemia virusderived viruses, Proc. Natl. Acad. Sci. USA 86: 9079–9083.

    PubMed  CAS  Google Scholar 

  96. Chu, T.-H., and Dornburg, R., 1995, Retroviral vector particles displaying the antigen-binding site of an antibody enable cell-type-specific gene transfer, J. Virol. 69:2659–2663.

    PubMed  CAS  Google Scholar 

  97. Chu, T.-H., Martinez, I., Sheay, W. C., and Dornburg, R., 1994, Cell targeting with retroviral vector particles containing antibodyenvelope fusion proteins, Gene Ther. 1:292–299.

    PubMed  CAS  Google Scholar 

  98. Russell, S.J., Hawkins, R. E., and Winter, G., 1993, Retroviral vectors displaying functional antibody fragments, Nucleic Acid. Res. 21:1081–1085.

    PubMed  CAS  Google Scholar 

  99. Chu, T.-H., and Dornburg, R., 1997, Towards highly-efficientcell-type-specific gene transfer with retroviral vectors that display a single chain antibody, J. Virol. 71:720–725.

    PubMed  CAS  Google Scholar 

  100. Engelstaedter, M., Bobkova, M., Baier, M., Stitz, J., Holtkamp, N., Tearina Chu, T.-H., Kurth, R., Dornburg, R., Buchholz, C. J., and Cichutek, K., Targeting human T-cells by retroviral vectors displaying antibody domains selected from a phage display library, Hum. Gene Ther., in press.

    Google Scholar 

  101. Dougherty, J. P., Wisniewski, R., Yang, S., Rhode, B. W., and Temin, H. M., 1989, New retrovirus helper cells with almost no nucleotide sequence homology to retrovirus vectors, J. Virol. 63:3209–3212.

    PubMed  CAS  Google Scholar 

  102. Purchase, H. G., and Witter, R. L., 1975, The reticuloendotheliosis viruses, Curr.Top. Microbiol. Immunol. 71:103–124.

    PubMed  CAS  Google Scholar 

  103. Somia, N. V., Zoppe, M., and Verma, I. M., 1995, Generation of targeted retroviral vectors by using single-chain variable fragment: An approach to in vivo gene delivery, Proc. Natl. Acad. Sci. USA 92:7570–7574.

    PubMed  CAS  Google Scholar 

  104. Marin, M., Noel, D., Valsesia-Wittman, S., Brockly, F., Etienne-Julan, M., Russell, S., Cosset, F.-L., and Piechaczyk, M., 1996, Targeted infection of human cells via major histocom-patibility complex class I molecules by Moloney leukemia virusderived viruses displaying single chain antibody fragment-envelope fusion proteins, J. Virol. 70:2957–2962.

    PubMed  CAS  Google Scholar 

  105. Valsesia-Wittman, S., Morling, F., Nilson, B., Takeuchi, Y., Russell, S., and Cosset, F.-L., 1996, Improvement of retroviral retargeting by using acid spacers between an additional binding domain and the N terminus of Moloney leukemia virus SU, J. Virol. 70:2059–2064.

    Google Scholar 

  106. Nilson, B. H. K., Morling, F. J., Cosset, F.-L., and Russell, S. J., 1996, Targeting of retroviral vectors through protease-substrate interactions, GeneTher. 3:280–286.

    CAS  Google Scholar 

  107. Schnierle, B. S., Moritz, D., Jeschke, M., and Groner, B., 1996, Expression of chimeric envelope proteins in helper cell lines and integration into Moloney murine leukemia virus particles, Gene Ther. 3:334–342.

    PubMed  CAS  Google Scholar 

  108. Dornburg, R., 1997, From the natural evolution to the genetic manipulation of the host range of retroviruses, Biol. Chem. 378:457–468.

    PubMed  CAS  Google Scholar 

  109. Schnell, M. J., Johnson, J. E., Buonocore, L., and Rose, J. K., 1997, Construction of a novel virus that targets HIV-1-infected cells and controls HIV-1 infection, Cell 90:849–857.

    Article  PubMed  CAS  Google Scholar 

  110. Nolan, G. P., 1997, Harnessing viral devices as pharmaceuticals: Fighting HIV-1’s fire with fire, Cell90:821–824.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Dornburg, R., Pomerantz, R. (2002). Gene Therapy and HIV-1 Infection. In: Ugen, K.E., Bendinelli, M., Friedman, H. (eds) Human Retroviral Infections. Infectious Agents and Pathogenesis. Springer, Boston, MA. https://doi.org/10.1007/0-306-46819-0_14

Download citation

  • DOI: https://doi.org/10.1007/0-306-46819-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46222-1

  • Online ISBN: 978-0-306-46819-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics