Skip to main content

Functions and Dysfunctions of Peroxisomes in Fatty Acid α- and β-Oxidation

New Insights

  • Chapter
Current Views of Fatty Acid Oxidation and Ketogenesis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 466))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fujiki, Y. (1997) Biochim. Biophys. Acta 1361, 235–250. Molecular defects in genetic diseases of peroxisomes.

    CAS  PubMed  Google Scholar 

  2. Brown, F.R., 3d, McAdams, A.J., Cummins, J.W., Konkol, R., Singh, I., Moser, A.B. & Moser, H.W. (1982) Johns Hopkins Med. J. 151, 344–351. Cerebro-hepato-renal (Zellweger) syndrome and neonatal adrenoleukodystrophy: similarities in phenotype and accumulation of very long chain fatty acids.

    PubMed  Google Scholar 

  3. Watkins, P.A., Howard, A.E. & Mihalik, S.J. (1994) Biochim. Biophys. Acta 1214, 288–294. Phytanic acid must be activated to phytanoyl-CoA prior to its alpha-oxidation in rat liver peroxisomes.

    PubMed  Google Scholar 

  4. Mihalik, S.J., Rainville, A.M. & Watkins, P.A. (1995) Eur. J. Biochem. 232, 545–551. Phytanic acid alpha-oxidation in rat liver peroxisomes. Production of alpha-hydroxyphytanoyl-CoA and formate is enhanced by dioxygenase cofactors.

    Article  CAS  PubMed  Google Scholar 

  5. Croes, K., Casteels, M., de Hoffmann, E., Mannaerts, G.P. & Van Veldhoven, P.P. (1996) Eur. J. Biochem. 240, 674–683. alpha-Oxidation of 3-methyl-substituted fatty acids in rat liver. Production of formic acid instead of CO2, cofactor requirements, subcellular localization and formation of a 2-hydroxy-3-methylacyl-CoA intermediate.

    Article  CAS  PubMed  Google Scholar 

  6. Jansen, G.A., Mihalik, S.J., Watkins, P.A., Moser, H.W., Jakobs, C., Denis, S. & Wanders, R.J.A. (1996) Biochem. Biophys. Res. Commun. 229, 205–210. Phytanoyl-CoA hydroxylase is present in human liver, located in peroxisomes, and deficient in Zellweger syndrome: direct, unequivocal evidence for the new, revised pathway of phytanic acid alpha-oxidation in humans.

    Article  CAS  PubMed  Google Scholar 

  7. Croes, K., Casteels, M., Asselberghs, S., Herdewijn, P., Mannaerts, G.P. & Vanveldhoven, P.P. (1997) FEBS. Lett. 412, 643–645. Formation of a 2-methyl-branched fatty aldehyde during peroxisomal alpha-oxidation.

    Article  CAS  PubMed  Google Scholar 

  8. Verhoeven, N.M., Schor, D.S., ten Brink, H.J., Wanders, R.J.A. & Jakobs, C. (1997) Biochem. Biophys. Res. Commun. 237, 33–36. Resolution of the phytanic acid alpha-oxidation pathway: identification of pristanal as product of the decarboxylation of 2-hydroxyphytanoyl-CoA.

    Article  CAS  PubMed  Google Scholar 

  9. Singh, H., Beckman, K. & Poulos, A. (1994) J. Biol. Chem. 269, 9514–9520. Peroxisomal beta-oxidation of branched chain fatty acids in rat liver. Evidence that carnitine palmitoyltransferase I prevents transport of branched chain fatty acids into mitochondria.

    CAS  PubMed  Google Scholar 

  10. Schepers, L., Casteels, M., Verheyden, K., Parmentier, G., Asselberghs, S., Eyssen, H.J. & Mannaerts, G.P. (1989) Biochem. J. 257, 221–229. Subcellular distribution and characteristics of trihydroxycoprostanoyl-CoA synthetase in rat liver.

    CAS  PubMed  Google Scholar 

  11. Prydz, K., Kase, B.F., Bjorkhem, I. & Pedersen, J.I. (1988) J. Lipid. Res. 29, 997–1004. Subcellular localization of 3 alpha, 7 alpha-dihydroxy-and 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoylcoenzyme A ligase(s) in rat liver.

    CAS  PubMed  Google Scholar 

  12. Diczfalusy, U., Kase, B.F., Alexson, S.E. & Bjorkhem, I. (1991) J. Clin. Invest. 88, 978–984. Metabolism of prostaglandin F2 alpha in Zellweger syndrome. Peroxisomal beta-oxidation is a major importance for in vivo degradation of prostaglandins in humans.

    CAS  PubMed  Google Scholar 

  13. Jedlitschky, G., Huber, M., Volkl, A., Muller, M., Leier, I., Muller, J., Lehmann, W.D., Fahimi, H.D. & Keppler, D. (1991) J. Biol. Chem. 266, 24763–24772. Peroxisomal degradation of leukotrienes by beta-oxidation from the omega-end.

    CAS  PubMed  Google Scholar 

  14. Diczfalusy, U., Vesterqvist, O., Kase, B.F., Lund, E. & Alexson, S.E. (1993) J. Lipid. Res. 34, 1107–1113. Peroxisomal chain-shortening of thromboxane B2: evidence for impaired degradation of thromboxane B2 in Zellweger syndrome.

    CAS  PubMed  Google Scholar 

  15. de Waart, D.R., Koomen, G.C. & Wanders, R.J.A. (1994) Biochim. Biophys. Acta 1226, 44–48. Studies on the urinary excretion of thromboxane B2 in Zellweger patients and control subjects: evidence for amajor role for peroxisomes in the beta-oxidative chain-shortening of thromboxane B2.

    PubMed  Google Scholar 

  16. Suzuki, H., Yamada, J., Watanabe, T. & Suga, T. (1989) Biochim. Biophys. Acta 990, 25–30. Compartmentation of dicarboxylic acid beta-oxidation in rat liver: importance of peroxisomes in the metabolism of dicarboxylic acids.

    CAS  PubMed  Google Scholar 

  17. Vamecq, J., de Hoffmann, E. & Van Hoof, F. (1985) Biochem. J. 230, 683–693. The microsomal dicarboxylyl-CoA synthetase.

    CAS  PubMed  Google Scholar 

  18. Adamski, J., Husen, B., Marks, F. & Jungblut, P.W. (1992) Biochem. J. 288, 375–381. Purification and properties of oestradiol 17 beta-dchydrogenase extracted from cytoplasmic vesicles of porcine endometrial cells.

    CAS  PubMed  Google Scholar 

  19. Markus, M., Husen, B., Leenders, F., Jungblut, P.W., Hall, P.F. & Adamski, J. (1995) Eur. J. Cell. Biol. 68, 263–267. The organelles containing porcine 17 beta-estradiol dehydrogenase are peroxisomes.

    CAS  PubMed  Google Scholar 

  20. Leenders, F., Tesdorpf, J.G., Markus, M., Engel, T., Seedorf, U. & Adamski, J. (1996) J. Biol. Chem. 271, 5438–5442. Porcine 80-kDa protein reveals intrinsic 17 beta-hydroxysteroid dehydrogenase, fatty acyl-CoA-hydratase/dehydrogenase, and sterol transfer activities.

    CAS  PubMed  Google Scholar 

  21. Dieuaide-Noubhani, M., Novikov, D., Baumgart, E., Vanhooren, J.C., Fransen, M., Goethals, M., Vandekerckhove, J., Van Veldhoven, P.P. & Mannaerts, G.P. (1996) Eur. J. Biochem. 240, 660–666. Further characterization of the peroxisomal 3-hydroxyacyl-CoA dehydrogenases from rat liver. Relationship between the different dehydrogenases and evidence that fatty acids and the C27 bile acids di-and trihydroxycoprostanic acids are metabolized by separate multifunctional proteins.

    Article  CAS  PubMed  Google Scholar 

  22. Dieuaide-Noubhani, M., Asselberghs, S., Mannaerts, G.P. & Van Veldhoven, P.P. (1997) Biochem. J. 325, 367–373. Evidence that multifunctional protein 2, and not multifunctional protein 1, is involved in the peroxisomal beta-oxidation of pristanic acid.

    CAS  PubMed  Google Scholar 

  23. Jiang, L.L., Kobayashi, A., Matsuura, H., Fukushima, H. & Hashimoto, T. (1996) J. Biochem. (Tokyo). 120, 624–632. Purification and properties of human D-3-hydroxyacyl-CoA dehydratase: medium-chain enoyl-CoA hydratase is D-3-hydroxyacyl-CoA dehydratase.

    CAS  Google Scholar 

  24. Jiang, L.L., Kurosawa, T., Sato, M., Suzuki, Y. & Hashimoto, T. (1997) J. Biochem. (Tokyo). 121, 506–513. Physiological role of D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase bifunctional protein.

    CAS  Google Scholar 

  25. Qin, Y.M., Haapalainen, A.M., Conry, D., Cuebas, D.A., Hiltunen, J.K. & Novikov, D.K. (1997) Biochem. J. 328, 377–382. Recombinant 2-enoyl-CoA hydratase derived from rat peroxisomal multifunctional enzyme 2: role of the hydratase reaction in bile acid synthesis.

    CAS  PubMed  Google Scholar 

  26. Qin, Y.M., Poutanen, M.H., Helander, H.M., Kvist, A.P., Siivari, K.M., Schmitz, W., Conzelmann, E., Hellman, U. & Hiltunen, J.K. (1997) Biochem. J. 321, 21–28. Peroxisomal multifunctional enzyme of beta-oxidation metabolizing D-3-hydroxyacyl-CoA esters in rat liver: molecular cloning, expression and characterization.

    CAS  PubMed  Google Scholar 

  27. Novikov, D.K., Vanhove, G.F., Carchon, H., Asselberghs, S., Eyssen, H.J., Van Veldhoven, P.P. & Mannaerts, G.P. (1994) J. Biol. Chem. 269, 27125–27135. Peroxisomal beta-oxidation. Purification of four novel 3-hydroxyacyl-CoA dehydrogenases from rat liver peroxisomes.

    CAS  PubMed  Google Scholar 

  28. Uchida, Y., Izai, K., Orii, T. & Hashimoto, T. (1992) J. Biol. Chem. 267, 1034–1041. Novel fatty acid beta-oxidation enzymes in rat liver mitochondria. II. Purification and properties of enoyl-coenzyme A (CoA) hydratase/3-hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase trifunctional protein.

    CAS  PubMed  Google Scholar 

  29. Wanders, R.J.A., Denis, S., Wouters, F., Wirtz, K.W. & Seedorf, U. (1997) Biochem. Biophys. Res. Commun. 236, 565–569. Sterol carrier protein X (SCPx) is a peroxisomal branched-chain beta-ketothiolase specifically reacting with 3-oxo-pristanoyl-CoA: a new, unique role for SCPx in branched-chain fatty acid metabolism in peroxisomes.

    Article  CAS  PubMed  Google Scholar 

  30. Suzuki, Y., Jiang, L.L., Souri, M., Miyazawa, S., Fukuda, S., Zhang, Z., Une, M., Shimozawa, N., Kondo, N., Orii, T. & Hashimoto, T. (1997) Am. J. Hum. Genet. 61, 1153–1162. D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase bifunctional protein deficiency: a newly identified peroxisomal disorder.

    CAS  PubMed  Google Scholar 

  31. van Grunsven, E.G., van Berkel, E., Ulst, L., Vreken, P., de Klerk, J.B., Adamski, J., Lemonde, H., Clayton, P.T., Cuebas, D.A. & Wanders, R.J. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 2128–2133. Peroxisomal D-hydroxyacyl-CoA dehydrogenase deficiency: resolution of the enzyme defect and its molecular basis in bifunctional protein deficiency.

    PubMed  Google Scholar 

  32. Miyazawa, S., Osumi, T. & Hashimoto, T. (1980) Eur. J. Biochem. 103, 589–596. The presence of a new 3-oxoacyl-CoA thiolase in rat liver peroxisomes.

    Article  CAS  PubMed  Google Scholar 

  33. Miyazawa, S., Furuta, S., Osumi, T., Hashimoto, T. & Ui, N. (1981) J. Biochem. (Tokyo). 90, 511–519. Properties of peroxisomal 3-ketoacyl-coA thiolase from rat liver.

    CAS  Google Scholar 

  34. Goldfischer, S., Collins, J., Rapin, I., Neumann, P., Neglia, W., Spiro, A.J., Ishii, T., Roels, F., Vamecq, J. & Van Hoof, F. (1986) J. Pediatr. 108, 25–32. Pseudo-Zellweger syndrome: deficiencies in several peroxisomal oxidative activities.

    CAS  PubMed  Google Scholar 

  35. Schram, A.W., Goldfischer, S., van Roermund, C.W., Brouwer-Kelder, E.M., Collins, J., Hashimoto, T., Heymans, H.S., van den Bosch, H., Schutgens, R.B., Tager, J.M. & et al. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 2494–2496. Human peroxisomal 3-oxoacyl-coenzyme A thiolase deficiency.

    CAS  PubMed  Google Scholar 

  36. Seedorf, U., Brysch, P., Engel, T., Schrage, K. & Assmann, G. (1994) J. Biol. Chem. 269, 21277–21283. Sterol carrier protein X is peroxisomal 3-oxoacyl coenzyme A thiolase with intrinsic sterol carrier and lipid transfer activity.

    CAS  PubMed  Google Scholar 

  37. Wirtz, K.W. (1997) Biochem. J. 324, 353–360. Phospholipid transfer proteins revisited.

    CAS  PubMed  Google Scholar 

  38. Subramani, S. (1997) Nat. Genet. 15, 331–333. PEX genes on the rise.

    Article  CAS  PubMed  Google Scholar 

  39. Ohba, T., Rennert, H., Pfeifer, S.M., He, Z., Yamamoto, R., Holt, J.A., Billheimer, J.T. & Strauss, J.F. (1994) Genomics. 24, 370–374. The structure of the human sterol carrier protein X/sterol carrier protein 2 gene (SCP2).

    Article  CAS  PubMed  Google Scholar 

  40. Ohba, T., Holt, J.A., Billheimer, J.T. & Strauss, J.F., 3rd. (1995) Biochemistry. 34, 10660–10668. Human sterol carrier protein x/sterol carrier protein 2 gene has two promoters.

    Article  CAS  PubMed  Google Scholar 

  41. Antonenkov, V.D., Van Veldhoven, P.P., Waelkens, E. & Mannaerts, G.P. (1997) J. Biol. Chem. 272, 26023–26031. Substrate specificities of 3-oxoacyl-CoA thiolase A and sterol carrier protein 2/3-oxoacyl-CoA thiolase purified from normal rat liver peroxisomes. Sterol carrier protein 2/3-oxoacyl-CoA thiolase is involved in the metabolism of 2-methyl-branched fatty acids and bile acid intermediates.

    Article  CAS  PubMed  Google Scholar 

  42. Bunya, M., Maebuchi, M., Kamiryo, T., Kurosawa, T, Sato, M., Tohma, M, Jiang, L.L. & Hashimoto, T. (1998) J. Biochem. (Tokyo). 123, 347–352. Thiolase involved in bile acid formation.

    CAS  Google Scholar 

  43. Seedorf, U., Raabe, M., Ellinghaus, P., Kannenberg, F., Fobker, M., Engel, T, Denis, S., Wouters, F., Wirtz, K.W., Wanders, R.J., Maeda, N. & Assmann, G. (1998) Genes. Dev. 12, 1189–1201. Defective peroxisomal catabolism of branched fatty acyl coenzyme A in mice lacking the sterol carrier protein-2/sterol carrier protein-x gene function.

    CAS  PubMed  Google Scholar 

  44. van Roermund, C.W., Elgersma, Y, Singh, N., Wanders, R.J. & Tabak, H.F. (1995) EMBO. J. 14, 3480–3486. The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions.

    PubMed  Google Scholar 

  45. Baumgart, E., Fahimi, H.D., Stich, A. & Volkl, A. (1996) Journal of Biological Chemistry 271, 3846–3855. L-lactate dehydrogenase A4-and A3B isoforms are bona fide peroxisomal enzymes in rat liver. Evidence for involvement in intraperoxisomal NADH reoxidation.

    CAS  PubMed  Google Scholar 

  46. van Roermund, C.W.T., Hettema, E.H., Kal, A.J., van den Berg, M., Tabak, H.F. & Wanders, R.J.A. (1998) EMBO. J. 17, 677–687. Peroxisomal beta-oxidation of polyunsaturated fatty acids in Saccharomyces cerevisiae: isocitrate dehydrogenase provides NADPH for reduction of double bonds at even positions.

    PubMed  Google Scholar 

  47. Henke, B., Girzalsky, W., Berteaux-Lecellier, V. & Erdmann, R. (1998) J. Biol. Chem. 273, 3702–3711. IDP3 encodes a peroxisomal NADP-dependent isocitrate dehydrogenase required for the beta-oxidation of unsaturated fatty acids.

    Article  CAS  PubMed  Google Scholar 

  48. Hettema, E.H., van Roermund, C.W., Distel, B., van den Berg, M., Vilela, C., Rodrigues-Pousada, C., Wanders, R.J. & Tabak, H.F. (1996) EMBO. J. 15, 3813–3822. The ABC transporterproteins Patl and Pat2 are required for import of long-chain fatty acids into peroxisomes of Saccharomyces cerevisiae.

    CAS  PubMed  Google Scholar 

  49. Shani, N., Watkins, P.A. & Valle, D. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 6012–6016. PXA1, a possible Saccharomyces cerevisiae ortholog of the human adrenoleukodystrophy gene.

    CAS  PubMed  Google Scholar 

  50. Shani, N. & Valle, D. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 11901–11906. A Saccharomyces cerevisiae homolog of the human adrenoleukodystrophy transporter is a heterodimer of two half ATP-binding cassette transporters.

    Article  CAS  PubMed  Google Scholar 

  51. Swartzman, E.E., Viswanathan, M.N. & Thorner, J. (1996) J. Cell. Biol. 132, 549–563. The PAL1 gene product is a peroxisomal ATP-binding cassette transporter in the yeast Saccharomyces cerevisiae.

    Article  CAS  PubMed  Google Scholar 

  52. Verleur, N., Hettema, E.H., van Roermund, C.W.T., Tabak, H.F. & Wanders, R.J.A. (1997) Eur. J. Biochem. 249, 657–661. Transport of activated fatty acids by the peroxisomal ATP-binding-cassette transporter Pxa2 in a semi-intact yeast cell system.

    Article  CAS  PubMed  Google Scholar 

  53. Moser, H.W., Smith, K.D. & Moser, A.B. (1995) in The metabolic and molecular bases of inherited disease (Scriver, C.R., Beaudet, A.L., Sly, W.S., & Valle, D. eds), 2325–2349. McGraw-Hill, New York. X-linked adrenoleukodystrophy.

    Google Scholar 

  54. Powers, J.M. (1985) Clin. Neuropathol. 4, 181–199. Adreno-leukodystrophy (adreno-testiculo-leukomyelo-neuropathic-complex).

    CAS  PubMed  Google Scholar 

  55. Singh, I., Moser, A.E., Goldfischer, S. & Moser, H.W. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 4203–4207. Lignoceric acid is oxidized in the peroxisome: implications for the Zellweger cerebro-hepatorenal syndrome and adrenoleukodystrophy.

    CAS  PubMed  Google Scholar 

  56. Lazo, O., Contreras, M., Hashmi, M., Stanley, W., Irazu, C. & Singh, I. (1988) Proc. Natl. Acad Sci. U. S. A. 85, 7647–7651. Peroxisomal lignoceroyl-CoA ligase deficiency in childhood adrenoleukodystrophy and adrenomyeloneuropathy.

    CAS  PubMed  Google Scholar 

  57. Wanders, R.J., van Roermund, C.W., van Wijland, M.J., Schutgens, R.B., van den Bosch, H., Schram, A.W. & Tager, J.M. (1988) Biochem. Biophys. Res. Commun. 153, 618–624. Direct demonstration that the deficient oxidation of very long chain fatty acids in X-linked adrenoleukodystrophy is due to an impaired ability of peroxisomes to activate very long chain fatty acids.

    Article  CAS  PubMed  Google Scholar 

  58. Mosser, J., Douar, A.M., Sarde, C.O., Kioschis, P., Feil, R., Moser, H., Poustka, A.M., Mandel, J.L. & Aubourg, P. (1993) Nature. 361, 726–730. Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters.

    Article  CAS  PubMed  Google Scholar 

  59. Higgins, C.F. (1992) Ann. Rev. Cell. Biol. 8, 67–113. ABC transporters: from microorganisms to man.

    CAS  PubMed  Google Scholar 

  60. Lageweg, W., Tager, J.M. & Wanders, R.J.A. (1991) Biochem. J. 276, 53–56. Topography of very-long-chain-fatty-acid-activating activity in peroxisomes from rat liver.

    CAS  PubMed  Google Scholar 

  61. Lazo, O., Contreras, M. & Singh, I. (1990) Biochemistry. 29, 3981–3986. Topographical localization of peroxisomal acyl-CoA ligases: differential localization of palmitoyl-CoA and lignoceroyl-CoA ligases.

    Article  CAS  PubMed  Google Scholar 

  62. Feigenbaum, V., Lombard-Platet, G., Guidoux, S., Sarde, C.O., Mandel, J.L. & Aubourg, P. (1996) Am. J. Hum. Genet. 58, 1135–1144. Mutational and protein analysis of patients and heterozygous women with X-linked adrenoleukodystrophy.

    CAS  PubMed  Google Scholar 

  63. Kemp, S., Mooyer, P.A., Bolhuis, P.A., van Geel, B.M., Mandel, J.L., Barth, P.G., Aubourg, P. & Wanders, R.J. (1996) J. Inherit. Metab. Dis. 19, 667–674. ALDP expression in flbroblasts of patients with X-linked adrenoleukodystrophy.

    Article  CAS  PubMed  Google Scholar 

  64. Watkins, P.A., Gould, S.J., Smith, M.A., Braiterman, L.T., Wei, H.M., Kok, F., Moser, A.B., Moser, H.W. & Smith, K..D. (1995) Am. J. Hum. Genet. 57, 292–301. Altered expression of ALDP in X-linked adrenoleukodystrophy.

    CAS  PubMed  Google Scholar 

  65. Poll-The, B.T., Roels, F, Ogier, H., Scotto, J., Vamecq, J., Schutgens, R.B.H., Wanders, R.J.A., van Roermund, C.W.T., van Wijland, M.J., Schram, A.W & et al. (1988) Am. J. Hum. Genet. 42, 422–434. A new peroxisomal disorder with enlarged peroxisomes and a specific deficiency of acyl-CoA oxidase (pseudo-neonatal adrenoleukodystrophy).

    CAS  PubMed  Google Scholar 

  66. Wanders, R.J., Schelen, A., Feller, N., Schutgens, R.B., Stellaard, F., Jakobs, C., Mitulla, B. & Seidlitz, G. (1990) J. Inherit. Metab. Dis. 13, 371–374. First prenatal diagnosis of acyl-CoA oxidase deficiency.

    CAS  PubMed  Google Scholar 

  67. Watkins, P.A., McGuinness, M.C., Raymond, G.V., Hicks, B.A., Sisk, J.M., Moser, A.B. & Moser, H.W. (1995) Ann. Neural. 38, 472–477. Distinction between peroxisomal bifunctional enzyme and acyl-CoA oxidase deficiencies.

    CAS  Google Scholar 

  68. Watkins, P.A., Chen, W.W., Harris, C.J., Hoefler, G, Hoefler, S., Blake, D.C., Jr., Balfe, A., Kelley, R.I., Moser, A.B., Beard, M.E. & et al. (1989) J. Clin. Invest. 83, 771–777. Peroxisomal bifunctional enzyme deficiency.

    CAS  PubMed  Google Scholar 

  69. Furuta, S., Miyazawa, S., Osumi, T, Hashimoto, T. & Ui, N. (1980) J. Biochem. (Tokyo). 88, 1059–1070. Properties of mitochondria and peroxisomal enoyl-CoA hydratases from rat liver.

    CAS  Google Scholar 

  70. McGuinness, M.C., Moser, A.B., Poll-The, B.T. & Watkins, P.A. (1993) Biochem. Med. Metab. Biol. 49, 228–242. Complementation analysis of patients with intact peroxisomes and impaired peroxisomal betaoxidation.

    Article  CAS  PubMed  Google Scholar 

  71. Wanders, R.J., van Roermund, C.W., Brul, S., Schutgens, R.B. & Tager, J.M. (1992) J. Inherit. Metab. Dis. 15, 385–388. Bifunctional enzyme deficiency: identification of a new type of peroxisomal disorder in a patient with an impairment in peroxisomal beta-oxidation of unknown aetiology by means of complementation analysis.

    CAS  PubMed  Google Scholar 

  72. Moser, A.B., Rasmussen, M., Naidu, S., Watkins, P.A., McGuinness, M., Hajra, A.K., Chen, G., Raymond, G., Liu, A., Gordon, D. & et al. (1995) J. Pediatr. 127, 13–22. Phenotype of patients with peroxisomal disorders subdivided into sixteen complementation groups.

    CAS  PubMed  Google Scholar 

  73. Wanders, R.J., Jansen, G.A., van Roermund, C.W., Denis, S., Schutgens, R.B. & Jakobs, B.S. (1996) Ann. N. Y. Acad. Sci. 804, 450–460. Metabolic aspects of peroxisomal disorders.

    CAS  PubMed  Google Scholar 

  74. Paton, B.C., Sharp, P.C., Crane, D.I. & Poulos, A. (1996) J. Clin. Invest. 97, 681–688. Oxidation of pristanic acid in fibroblasts and its application to the diagnosis of peroxisomal beta-oxidation defects.

    CAS  PubMed  Google Scholar 

  75. van Grunsven, E.G. & Wanders, R.J. (1997) J. Inherit. Metab. Dis. 20, 437–440. Genetic heterogeneity in patients with a disorder of peroxisomal beta-oxidation: a complementation study based on pristanic acid beta-oxidation suggesting different enzyme defects.

    PubMed  Google Scholar 

  76. van Grunsven, E.G., van Roermund, C.W., Denis, S. & Wanders, R.J. (1997) Biochem. Biophys. Res. Commun. 235, 176–179. Complementation analysis of fibroblasts from peroxisomal fatty acid oxidation deficient patients shows high frequency of bifunctional enzyme deficiency plus intragenic complementation: unequivocal evidence for differential defects in the same enzyme protein.

    PubMed  Google Scholar 

  77. Steinberg, D. (1995) in The metabolic and molecular bases of inherited disease (Scriver, C.R., Beaudet, A.L., Sly, W.S., & Valle, D. eds), 2351–2369. McGraw-Hill, New York. Refsum disease.

    Google Scholar 

  78. Tsai, S.C., Avigan, J. & Steinberg, D. (1969) J. Biol. Chem. 244, 2682–2692. Studies on the alpha oxidation of phytanic acid by rat liver mitochondria.

    CAS  PubMed  Google Scholar 

  79. Poulos, A., Sharp, P., Singh, H., Johnson, D.W., Carey, W.F. & Easton, C. (1993) Biochem. J. 292, 457–461. Formic acid is a product of the alpha-oxidation of fatty acids by human skin fibroblasts: deficiency of formic acid production in peroxisome-deficient fibroblasts.

    CAS  PubMed  Google Scholar 

  80. Singh, I., Pahan, K., Dhaunsi, G.S., Lazo, O. & Ozand, P. (1993) J. Biol. Chem. 268, 9972–9979. Phytanic acid alpha-oxidation. Differential subcellularlocalization in rat and human tissues and its inhibition by nycodenz.

    CAS  PubMed  Google Scholar 

  81. Wanders, R.J., van Roermund, C.W., Jakobs, C. & ten Brink, H.J. (1991) J. Inherit. Metab. Dis. 14, 349–352. Identification of pristanoyl-CoA oxidase and phytanic acid decarboxylation in peroxisomes and mitochondria from human liver: implications for Zellweger syndrome.

    CAS  PubMed  Google Scholar 

  82. Wanders, R.J. & van Roermund, C.W. (1993) Biochim. Biophys. Acta 1167, 345–350. Studies on phytanic acid alpha-oxidation in rat liver and cultured human skin fibroblasts.

    CAS  PubMed  Google Scholar 

  83. Verhoeven, N.M., Roe, D.S., Kok, R.M., Wanders, R.J.A., Jakobs, C. & Roe, C. (1998) J. Lipid. Res. 39, 66–74. Phytanic acid and pristanic acid are oxidized by sequential peroxisomal and mitochondrial reactions in cultured fibroblasts.

    CAS  PubMed  Google Scholar 

  84. Jansen, G.A., Ofman, R., Ferdinandusse, S., IJlst, L., Muijsers, A.O., Skjeldal, O.H., Stokke, O., Jakobs, C., Besley, G.T., Wraith, J.E. & Wanders, R.J.A. (1997) Nat. Genet. 17,190–193. Refsum disease is caused by mutations in thephytanoyl-CoA hydroxylasegene.

    CAS  PubMed  Google Scholar 

  85. Braverman, N., Steel, G, Obie, C., Moser, A.B., Moser, H.W., Gould, S.J. & Valle, D. (1997) Nat. Genet. 15, 369–376. Human PEX7 encodes the peroxisomal PTS2 receptor and is responsible for rhizomelic chondrodysplasia punctata.

    Article  CAS  PubMed  Google Scholar 

  86. Motley, A.M., Hettema, E.H., Hogenhout, E.M., Brites, P., ten Asbroek, A.L., Wijburg, F.A., Baas, F., Heijmans, H.S.A., Tabak, H.F., Wanders, R.J.A. & Distel, B. (1997) Nat. Genet. 15, 377–380. Rhizomelic chondrodysplasia punctata is a peroxisomal protein targeting disease caused by a non-functional PTS2 receptor.

    Article  CAS  PubMed  Google Scholar 

  87. Purdue, P.E., Zhang, J.W., Skoneczny, M. & Lazarow, P.B. (1997) Nat. Genet. 15, 381–384. Rhizomelic chondrodysplasia punctata is caused by deficiency of human PEX7, a homologue of the yeast PTS2 receptor.

    Article  CAS  PubMed  Google Scholar 

  88. Jansen, G.A., Mihalik, S.J., Watkins, P.A., Moser, H.W., Jakobs, C., Heijmans, H.S. & Wanders, R.J. (1997) J. Inherit. Metab. Dis. 20, 444–446. Phytanoyl-CoA hydroxylase is not only deficient in classical Refsum disease but also in rhizomelic chondrodysplasia punctata.

    CAS  PubMed  Google Scholar 

  89. Mihalik, S.J., Morrell, J.C., Kim, D., Sacksteder, K.A., Watkins, P.A. & Gould, S.J. (1997) Nat. Genet. 17, 185–189. Identification of PAHX, a Refsum disease gene.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Wanders, R.J.A. (2002). Functions and Dysfunctions of Peroxisomes in Fatty Acid α- and β-Oxidation. In: Quant, P.A., Eaton, S. (eds) Current Views of Fatty Acid Oxidation and Ketogenesis. Advances in Experimental Medicine and Biology, vol 466. Springer, Boston, MA. https://doi.org/10.1007/0-306-46818-2_33

Download citation

  • DOI: https://doi.org/10.1007/0-306-46818-2_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46200-9

  • Online ISBN: 978-0-306-46818-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics