Skip to main content

Nitric Oxide in Leishmaniasis

From Antimicrobial Activity to Immunoregulation

  • Chapter
Nitric Oxide and Infection

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebischer, T., Moody, S. F., and Handman, E., 1993, Persistence of virulent Leishmania major in murine cutaneous leishmaniasis: A possible hazard for the host. Infect. Immun. 61:220–226.

    PubMed  CAS  Google Scholar 

  • Albina, J. E., 1995, On the expression of nitric oxide synthase by human macrophages. Why no NO? J. Leukoc. Biol. 58:643–649.

    PubMed  CAS  Google Scholar 

  • Albina, J. E., Abate, J. A., and Henry, W. L., Jr., 1991, Nitric oxide production is required for murine resident peritoneal macrophages to suppress mitogen-stimulated T cell proliferation. Role ofIFNγ in the induction of the nitric oxide-synthesizing pathway, J. Immunol. 147:144–148.

    PubMed  CAS  Google Scholar 

  • Assreuy, J., Cunha, F. Q., Epperlein, M., Noronha-Dutra, A., O’Donnell, C. A., Liew, F. Y., and Moncada, S., 1994, Production of nitric oxide and superoxide by activated macrophages and killing of Leishmania major, Eur. J. Immunol. 24:672–676.

    PubMed  CAS  Google Scholar 

  • Augusto, O., Linares, E., and Giorgio, S., 1996, Possible roles of nitric oxide and peroxynitrite in murine leishmaniasis, Braz. J. Med. Biol. Res. 29:853–862.

    PubMed  CAS  Google Scholar 

  • Blank, C., Bogdan, C., Bauer, C., Erb, K., and Moll, H., 1996, Murine epidermal Langerhans cells do not express inducible nitric oxide synthase, Eur. J. Immunol. 26:792–796.

    PubMed  CAS  Google Scholar 

  • Bogdan, C., 1997, Of microbes, macrophages and NO, Behring Inst. Res. Commun. 99:58–72.

    CAS  Google Scholar 

  • Bogdan, C., Moll, H., Solbach, W., and Röllinghoff, M., 1990, Tumor necrosis factor-α in combination with interferon-γ but not with interleukin 4 activates murine macrophages for elimination of Leishmania major amastigotes, Eur. J. Immunol. 20:1131–1135.

    PubMed  CAS  Google Scholar 

  • Bogdan, C., Stenger, S., Röllinghoff, M., and Solbach, W., 1991, Cytokine interactions in experimental cutaneous leishmaniasis. Interleukin 4 synergizes with interon-γ to activate murine macrophages for killing of Leishmania major amastigotes, Eur. J. Immunol. 21:327–333.

    PubMed  CAS  Google Scholar 

  • Bogdan, C., Gessner, A., and Röllinghoff, M., 1993, Cytokines in leishmaniasis: A complex network of stimulatory and inhibitory interactions, Immunobiology 189:356–396.

    PubMed  CAS  Google Scholar 

  • Bogdan, C., Gessner, A., Solbach, W., and Röllinghoff, M., 1996, Invasion, control, and persistence of Leishmania parasites, Curr. Opin. Immunol. 8:517–525.

    Article  PubMed  CAS  Google Scholar 

  • Bogdan, C., Donhauser. N., Lorenz, E., Stenger, S., Röllinghoff, M., and Diefenbach, A., 1999b, Fibroblasts as safe targets for Leishmania in vivo, submitted for publication.

    Google Scholar 

  • Bourguignon, S. C., Alves, C. R., and Giovanni-de-Simone, S., 1997, Detrimental effect of nitric oxide on Trypanosoma cruzi and Leishmania major like cells, Acta Trop. 66:109–118.

    PubMed  CAS  Google Scholar 

  • DeGroote, M. A., Ochsner, U. A., Shiloh, M. U., Nathan, C., McCord, J. M., Dinauer, M. C., Libby, S. J., Vazquez-Torres, A., and Fang, F. C., 1997, Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase, Proc. Natl Acad. Sci USA 94:13997–14001

    CAS  Google Scholar 

  • Diefenbach, A., Schindler, H., Donhauser, N., Lorenz, E., Laskay, T., MacMicking, J., Röllinghoff, M., Gresser, I., and Bogdan, C., 1998, Type 1 interferon IFN-α/β and type 2 nitric oxide synthase regulate the innate immune response to a protozoan parasite, Immunity 8:77–87.

    Article  PubMed  CAS  Google Scholar 

  • Diefenbach, A., Döring, R., Röllinghoff, M., and Bogdan, C., 1999a, An in vitro model for the nitric oxide-dependent control of Leishmania major in the chronically infected host, submitted for publication.

    Google Scholar 

  • Diefenbach, A., Schindler, H., Röllinghoff, M., Yokoyama, W. M., and Bogdan, C., 1999b, Requirement for type 2 NO synthase for IL-12 responsiveness in innate immunity, Science (in press)

    Google Scholar 

  • Ding, A. H., Nathan, C. F., and Stuehr, D. J., 1988, Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production, J. Immunol. 141:2407–2412.

    PubMed  CAS  Google Scholar 

  • Endres, R., Luz, A., Schulze, H., Neubauer, H., Fûutterer, A., Holland S. M., Wagner, H., and Pfeffer, K., 1997, Listeriosis in p47phox-/- and TRp55-/- mice: Protection despite absence of ROI and susceptibility despite presence of RNI, Immunity 7:419–432.

    Article  PubMed  CAS  Google Scholar 

  • Evans, T. G., Thai, L., Granger, D. L., and Hibbs, J. B., Jr., 1993, Effect of in vivo inhibition of nitric oxide production in murine leishmaniasis, J. Immunol. 151:907–915.

    PubMed  CAS  Google Scholar 

  • Evans, T. G., Reed, S. S., and Hibbs, J. B., 1996, Nitric oxide production in murine leishmaniasis: Correlation of progressive infection with increasing systemic synthesis of nitric oxide, Am. J. Trop. Med. Hyg. 54:486–489.

    PubMed  CAS  Google Scholar 

  • Flynn, J. L., Scanga, C. A., Tanaka, K. E., and Chan, J., 1998, Effects of aminoguanidine on latent murine tuberculosis, J. Immunol. 160:1796–1803.

    PubMed  CAS  Google Scholar 

  • Giorgio, S., Linares, E., Capurro, M. d. L., de Bianchi, A. G., and Augusto, O., 1996, Formation of nitrosyl hemoglobin and nitrotyrosine during murine leishmaniasis, Photochem. Photobiol. 63:750–754.

    PubMed  CAS  Google Scholar 

  • Green, S. J., Crawford, R. M., Hockmeyer, J. T., Meltzer, M. S., and Nacy, C. A., 1990a, Leishmania major amastigotes initiate the L-arginine-dependent killing mechanism in IFN-γ stimulated macrophages by induction of tumor necrosis factor-α J. Immunol. 145:4290–4297.

    PubMed  CAS  Google Scholar 

  • Green, S. J., Meltzer, M. S., Hibbs, J. B., Jr., and Nacy, C. A., 1990b, Activated macrophages destroy intracellular Leishmania major amastigotes by an L-arginine-dependent killing mechanism, J. Immunol. 144:278–283

    PubMed  CAS  Google Scholar 

  • Haidaris, C. G., and Bonventre, P. F., 1982, A role for oxygen-dependent mechanisms in killing of Leishmania donovani tissue forms by activated macrophages, J. Immunol. 129:850–855.

    PubMed  CAS  Google Scholar 

  • Hall, L. R., and Titus, R. G., 1995, Sand fly vector saliva selectively modulates macrophage functions that inhibit killing of Leishmania major and nitric oxide production. J. Immunol. 155:3501–3506.

    PubMed  CAS  Google Scholar 

  • Huang, F.-P., Niedbala, W., Wei, X.-O., Xu, D., Feng, G.-J., Robinson, J. H., Lam, C., and Liew, F. Y., 1998a, Nitric oxide regulates Thl cell development through inhibition of IL-12 synthesis by macrophages Eur. J. Immunol. 28:4062–4070.

    Article  PubMed  CAS  Google Scholar 

  • Huang, F.-P, Xu, D., Esfandiari, E.-O., Sands, W., Wei, X.-Q., and Liew, F. Y., 1998b, Mice defective in Fas are highly susceptible to Leishmania major infection despite elevated IL-12 synthesis, strong Th1 responses, and enhanced nitric oxide production, J. Immunol. 160:4143–4147.

    PubMed  CAS  Google Scholar 

  • Kuschel, F., 1902, Ãœber die Wirkung des Einlegens von Fleisch in verschiedene Salze, Arch Hyg. 43:134–150.

    Google Scholar 

  • Lander, H. M., Sehajpal, P. K., and Novogrodsky, A., 1993, Nitric oxide signaling: A possible role for G proteins, J. Immunol. 151:7182–7187.

    PubMed  CAS  Google Scholar 

  • Lehn, M., Weiser, W. Y., Engelhorn, S., Gillis, S., and Remold H. G., 1989, IL-4 inhibits H2O2 production and antileishmanial capacity of human cultured monocytes mediated by IFN-γ J. Immunol. 143:3020–3024.

    PubMed  CAS  Google Scholar 

  • Lemesre, J.-L., Sereno, D., Daulouède, S., Veyret, B., Brajon, N., and Vincendeau, P., 1997, Leishmania spp.: Nitric oxide-mediated inhibition of promastigote and axemcally grown amastigote forms, Exp. Parasitol. 86:58–68.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Severn, A., Rogers, M. V, Palmer, R. M. J., Moncada, S., and Liew, F. Y., 1992, Calalase inhibits nitric oxide synthesis and the killing of intracellular Leishmania major in murine macrophages, Eur. J. Immunol. 22:441–446.

    PubMed  CAS  Google Scholar 

  • Liew, F. Y, Li, Y., and Millott, S., I990a, Tumor necrosisfactor-α synergizes with IFN-γ in mediating killing of Leishmania major through the induction of nitric oxide, J Immunol. 145:4306–4310.

    Google Scholar 

  • Liew, F. Y, Millott, S., Parkinson, C., Palmer, R., M. J., and Moncada, S., 1990b, Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from L-arginine, J. Immunol. 144:4794–4797.

    PubMed  CAS  Google Scholar 

  • Liew, F. Y., Li, Y., Severn, A., Millott, S., Schmidt, J., Sailer, M., and Moncada, S., 1991, A possible-novel pathway of regulation by murine T helper typc-2 (Th2) cells of a Thl cell activity via the modulation of the induction of nitric oxide synthase in macrophages, Eur. J. Immunol. 21:2489–2494.

    PubMed  CAS  Google Scholar 

  • Lopez-Jaramillo, P., Ruano, C., Rivera, J., Teran, E., Salazar-Irigoycn, R., Esplugues, J. V., and Moncada, S., 1998, Treatment of cutaneous leishmaniosis with nitric-oxide donor, Lancet 351:1176–1177.

    PubMed  CAS  Google Scholar 

  • MacMicking, J., Xie, Q.-W., and Nathan, C., 1997a, Nitric oxide and macrophage function, Annu Rev. Immunol. 15:323–350.

    Article  PubMed  CAS  Google Scholar 

  • MacMicking, J. D., North, R. J., LaCourse, R., Mudgett, J. S., Shah, S. K., and Nathan, C. F., I997b, Identification of nitric oxide synthase as a protective locus against tuberculosis, Proc. Natl. Acad. Sci. USA 94:5243–5248.

    Google Scholar 

  • Magrinat, G., Mason, S. N., Shami, P. J., and Weinberg, J. B., 1992, Nitric oxide modulation of human leukemia cell differentiation and gene expression, Blood 80:1880–1884.

    PubMed  CAS  Google Scholar 

  • Marcmkiewicz, J., Grabowska, A., and Chain, B., 1995, Nitric oxide up-regulatcs the release of inflammatory mediators by mouse macrophages, Eur. J. Immunol. 25:947–951.

    Google Scholar 

  • Mauel, J., and BuchmuTler-Rouiller, Y., 1987, Effect of lipopolysaccharide on intracellular killing of Leishmania enriettii and correlation with macrophage oxidative metabolism, Eur.J. Immunol. 17:203–208.

    PubMed  CAS  Google Scholar 

  • MauÄ›l, J., Ransijn, A., and BuchmuTler-Rouiller, Y., 1991, Killing of Leishmania parasites in activated murine macrophages is based on an L-argmine-dependent process that produces nitrogen derivatives, J. Leukoc. Biol. 49:73–82.

    PubMed  Google Scholar 

  • Mirkovich, A. M., Galelli, A., Allison, A. C., and Modabbcr, F. Z., 1986, Increased myelopoiesis during Leishmania major infection in mice: Generation of "safe targets#, a possible way to evade the effector immune mechanism, Clin. Exp. Immunol. 64:1–7.

    PubMed  CAS  Google Scholar 

  • Murray, H. W., 1981a, Interaction of Leishmania with a macrophage cell-line. Correlation between intracellular killing and the generation of oxygen intermediates, J. Exp. Med. 153:1690–1695.

    PubMed  CAS  Google Scholar 

  • Murray, H. W., 1981b, Susceptibility of Leishmania to oxygen intermediates and killing by normal macrophages, J. Exp. Med. 153:1302–1315.

    PubMed  CAS  Google Scholar 

  • Murray, H. W., 1982, Cell-mediated immune response in experimental visceral leishmaniosis. II. Oxygen-dependent killing of intracellular Leishmania donovani amastigotes, J. Immunol. 129:351–357.

    PubMed  CAS  Google Scholar 

  • Murray, H. W., 1990, Gamma interferon, cytokine-induced macrophage activation, and antimicrobial host defense in vitro, in animal models, and in humans, Diagn Microbiol. Infect. Dis. 13:411–421.

    PubMed  CAS  Google Scholar 

  • Murray, H. W., 1994, Blood monocytes: Differing effector role in experimental visceral versus cutaneous leishmaniasis, Parasitol. Today 10:220–223.

    Article  PubMed  CAS  Google Scholar 

  • Nashleanas, M., Kanaly, S., and Scott, P., 1998, Control of Leishmania major infection in mice lacking TNF receptors, J. Immunol. 160:5506–5513.

    PubMed  CAS  Google Scholar 

  • Nelson, B. J., Ralph, P., Green, S. J., and Nacy, C. A., 1991, Differential susceptibility of activated macrophage cytotoxic reactions to the suppressivc effects of transforming growth factor-β1 J. Immunol. 146:1849–1857.

    PubMed  CAS  Google Scholar 

  • Pacelli, R., Wink, D. A., Cook, J. A., Krishna, M. C. W. D., Friedman, N., Tsokos, M., Samuni, A., and Mitchell, J. B., 1995, Nitric oxide potentiates hydrogen peroxide-induced killing of Escherichia coli, J. Exp. Med. 182:1469–1479.

    Article  PubMed  CAS  Google Scholar 

  • Passwell, J. H., Shor, R., and Shoham, J., 1986, The enhancing effect of interferon-β and-γ on the killing of Leishmania tropica major in human mononuclear phagocytes in vitro, J. Immunol. 136:3062–3066.

    PubMed  CAS  Google Scholar 

  • Pearson, R. D., and de Queiroz Sousa, A., 1996, Clinical spectrum of leishmaniasis, Clin. Infect. Dis. 22:1–13.

    PubMed  CAS  Google Scholar 

  • Pearson, R. D., Harcus, J. L., Roberts, D., and Donowitz, G. R., 1983, Differential survival of I.eishmania donovani amastigotes in human monocytes, J. Immunol. 131:1994–1999.

    PubMed  CAS  Google Scholar 

  • Peng, H.-P, Rajavashisth, T. B., Libby, P., and Liao, J. K., 1995, Nitric oxide inhibits macrophagecolony stimulating factor gene transcription in vascular endothelial cells, J. Biol. Chem. 270:17050–17055.

    PubMed  CAS  Google Scholar 

  • Proudfoot, L., O’Donnell, C. A., and Liew, F. Y., 1995, Glycoinositolphospholipids of Leishmania major inhibit nitric oxide synthesis and reduce leishmanicidal activity in murine macrophages, Eur. J. Immunol. 25:745–750.

    PubMed  CAS  Google Scholar 

  • Proudfoot, L., Nikolaev, A. V, Feng, G.-J., Wei, X.-Q., Ferguson, M. A. J., Brimacombe, J. S., and Liew, F. Y., 1996, Regulation of the expression of nitric oxide synthase and leishmanicidal activity by glycoconjugates of Leishmania lipophosphoglycan in murine macrophages, Proc. Natl. Acad. Sci. USA 93:10984–10989.

    Article  PubMed  CAS  Google Scholar 

  • Reiner, S. L., and Locksley, R. M., 1995, The regulation of immunity to Leishmania major, Annu. Rev. Immunol. 13:151–177

    Article  PubMed  CAS  Google Scholar 

  • Remick, D. G., and Villarete, L., 1996, Regulation of cytokine gene expression by reactive oxygen and reactive nitrogen intermediates, J. Leukoc. Biol. 59:471–475.

    PubMed  CAS  Google Scholar 

  • Roach, T. I. A., Kiderlen, A. F, and Blackwell, J. M., 1991. Role of inorganic nitrogen oxides and tumor necrosis factor alpha in killing Leishmania donovani amastigotes in gamma interfer-on/lipopolysaccharide-activated macrophages from Lshs and Lshr congenic mouse strains, Infect. Immun. 59:3935–3944.

    PubMed  CAS  Google Scholar 

  • Schindler, H., Diefenbach, A., R00F6;llinghoff, M., and Bogdan, C., 1998, IFN-γ inhibits the production of latent transforming growth factor-β1 by mouse inflammatory macrophages, Eur. J. Immunol. 28:1181–1188.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, H. H. H. W., and Walter, U, 1994, NO at work. Cell 78:919–925.

    Article  PubMed  CAS  Google Scholar 

  • Scott, P., James, S., and Sher, A., 1985, The respiratory burst is not required for killing of intracellular and extracellular parasites by a lymphokine-activated macrophage cell-line, Eur. J. Immunol. 15:553–558.

    PubMed  CAS  Google Scholar 

  • Soong, L., Xu, J.-C., Grewal, I. S., Kima, P., Sun, I, Longley, B. J., Ruddle, N. H., McMahon-Pratt, D., and Flavell, R. A., 1996, Disruption of CD40-CD40-ligand interactions results in an enhanced susceptibility to Leishmania amazonensis infection, Immunity 4:263–273.

    Article  PubMed  CAS  Google Scholar 

  • Stenger, S., Th016D;ring, H., R00F6;llinghoff, M., and Bogdan, C., 1994, Tissue expression of inducible nitric oxide synthase is closely associated with resistance to Leishmania major, J. Exp. Med. 180:783–793

    Article  PubMed  CAS  Google Scholar 

  • Stenger, S., Th016D;ring, H., R00F6;llinghoff, M., Manning, P., and Bogdan, C., 1995, l-NG-(1-iminoethyl)-lysine potently inhibits inducible nitric oxide synthase and is superior to in vitro and in vivo, Eur. J. Pharmacol. 294:703–712.

    Article  PubMed  CAS  Google Scholar 

  • Stenger, S., Donhauser, N., Th016D;ring, H., R00F6;llinghoff, M., and Bogdan, C., 1996, Reactivation of latent leishmaniasis by inhibition of inducible nitric oxide synthase, J. Exp. Med. 183:1501–1514.

    Article  PubMed  CAS  Google Scholar 

  • Stout, R. D., Suttles, J., Xu, J., Grewal, I., and Flavell, R. A., 1996, Impaired T cell-mediated macrophage activation in CD40 ligand-deficient mice, J. Immunol. 156:8–11.

    PubMed  CAS  Google Scholar 

  • Sypek, J. P., and Wyler, D. J., 1991, Antileishmanial defense in macrophages triggered by tumor necrosis factor expressed on CD4 T lymphocyte plasma membrane, J. Exp. Med. 174:755–759.

    Article  PubMed  CAS  Google Scholar 

  • Tanner, F. W., and Evans, F. L., 1934, Effect of meat curing solutions on anaerobic bacteria. III. Sodium nitrite, Zbl. Bakteriol. II 91:1–14.

    Google Scholar 

  • Tarr, H. L. A., 1941, Bacteriostatic action of nitrates. Nature 147:417–418.

    CAS  Google Scholar 

  • Taylor, A. P., and Murray, H. W., 1997, Intracellular antimicrobial activity in the absence of interferon-γ Effect of interleukin-12 in experimental visceral leishmaniasis in interferon-γ gene-disrupted mice, J. Exp. Med. 185:1231–1239.

    Article  PubMed  CAS  Google Scholar 

  • Th016D;ring, H., Stenger, S., Gmehling, D., R00F6;llinghoff, M., and Bogdan, C., 1995, Lack of inducible nitric oxide synthase in T cell clones and T lymphocytes from naive and Leishmania major-infected mice, Eur. J. Immunol. 25:3229–3234.

    PubMed  Google Scholar 

  • Tian, L., Noelle, R. J., and Lawrence, D. A., 1995, Activated T cells enhance nitric oxide production by murine splenic macrophages through gp39 and LFA-1, Eur. J. Immunol. 25:306–309.

    PubMed  CAS  Google Scholar 

  • Titus, R. G., Theodos, C. M., Shankar, A., and Hall, L. R., 1993, Interactions between Leishmania major and macrophages, in: Macrophage Pathogen Interactions (B. Zwilling and T. Eisenstein, eds.), Dekker, New York, pp. 437–459.

    Google Scholar 

  • Vieira, L. Q., Goldschmidt, M., Nashleanas, M., Pfeffer, K., Mak, T, and Scott, P., 1996, Mice lacking the TNF receptor p55 fail to resolve lesions caused by infection with Leishmania major, but control parasite replication, J. Immunol. 157:827–835.

    PubMed  CAS  Google Scholar 

  • Vieth, M., Will, A., Schr00F6;ppel, K., R00F6;llinghoff, M., and Gessner, A., 1994, Interleukin 10 inhibits antimicrobial activity against Leishmania major in murine macrophages, Scand. J. Immunol. 40:403–409.

    PubMed  CAS  Google Scholar 

  • Vouldoukis, I., Riveros-Moreno, V, Dugas, B., Quaaz, F., Bécherel, P., Debré, P., Moncada, S., and Mossalayi, M. D., 1995, The killing of Leishmania major by human macrophages is mediated by nitric oxide induced after ligation of the FccRII/CD23 surface antigen, Proc. Natl. Acad. Sci. USA 92:7804–7808.

    PubMed  CAS  Google Scholar 

  • Vouldoukis, I., Bécherel, P.-A., Riveros-Moreno, V., Arock, M., da Silva, O., Debré, P., Mazier, D., and Mossalayi, M. D., 1997, Interleukin-10 and interleukin-4 inhibit intracellular killing of Leishmania infantum and Leishmania major by human macrophages by decreasing nitric oxide generation, Eur. J. Immunol. 27:860–865.

    PubMed  CAS  Google Scholar 

  • Waitumbi, J., and Warburg, A., 1998, Phlebotomus papatasi saliva inhibits protein phosphatase activity and nitric oxide production by murine macrophages, Infect. Immun. 66:1534–1537.

    PubMed  CAS  Google Scholar 

  • Wei, X.-Q., Charles, I. G., Smith, A., Ure, J., Feng, G.-J., Huang, F.-P, Xu, D., Müller, W., Moncada, S., and Liew, F. Y, 1995, Altered immune responses in mice lacking inducible nitric oxide synthase, Nature 375:408–411.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bogdan, C., Röllinghoff, M., Diefenbach, A. (2002). Nitric Oxide in Leishmaniasis. In: Fang, F.C. (eds) Nitric Oxide and Infection. Springer, Boston, MA. https://doi.org/10.1007/0-306-46816-6_17

Download citation

  • DOI: https://doi.org/10.1007/0-306-46816-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46147-7

  • Online ISBN: 978-0-306-46816-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics