Skip to main content

Nitric Oxide in Mycobacterium tuberculosis Infection

  • Chapter
Nitric Oxide and Infection

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, L. B., Mason, C. M., Kolls, J. K., Scollard, D., Krahenbuhl, J. L., and Nelson, S., 1995, Exacerbation of acute and chronic munne tuberculosis by administration of a tumor necrosis factor receptor-expressing adenovirus, J. Infect. Dis. 171:400–405.

    PubMed  CAS  Google Scholar 

  • Adams, L. B., Dinauer, M. C., Morgenstern, D., and Krahenbuhl, J. L., 1997, The role of reactive oxygen and nitrogen intermediates in the host response to Mycobacterium tuberculosis, in: ASM Conference on Tuberculosis: Past, Present, and Future, Copper Mountain, Colorado, p.22.

    Google Scholar 

  • Anderson, M. C., 1891, On Koch’s treatment, Lancet 1:651–652.

    Google Scholar 

  • Anthony, L. S., Chatterjee, D., Brennan, P. J., Nano, F. E., 1994, Lipoarabinomannan from Myco-bacterium tuberculosis modulates the generation of reactive nitrogen intermediates by gamma interferon-activated macrophages, FEMS Immunol. Medical Microbiol. 8:299–305.

    CAS  Google Scholar 

  • Assreuy, J., Cunha, F.Q., Epperlein, M., Noronha-Dutra, A., O’Donnell, C. A., Liew, F. Y., and Moncada, S., 1994, Production of nitric oxide and superoxide by activated macrophages and killing of Leishmania major, Eur. J. Immunol. 24:672–676.

    PubMed  CAS  Google Scholar 

  • Barnes, P. F., Modlin, R. L., and Ellner, J. J., 1994, T-cell responses and cytokines, in: Tuberculosis: Pathogenesis, Protection, and Control (B. R. Bloom, ed.), American Society for Microbiology, Washington, D.C., pp. 417–436.

    Google Scholar 

  • Beaman, M. H., McCabe, R. E., Wong, S.-Y., and Remington, J. S., 1995, Toxoplasma gondii, in: Principles and Practice of Infectious Diseases (G. L. Mandell, J. E. Bennett, and R. Dolin, eds.), Churchill Livingstone, New York, pp. 2455–2475.

    Google Scholar 

  • Beckman, J. S., and Koppenol, W. H., 1996, Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and the ugly, Am. J. Physiol. 271:C1424–C1437.

    PubMed  CAS  Google Scholar 

  • Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., and Freeman, B. A., 1990, Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide, Proc. Natl. Acad. Sci. USA 87:1620–1624.

    PubMed  CAS  Google Scholar 

  • Beckman, J. S., Chen, J., Ischiropoulos, H., and Crow, J. P., 1994a, Oxidative chemistry ofperoxynitrite, Methods Enzymol. 233:229–240.

    PubMed  CAS  Google Scholar 

  • Beckman, J.S., Ye, Y. Z., Anderson, P. G., Chen, J., Accavitti, M. A., Tarpey, M. M., and White, C. R., 1994b, Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohis-tochemistry, Biol. Chem. Hoppe-Seyler 375:81–88.

    Google Scholar 

  • Bellamy, R., Ruwende, C., Corrah, T., McAdam, K. P. W. J., Hilton, C. W, and Hill, A. V. S., 1998, Variations in the Nramp1 gene and susceptibility to tuberculosis in west Africans, N. Engl. J. Med. 338:640–644.

    Article  PubMed  CAS  Google Scholar 

  • Besra, G. S., and Chatterjee, D., 1994, Lipids and carbohydrates of Mycobacterium tuberculosis, in: Tuberculosis:Pathogenesis, Protection, and Control (B. R. Bloom, ed.), American Society for Microbiology, Washington, D.C., pp. 285–306.

    Google Scholar 

  • Blaser, M.J., Cohn, D.L.,1986, Opportunistic infections in patients with AIDS:Clues to the epidemiology of AIDS and the relative virulence of pathogens, Rev. Infect. Dis. 8:21–30.

    Google Scholar 

  • Bloom, B. R., and Murray, C. J. L., 1992, Tuberculosis:Commentary on a reemergent killer, Science 257:1055–1063.

    PubMed  CAS  ISI  Google Scholar 

  • Bonecini-Almeida, M. G., Chitale, S., Boutsikakis, I., Geng, J. Y., Doo, H., He, S. H., and Ho, J. L., 1998, Induction of in vitro human macrophage anti-Mycobacterium tuberculosis activity-Requirement for IFN-γ and primed lymphocytes, J. Immunol. 160:4490–4499.

    PubMed  CAS  Google Scholar 

  • Brennan, P. J., and Draper, P., 1994, Ultrastructure of Mycobacterium tuberculosis, in: Tuberculosis: Pathogenesis, Protection, and Control (B. R. Bloom, ed.), American Society for Microbiology, Washington, D.C., pp. 271–284.

    Google Scholar 

  • Brennan, P. J., Hunter, S. W., McNeil, M., Chatterjee, D., and Daffe, M., 1990, Reappraisal of the chemistry of mycobacterial cell walls, with a view to understanding the roles of individual entities in disease processes, in: Microbial Determinants of Virulence and Host Response (E. M. Ayoub, G. H. Cassell, W. C. Branche, Jr., and T. J. Henry, eds.), American Society for Microbiology, Washington, D.C., pp. 55–75.

    Google Scholar 

  • Brown, D. H., Miles, B. A., and Zwilling, B. S., 1995, Growth of Mycobacterium tuberculosis in BCG-resistant and-susceptible mice:Establishment of latency and reactivation, Infect. Immun. 63:2243–2247.

    PubMed  CAS  Google Scholar 

  • Campos-Neto, A., Ovendale, P., Bement, T., Koppi, T. A., Ranslow, W. C., Rossi, M. A., Alderson, M. R., 1998, CD40 ligand is not essential for the development of cell-mediated immunity and resistance to Mycobacterium tuberculosis, J. Immunol. 160:2037–41.

    PubMed  CAS  Google Scholar 

  • Castellani, A. G., and Niven, C. F, Jr., 1955, Factors affecting the bacteriostatic action of sodium nitrite, Appl. Microbiol. 3:154–159.

    PubMed  CAS  Google Scholar 

  • Chan, J., and Kaufmann, S. H. E., 1994, Immune mechanisms of protection, in:Tuberculosis: Pathogenesis, Protection, and Control (B. R. Bloom, ed.), American Society for Microbiology, Washington, D.C., pp. 389–415.

    Google Scholar 

  • Chan, J., Xing, Y., Magliozzo, R. S., and Bloom, B. R., 1992, Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages, J. Exp. Med. 175:1111–1122.

    Article  PubMed  CAS  Google Scholar 

  • Chan, J., Tanaka, K., Carroll, D., Flynn, J. L., and Bloom, B. R., 1995, Effects of nitric oxide synthase inhibitors on murine infection with M. tuberculosis, Infect. Immun. 63:736–740.

    PubMed  CAS  Google Scholar 

  • Chan, J., Tian, Y, Tanaka, K., Tsang, M. S., Yu, K., Salgame, P., Carroll, D., Kress, Y., Teitelbaum, R., and Bloom, B. R., 1996, Effects ofprotein calorie malnutrition on tuberculosis in mice, Proc. Natl. Acad. Sci. USA 93:14857–14861.

    PubMed  CAS  Google Scholar 

  • Chanock, S. J., el Benna, J., Smith, R. M., and Babior, B. M., 1994, The respiratory burst oxidase, J. Biol. Chem. 269:24519–24522.

    PubMed  CAS  Google Scholar 

  • Chen, L., Xie, Q.-W., Nathan, C., 1998, Alkyl hydroperoxide reductase subunit C protects bacterial and human cells against reactive nitrogen intermediates. Mol. Cell 1:795–805.

    Article  PubMed  CAS  Google Scholar 

  • Coyle, P. K., and Dartwyler, R., 1990, Spirochetal infection of the central nervous system, Infect. Dis. Clin. North Am. 4:731–746.

    PubMed  CAS  Google Scholar 

  • Cooper, A. M., Dalton, D. K., Stewart, T. A., Griffin, J. P., Russell, D. G., and Orme, I. M., 1993, Disseminated tuberculosis in IFN-γ gene-disrupted mice, J. Exp. Med. 178:2243–2248.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, A. M., Magram, J., Ferrante, J., Orme, I. M., 1997, Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with mycobacterium tubercu-losis, J. Exp. Med. 186:39–45.

    Article  PubMed  CAS  Google Scholar 

  • Curnutte, J. T., 1993, Chronic granulomatous disease:The solving of a clinical riddle at the molecular level, Clinical Immunol. Immunopathoi 67:S2–S15.

    CAS  Google Scholar 

  • Dalton, D., Pitts-Meek, S., Keshav, S., Figari, I. S., Bradley, A., and Stewart, T. A., 1993, Multiple defects of immune cell function in mice with disrupted interferon-γ genes, Science 259:1739–1742.

    PubMed  CAS  ISI  Google Scholar 

  • Dannenberg, A. M., Jr., and Rook, G. A. W, 1994, Pathogenesis of pulmonary tuberculosis:An interplay of tissue-damaging and macrophage-activating immune responses-dual mechanisms that control bacillary multiplication, in: Tuberculosis:Pathogenesis, Protection, and Control (B. R. Bloom, ed.), American Society for Microbiology, Washington, D.C., pp. 459–484.

    Google Scholar 

  • Davisson, R. L., Travis, M. D., Bates, J. N., and Lewis, S. J., 1996, Hemodynamic effects of L-and D-S-nitrosocysteine in the rat. Stereoselective S-nitrosothiol recognition sites, Circ. Res. 79:256–262.

    PubMed  CAS  Google Scholar 

  • Davisson, R. L., Travis, M. D., Bates, J. N., Johnson, A. K., and Lewis, S. J., 1997, Stereoselective actions of S-nitrosocysteine in central nervous system of conscious rats. Am. J. Physiol. 272:H2361–H2368.

    PubMed  CAS  Google Scholar 

  • DeGroote, M. A., Granger, D., Xu, Y., Campbell, G., and Prince, R., 1995, Genetic and redox determinants of nitric oxide cytotoxicity in a Salmonella typhimurium model, Proc. Natl. Acad. Sci. USA 92:6399–6403.

    CAS  Google Scholar 

  • DeGroote, M. A., Testerman, T., Xu, Y., Stauffer, G., and Fang, F. C., 1996, Homocysteine antagonism of nitric oxide-related cytostasis in Salmonella typhimurium. Science 272:414–417.

    CAS  ISI  Google Scholar 

  • Demple, B., 1991, Regulation of bacterial oxidative stress genes, Annu. Rev. Genet. 25:315–337.

    Article  PubMed  CAS  Google Scholar 

  • Demple, B., and Amabile-Cuevas, C. F., 1991, Redox redux: The control of oxidative stress responses, Cell 67:837–839.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Denicola, A., Rubbo, H., Rodriguez, D., and Radi, R., 1993, Peroxynitrite-mediated cytotoxicity to Trypanosoma cruzi, Arch. Biochem. Biophys. 304:279–286.

    Article  PubMed  CAS  Google Scholar 

  • Denicola, A., Souza, J. M., Radi, R., and Lissi, E., 1996, Nitric oxide diffusion in membranes determined by fluorescence quenching. Arch. Biochem. Biophys. 328:208–212.

    Article  PubMed  CAS  Google Scholar 

  • Denis, M, 1991a, Interferon-gamma-treated murine macrophages inhibit growth of tubercle bacilli via the generation of reactive nitrogen intermediates, Cell. Immunol. 132:150–157.

    Article  PubMed  CAS  Google Scholar 

  • Denis, M., 1991b, Tumor necrosis factor and granulocyte macrophage colony-stimulating factor stimulate human macrophages to restrict growth of virulent Mycobactertum avium and to kill avirulent M. avium: Killing effector mechanism depends on the generation of reactive nitrogen intermediates, J. Leukoc. Biol. 49:380–387.

    PubMed  CAS  Google Scholar 

  • Denis, M., 1994, Human monocytes/macrophages: NO or no NO? J. Leukoc. Biol. 55:682–684.

    PubMed  CAS  Google Scholar 

  • de Vera, M. E., Shapiro, R. A., Nussler, A. K.., Mudgett, J. S., Simmons, R. L., Morris, S. M., Billiar, T. R., and Geller, D. A., 1996, Transcriptional regulation of human inducible nitric oxide synthase (NOS2) gene by cytokines: Initial analysis of the human NOS2 promoter, Proc Natl. Acad. Sci. USA 93:1054–1059.

    PubMed  Google Scholar 

  • Ding, A.H., Nathan, C. F., and Stuehr, D. J., 1988, Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production, J. Immunol. 141:2407–2412.

    PubMed  CAS  Google Scholar 

  • Doi, T., Ando, M., Akaike, T., Suga, M., Sato, K., and Maeda, H., 1993, Resistance to nitric oxide in Mycobacterium avium complex and its implication in pathogenesis. Infect. Immun. 61:1980–1989.

    PubMed  CAS  Google Scholar 

  • Domingue, G. J., Sr., and Woody, H.B., 1997, Bacterial persistence and expression of disease, Clin. Micmbiol. Rev. 10:320–344.

    Google Scholar 

  • Drysdale, P., Lammas, D. A., Harris, J., Quibell, K., Kumararantne, D. S., Schoel-Tollner, D., Girdlestone, J., Wadhwa, M., Bilger, P., Dockrell, H., Britten, K., and Segal, A., 1997, An abnormality in IL-12 P40 production in three patients with disseminated intracellular infections, in: ASM Conference on Tuberculosis: Past, Present, and Future, Copper Mountain, Colorado, p. 32.

    Google Scholar 

  • Ehrt, S., Shiloh, M. U, Ruan, J., Choi, M., Gunzburg, S., Nathan, C., Xie, Q.-W., and Riley, L.W., 1997, A novel antioxidant gene from Mycobacterium tuberculosis, J. Exp. Med. 186:1885–1896.

    Article  PubMed  CAS  Google Scholar 

  • Evans, T. G., Reed, S. S., and Hibbs, J. B., Jr., 1996, Nitric oxide production in murine leishmaniasis: Correlation of progressive infection with increasing systemic synthesis of nitric oxide. Am. J. Trop. Med. Hyg. 54:486–489.

    PubMed  CAS  Google Scholar 

  • Fang, F.C., 1997, Mechanisms of nitric oxide-related antimicrobial activity, J. Clin. Invest. 99:2818–2825.

    PubMed  CAS  Google Scholar 

  • Flesch, I. E. A., and Kaufmann, S. H. E., 1991, Mechanisms involved in mycobacterial growth inhibition by gamma interferon-activated bone marrow macrophages: Role of reactive nitrogen intermediates, Infect. Immun. 59:3213–3218.

    PubMed  CAS  Google Scholar 

  • Flynn, J. L., Chan, J., Triebold, K. J., Dalton, D. K., Stewart, T. A., and Bloom, B. R., 1993, An essential role for IFN-γin resistance to Mycobacterium tuberculosis infection, J. Exp.Med. 178:2249–2254.

    Article  PubMed  CAS  Google Scholar 

  • Flynn, J. L., Goldstein, M. M., Chan, J., Triebold, K. J., Pfeffer, K., Lowenstein, C. J., Schreiber, R., Mak, T. W., and Bloom, B. R., 1995, Tumor necrosis factor is required in the protective immune response against Mycobacterium tuberculosis in mice, Immunity 2:561–572.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Flynn, J., Scanga, C. A., Tanaka, K., and Chan, J., 1998, Reactivation of latent murine tuberculosis by inhibition of inducible nitric oxide synthase, J. Immunol. 160:1796–1803.

    PubMed  CAS  Google Scholar 

  • Friedman, C. R., Quinn, G. C., Kreiswirth, B. N., Perlman, D. C., Salomon, N., Schluger, N., Lutfey, M., Berger, J., Poltoratskaia, N., and Riley, L. W., 1997, Widespread dissemination of a drug-susceptible strain of Mycobacterium tuberculosis, J. Infect. Dis. 176:478–484.

    Article  PubMed  CAS  Google Scholar 

  • Garbe, T. R., Hibler, N. S., and Deretic, V., 1996, Response of Mycobacterium tuberculosis to reactive oxygen and nitrogen intermediates, Mol. Med. 2:134–142.

    PubMed  CAS  Google Scholar 

  • Garbe, T. R., Hibler, N. S., Deretic, V., 1999, Response to reactive nitrogenintermediates in Mycobacterium tuberculosis: Induction of the 16-kilodalton α-crystallin homolog by exposure to nitric oxide donors, Infect.Immun. 67:460–465.

    PubMed  CAS  Google Scholar 

  • Gaston, B., Reilly, J., Drazen, J. M., Fackler, J., Ramdev, P., Arnelle, D., Mullins, M., Sugarbaker, D. J., Chee, C., Singel, D. J., Loscalzo, J., and Stamler, J. S., 1993, Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways, Proc.Natl.Acad. Sci.USA 90:10957–10961.

    PubMed  CAS  Google Scholar 

  • Geller, D. A., Lowenstein, C. J., Shapiro, R. A., Nussler, A. K., Di Silvio, M., Wang, S. W., Nakayama, D. K., Simmons, R. L., Snyder, S. H., and Billiar, T. R., 1993, Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes, Proc. Natl. Acad Sci. USA 90:3491–3495.

    PubMed  CAS  Google Scholar 

  • Granger, D. L., Cameron, M. L., Lee-See, K., and Hibbs, J. B., Jr., 1993, Role of macrophage-derived nitrogen oxides in antimicrobial function, in: Mononuclear Phagocytes in Cell Biology (G. Lopez-Berenstein and J. Klostergaard, eds.), CRC Press, Boca Raton, pp. 7–30.

    Google Scholar 

  • Grosset, J., 1978, The sterilizing value of rifampicin and pyrazinamide in experimental short course chemotherapy, Tubercle 59:287–297

    Article  ISI  Google Scholar 

  • Haas, D. W., and des Percz, R. M., 1995, Mycobacterium tuberculosis, in: Principles and Practice of Infectious Diseases (G. L. Mandell, J. E. Bennett, and R. Dolin, eds.), Churchill Livingstone, New York, pp. 2213–2243.

    Google Scholar 

  • Halliwell, B., and Gutteridge, J.M., 1989, Protection against oxidants in biological systems: The superoxide theory of oxygen toxicity, in: Free Radicals in Biology and Medicine, Clarendon Press, Oxford, p. 98.

    Google Scholar 

  • Hanson, S. R., Hutsell, T. C., Keefer, L. K., Mooradian, D. J., and Smith, D. J., 1995, Nitric oxide donors: A continuing opportunity in drug design, Adv. Pharmacol. 34:383–398.

    PubMed  CAS  Google Scholar 

  • Harshey, R. M., and Ramakrishnan, T., 1976, Purification and properties of DNA-dcpendent RNA polymerase from Mycobacterium tuberculosis H37Rv, Biochim. Biophys Acta 432:49–59.

    PubMed  CAS  Google Scholar 

  • Heck, D. E., Laskin, D. L., Gardner, C. R., and Laskin, J. D., 1992, Epidermal growth factor suppresses nitric oxide and hydrogen peroxide production by keratinocytes. Potential role for nitric oxide in the regulation of wound healing, J. Biol. Chem. 267:21277–21280.

    PubMed  CAS  Google Scholar 

  • Hibbs, J. B., Jr., Westenfelder, C., Taintor, R., Vavrin, Z., Kablitz, C., Baranowski, R, L., Ward, J. H., Menlove, R. L., McMurry, M. P., Kushner, J. P., and Samlowski, W. E., 1992, Evidence for cytokine-induciblenitricoxidesynthesis from L-arginine in patients receiving interleukin-2 therapy, J. Clin. Invest. 89:867–877.

    PubMed  Google Scholar 

  • Hiriyanna, K.T., and Ramakrishnan, T., 1986, DNA replication time in Mycobacterium tuberculosis H37Rv, Arch. Microbiol. 144:105–109.

    Article  PubMed  CAS  Google Scholar 

  • Hogg, N., Singh, R. J., Konorev, E., Joseph, J., and Kalyanaraman, B., 1997,. S-Nitrosoglutathione as a substrate for gamma-glutamyl transpeptidase, Biochem. J 323:477–481.

    PubMed  CAS  Google Scholar 

  • Huie, R. E., and Padmaja, S., 1993, The reaction rate of nitric oxide with superoxide, Free Radical Res. Commun. 18:195–199.

    Article  CAS  Google Scholar 

  • Incze, K., Parkes, J., Mihalyi, V., and Zukal, E., 1974, Antibacterial effect of cysteine-nitrosothiol and possible precursors thereof, Appl. Microbiol. 27:202–205.

    PubMed  CAS  Google Scholar 

  • Ischiropoulos, H., Zhu, L., and Beckman, J. S., 1992, Peroxynitrite formation from macrophage-derived nitric oxide, Arch. Biochem. Biophys. 298:446–451.

    PubMed  CAS  Google Scholar 

  • Iyer, G. Y. N., Islam, M. F., and Quastel, J. H., 1961, Biochemical aspects of phagocytosis, Nature 192:535–541.

    CAS  ISI  Google Scholar 

  • Jacobs, W. R., Jr., Tuckman, M., and Bloom, B. R., 1987, Introduction of foreign DNA into mycobacteria using a shuttle phasmid, Nature 327:532–535.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Jordan, M. C., Jordan, G. W., Stevens, J. G., and Miller, G., 1984, Latent herpesviruses of humans, Ann. Intern. Med. 100:866–880.

    PubMed  CAS  Google Scholar 

  • Jouanguy, E., Altare, F., Lamhamedi, S., Revy, P., Emile, J.-F., Newport, M., Levin, M., Blanche, S., Seboun, E., Fischer, A., and Casanova, J.-L., 1996, Interferon-γ-receptor deficiency in an infant with fatal bacille Calmette-Guerin infection, N. Engl. J. Med. 335:1956–1961.

    CAS  Google Scholar 

  • Kamijo, R., Le, J., Shapiro, D., Havell, E. A., Huang, S., Aguet, M., Bosland, M., and Vilcek, J., 1993, Mice that lack the interferon-γ receptor have profoundly altered responses to infection with bacillus Calmette-Guerin and subsequent challenge with lipopolysaccharide, J. Exp. Med. 178:1435–1440.

    Article  PubMed  CAS  Google Scholar 

  • Kamijo, R., Harada, H., Matsuyama, T., Bosland, M., Gerecitano, J., Shapiro, D., Le, J., Koh, S. I., Kimura, T., Green, S. J., Mak, T. W., Taniguchi, T., and Vilcek, J., 1994, Requirement for transcription factor IRF-1 in NO synthase induction in macrophages, Science 263:612–615.

    Google Scholar 

  • Kobzik, L., Bredt, D. S., Lowenstein, C. J., Drazen, J., Gaston, B., Sugarbaker, D., and Stamler, J. S., 1993, Nitric oxide synthase in human and rat lung: Immunocytochemical and histochemical localization, Am J. Respir. Cell. Mol. Biol. 9:371–377.

    PubMed  CAS  Google Scholar 

  • Koch, R., 1891, Fortsetzung überein Heilmittel gegen Tuberculose, Dtsch. Med. Wochenschr. 17:101–102.

    Google Scholar 

  • Krueger, G. R., and Ramon, A., 1988, Overview of immunopathology of chronic active herpesvirus infection, J. Virol. Methods 21:11–18.

    PubMed  CAS  Google Scholar 

  • Kunz, D., Walker, G., Eberhardt, W., and Pfeilschifter, J., 1996, Molecular mechanisms of dexamethasone inhibition of nitric oxide synthase expression in interleukin 1β-stimulated mesangial cells: Evidence for the involvement of transcriptional and posttranslational regulation, Proc. Natl. Acad. Sci. USA 93:255–259.

    Article  PubMed  CAS  Google Scholar 

  • Lane, H. C., Laughon, B. E., Falloon, J., Kovacs, J. A., Davey, R. T., Jr., Polis, M. A., and Masur, H., 1994, Recent advances in the management of AIDS-related opportunistic infections, Ann. Intern. Med. 120:945–955.

    PubMed  CAS  Google Scholar 

  • Lau, Y. L., Yuen, K. Y., Ha, S. Y., Chan, C. F., Hui, Y. F., 1996, Mycobacterium tuberculosis is a major pathogen in patients with chronic granulomatous disease, 7th International Congress for Infectious Diseases, Abstract 107.016, p. 261.

    Google Scholar 

  • Loebel, R. O., Shorr, E., and Richardson, H. B., 1933, The influence of adverse conditions upon the respiratory metabolism and growth of human tubercle bacilli, J. Bacteriol. 26:167–173.

    CAS  PubMed  Google Scholar 

  • Lowenstein, C. J., Alley, E., Raval, P., Snyder, S. H., Russel, S. W., and Murphy, W., 1993, Nitric oxide synthase gene: Two upstream regions mediate its induction by interferon-gamma and lipopoly-saccharide, Proc. Natl. Acad. Sci. USA 90:9730–9734.

    PubMed  CAS  Google Scholar 

  • Mackowiak, P. A., 1984, Microbial latency, Rev. Infect. Dis. 6:649–668.

    PubMed  CAS  Google Scholar 

  • MacMicking, J. D., Nathan, C., Hom, G., Chartrain, N., Fletcher, D. S., Trumbauer, M., Stevens, K., Xie, Q.-W., Sokol, K., Hutchinson, N., Chen, H., and Mudgett, J. S., 1995, Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase, Cell 81:641–650.

    Article  PubMed  CAS  ISI  Google Scholar 

  • MacMicking, J. D., North, R. J., LaCourse, R., Mudgett, J. S., Shah, S. K., and Nathan, C. F., 1997a, Identification of nitric oxide synthase as a protective locus against tuberculosis, Proc. Natl. Acad. Sci. USA 94:5243–5248.

    Article  PubMed  CAS  Google Scholar 

  • MacMicking, J., Xie, Q.-W., and Nathan, C., I997b, Nitric oxide and macrophage function, Annu. Rev. Immunol. 15:323–350.

    Google Scholar 

  • Mannick, J. B., Koichiro, A., Izumi, K., Kieff, E., and Stamler, J. S., 1994, Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein—Barr virus reactivation, Cell 79:1137–1146.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Mathews, W. R., and Kerr, S. W., 1993, Biological activity of S-nitrosothiols: The role of nitric oxide, J. Pharmacol. Exp. Ther. 267:1529–1537.

    PubMed  CAS  Google Scholar 

  • McCune, R. M, and Tompsett, R., 1956, Fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. I. The persistence ofdrug-susceptible tubercle bacilli in the tissues despite prolonged antimicrobial therapy, J. Exp. Med. 104:737–762.

    PubMed  CAS  Google Scholar 

  • McCune, R. M., Tompsett, R., and McDermott, W., 1956, The fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. II. The conversion of tuberculous infection to the latent state by the administration of pyrazinamide and a companion drug, J. Exp. Med. 104:763–802.

    PubMed  CAS  Google Scholar 

  • McCune, R. M., Feldmann, F. M., Lambert, H. P., and McDermott. W, 1966a, Microbial persistence I. The capacity of tubercle bacilli to survive sterilization in mouse tissues, J. Exp. Med. 123:445–468.

    PubMed  CAS  Google Scholar 

  • McCune, R. M., Feldmann, F. M., and McDermott, W., 1966b, Microbial persistence II. Characteristics of the sterile state of tubercle bacilli, J. Exp. Med. 123:469–486.

    PubMed  CAS  Google Scholar 

  • McMurray, D.N., 1994, Guinea pig model of tuberculosis, in: Tuberculosis. Pathogenesis, Protection, and Control (B. R. Bloom, ed.), American Society for Microbiology, Washington, D.C., pp. 135–147.

    Google Scholar 

  • Melillo, G., Musso, T, Sica, A., Taylor, L. S., Cox, G. W., and Varesio, L., 1995, A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter, J. Exp. Med. 182:1683–1693.

    Article  PubMed  CAS  Google Scholar 

  • Moncada, S., 1992, The L-arginine: nitric oxide pathway, Acta Physiol. Scand. 145:201–227.

    Article  PubMed  CAS  Google Scholar 

  • Morris, S. L., and Hansen, N., 1981, Inhibition of Bacillux cereus spore outgrowth by covalent modification of a sulfhydryl group by nitrosothiol and iodoacetate, J. Bacteriol. 148:465–471.

    PubMed  CAS  Google Scholar 

  • Morris, S. L., Walsh, R. C., and Hansen, J. N., 1984, Identification and characterization of some bacterial membrane sulfhydryl groups which are targets of bacteriostatic and antibiotic action, J. Biol. Chem. 259:13590–13594.

    PubMed  CAS  Google Scholar 

  • Murray, C. J. L., Styblo, K., and Rouillon, A., 1990, Tuberculosis in developing countries: Burden, intervention, and cost, Bull. Int. Union Tuberc. 65:6–24.

    CAS  Google Scholar 

  • Nathan, C. F, 1983, Mechanisms of macrophage antimicrobial activity, Trans. R. Soc. Trop. Med. Hyg. 77:620–630.

    PubMed  CAS  Google Scholar 

  • Nathan, C., 1992, Nitric oxide as a secretory product of mammalian cells, FASEB J 6:3051–3064.

    PubMed  CAS  ISI  Google Scholar 

  • Nathan, C., 1995, Natural resistance and nitric oxide, Cell 82:873–876.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Nathan, C., 1997, Inducible nitric oxide synthase: What difference does it make? J. Clin. Invest. 100:2417–2423.

    PubMed  CAS  Google Scholar 

  • Nathan, C. F, and Hibbs, J. B., Jr., 1991, Role of nitric oxide synthesis in macrophage antimicrobial activity, Curr. Opin. Immunol. 3:65–70.

    Article  PubMed  CAS  Google Scholar 

  • Nathan, C., and Xie, Q.-W, 1994, Nitric oxide synthases: Roles, tolls, and controls, Cell 78:915–918.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Newport, M. J., Huxley, C. M., Huston, S., Hawrylowicz, C. M., Oostra, B. A., Williamson, R., and Levin, M., 1996, A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection, N. Engl. J. Med. 335:1941–1949.

    Article  PubMed  CAS  Google Scholar 

  • Newton, G. L., Arnold, K.., Price, M. S., Sherrill, C., Delcardayre, S. B., Aharonowitz, Y., Cohen, G. Davies, J., Fahey, R. C. and Davis, C., 1996, Distribution of thiols in microorganisms: Mycothiol is a major thiol in most Actinomycetes, J. Bacterial. 178:1990–1995.

    CAS  Google Scholar 

  • Nicholson, S., Bonecini-Almeida, M. da G., Lapa e Silva, J. R., Nathan, C., Xie, Q.-W., Mumford, R., Weidner, J. R., Calaycay, J., Geng, J., Boechat, N., Linhares, C., Rom, W., and Ho, J. L., 1996, Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis, J. Exp. Med. 183:2293–2302.

    Article  PubMed  CAS  Google Scholar 

  • North, R. J., and Izzo, A., 1993, Mycobacterial virulence. Virulent strains of Mycobacteria tuberculosis have faster in vivo doubling times and are better equipped to resist growth-inhibiting functions of macrophages in the presence and absence of specific immunity, J. Exp. Med. 177:1723–1733.

    Article  PubMed  CAS  Google Scholar 

  • Nozaki, Y., Hasegawa, Y., Ichiyama, S., Nakashima, I., and Shimokata, K., 1997, Mechanism of nitric oxide-dependent killing of Mycobacterium bovis BCG in human alveolar macrophages, Inject. Immun. 65:3644–3647.

    CAS  Google Scholar 

  • Nunoshiba, T., DeRojas-Walker, T., Wishnok, J. S., Tannenbaum, S. R., and Demple, B., 1993, Activation by nitric oxide of an oxidative-stress response that defends Escherichia coli against activated macrophages, Proc. Natl. Acad. Sci. USA 90:9993–9997.

    PubMed  CAS  Google Scholar 

  • Nussler, A. K., di Silvio, M., Billiar, T. R., Hoffman, R. A., Geller, D. A., Selby, R., Madariaga, J., and Simmons, R. L., 1992, Stimulation of nitric oxide synthase pathway in human hepatocytes by cytokines and endotoxin, J. Exp. Med. 176:261–266.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, L., Carmichael, J., Lowrie, D. B., and Andrew, P. W., 1994, Strains of Mycobacterium tuberculosis differ in susceptibility to reactive nitrogen intermediates in vitro, Infect. Immun. 62:5187–5190.

    Google Scholar 

  • Ochoa, J. B., Udekwu, A. O., Billiar, T. R., Curran, R. D., Cerra, F. B., Simmons, R. L., Peitzman, A. B., 1991, Nitrogen oxide levels in patients after trauma and during sepsis, Annals of Surgery 214:621–626.

    PubMed  CAS  ISI  Google Scholar 

  • Ochoa, J. B., Curti, B., Peitzman, A. B., Simmons, R. L., Billiar, T. R., Hoffman, R., Rault, R., Longo, D. L., Urba, W. J., Ochoa, A. C., 1992, J. Natl. Cancer Institute 84:864–867.

    CAS  Google Scholar 

  • O’Leary, V, and Solberg, M., 1976, Effect of sodium nitrite inhibition on intracellular thiol groups and on the activity of certain glycolytic enzymes in Clostridium perfringens, Appl. Environ. Microbiol. 31:208–212.

    Google Scholar 

  • Orme, I. M., 1988, A mouse model of the recrudescence of latent tuberculosis in the elderly, Am Rev. Respir. Dis. 137:716–718.

    PubMed  CAS  Google Scholar 

  • Pomerantz, R. I, Bagasra, O., and Baltimore, D., 1992, Cellular latency of human immunodeficiency virus type 1, Curr. Opin. Immunol. 4:475–480.

    PubMed  CAS  Google Scholar 

  • Prada, J., Malinowski, J., Muller, S., Bienzle, U., and Kremsner, P. G., 1996, Effects of Plasmodium vinckei hemozoin on the production of oxygen radicals and nitrogen oxides in murine macrophages, Am. J. Trop. Med. Hyg. 54:620–624.

    PubMed  CAS  Google Scholar 

  • Radomski, M. W., Palmer, R. M., and Moncada, S., 1990, Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells, Proc. Natl. Acad. Sci. USA 87:10043–10047.

    PubMed  CAS  Google Scholar 

  • Reddy, D., Lancaster, J. R., Jr., and Cornforth, D. P., 1983, Nitrite inhibition of Clostridium botulinum electron spin resonance detection of iron—nitric oxide complexes, Science 221:769–770.

    PubMed  CAS  ISI  Google Scholar 

  • Rees, D. D., Palmer, R. M. J., Schulz, R., Hodson, H. F., and Moncada, S., 1990, Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo, Br. J. Pharmacol. 101:746–752.

    PubMed  CAS  Google Scholar 

  • Rhoades, E. R., and Orme, I. M., 1997, Susceptibility of a panel of virulent strains of Mycobacterium tuberculosis to reactive nitrogen intermediates, Infect. Immun. 65:1189–1195.

    PubMed  CAS  Google Scholar 

  • Rich, A., 1944, The Pathogenesis of Tuberculosis, Charles C. Thomas, Springfield, Ill., pp. 297–298.

    Google Scholar 

  • Roach, T. I., Barton, C. H., Chatterjee, D., Blackwell, J. M., 1993, Macrophage activation: Lipo-arabinomannan from avirulent and virulent strains of Mycobacterium tuberculosis differentially induces the early genes c-fos, KC, JE, and tumor necrosis factor-alpha, J. Immunol. 150:1886–1896.

    PubMed  CAS  Google Scholar 

  • Roach, T. I., Barton, C. H., Chatterjee, D., Liew, F. Y., Blackwell, J. M., 1995, Opposing effects of interferon-gamma on iNOS and interleukin-10 lipopolysaccharide-and mycobacterial lipoarabi-nomannan-stimulated macrophages, Immunol. 85:106–113.

    CAS  Google Scholar 

  • Rojas, M., Barrera, L. F., Puzo, G., and Garcia, L. F., 1997, Differential induction of apoptosis by virulent Mycobacterium tuberculosis in resistant and susceptible murine macrophages: Role of nitric oxide and mycobacterial products, J. Immunol. 159:1352–1361.

    PubMed  CAS  Google Scholar 

  • Rook, G. A. W., and Bloom, B. R., 1994, Mechanisms of pathogenesis in tuberculosis, in: Tuberculosis. Pathogenesis, Protection, and Control (B. R. Bloom, ed.), American Society for Microbiology, Washington, D.C., pp. 485–501.

    Google Scholar 

  • Rook, G. A. W., Steele, J., Ainsworth, M., and Leveton, C., 1987, A direct effect of glucocorticoid hormones on the ability of human and murine macrophages to control the growth of M. tuberculosis, Eur J. Respir. Dis. 71:286–291.

    PubMed  CAS  Google Scholar 

  • Rubbo, H., Denicola, A., and Radi, R., 1994, Peroxynitrite inactivates thiol-containing enzymes of Trypanosoma cruzi energetic metabolism and inhibits cell respiration, Arch. Biochem. Biophys. 308:96–102.

    Article  PubMed  CAS  Google Scholar 

  • Scannell, J. P., Ax, H. A., Pruess, D. L., Williams, T., Demny, T. C., and Stempel, A., 1972, Antimetabolitesproduced bymicroorganisms. l-N5-(1-iminoethyl)ornithine, J. Antibiot. 25:179–184.

    PubMed  CAS  Google Scholar 

  • Schaffer, M. R., Efron, P. A., Thornton, F. J., Klingel, K., Gross, S. S., and Barbul, A., 1997, Nitric oxide, an autocrine regulator of wound fibroblast synthetic function, J. Immunol. 158:2375–2381.

    PubMed  CAS  Google Scholar 

  • Schuller-Levis, G. B., Levis, W. R., Ammazzalorso, M., Nosrati, A., Park, E., 1994, Mycobacterial lipoarabinomannan induces nitric oxide and tumor necrosis factor alpha production in a macrophage cell line: down regulation by taurine chloramine, Infect. Immun. 62:4671–4674.

    PubMed  CAS  Google Scholar 

  • Shearer, J. D., Richards, J. R., Mills, C. D., and Caldwell, M. D., 1997, Differential regulation of macrophage arginine metabolism: A proposed role in wound healing, Am. J. Physiol. 272:E181–E190.

    PubMed  CAS  Google Scholar 

  • Shank, J. L., Silliker, J. H., and Harper, R. H., 1962, The effect of nitric oxide on bacteria, Appl. Microbiol. 10:185–189.

    PubMed  CAS  Google Scholar 

  • Singh, S. P., Wishnok, J. S., Keshive, M., Deen, W. M., and Tannenbaum, S. R., 1996, The chemistry of the S-nitrosoglutathione/glutathione system, Proc. Natl. Acad. Sci. USA 93:14428–14433.

    PubMed  CAS  Google Scholar 

  • Slater, A. F. G., Swiggard, W. J., Orton, B. R., Flitter, W. D., Goldberg, D. E., Gerami, A., and Henderson, G. B., 1991, An iron carboxylate bond links the heme units of malaria pigment, Proc. Natl. Acad. Sci. USA 88:325–329.

    PubMed  CAS  Google Scholar 

  • Smith, D. J., Chakravarthy, D., Puller, S., Simmons, M. L., Hrabie, J. A., Citro, M. L., Saavedra, J. E., Davies, K. M., Hutsell, T. C., Mooradian, D. L., Hanson, S. R., and Keefer, L. K., 1996, Nitric oxide-releasing polymers containing the [N(O)NO]- group, J. Med. Chem. 39:1148–1156.

    PubMed  CAS  Google Scholar 

  • Snider, D. E., Jr., and Roper. W. L., 1992, The new tuberculosis, N. Engl. J. Med. 326:703–705.

    Article  PubMed  Google Scholar 

  • Stamler, J. S., 1994, Redox signaling: Nitrosylation and related target interactions of nitric oxide, Cell 78:931–936.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Stamler, J.S., 1996, S-Nitrosothiols and the bioregulatory actions of nitrogen oxides through reactions with thiol groups, Curr. Top. Microbiol. Immunol. 196:19–36.

    Google Scholar 

  • Stamler, J. S., Singel, D. J., and Loscalzo, J., 1992, Biochemistry of nitric oxide and its redox-activated forms, Science 256:1898–1902.

    Google Scholar 

  • Stead, W. W., 1965, The pathogenesis of pulmonary tuberculosis among older persons, Am. Rev. Respir. Dis. 91:811.

    PubMed  CAS  Google Scholar 

  • Stead, W. W., 1967, Pathogenesis of a first episode of chronic pulmonary tuberculosis in man: Recrudescence of residuals of the primary infection or exogenous reinfection? Am. Rev. Respir. Dis. 95:729–745.

    PubMed  CAS  Google Scholar 

  • Stead, W. W., Kerby, G. R., Schleuter, D. P., and Jordahl, C. W., 1968, The clinical spectrum of primary tuberculosis in adults. Confusion with reinfection in the pathogenesis of chronic tuberculosis, Ann. Intern. Med. 68:731–745.

    PubMed  CAS  Google Scholar 

  • Steiner, I., 1996, Human herpes viruses latent infection in the nervous system, Immunol. Rev. 152:157–173.

    PubMed  CAS  Google Scholar 

  • Stenger, S., Donhaur, N., Thuring, H., Rollinghoff, M., and Bogdan, C., 1996, Reactivation of latent leishmaniasis by inhibition of inducible nitric oxide synthase, J. Exp. Med. 183:1501–1514.

    Article  PubMed  CAS  Google Scholar 

  • Storz, G., Tartaglia, L. A., and Ames, B. N., 1990a, Transcriptional regulator of oxidative stress-inducible gene: Direct activation by oxidation, Science 248:189–194.

    PubMed  CAS  ISI  Google Scholar 

  • Storz, G., Tartaglia, L. A., Farr, S. B., and Ames, B. N., 1990b, Bacterial defenses against oxidative stress, Trends Genet. 6:363–368.

    Article  PubMed  CAS  Google Scholar 

  • Tarr, H. L. A., 1941, Bacteriostatic action of nitrites, Nature 147:417–418.

    CAS  ISI  Google Scholar 

  • Travis, M. D., Davisson, R. L., Bates, J. N., and Lewis, S. J., 1997, Hemodynamic effects of L-and D-S-nitroso-beta, beta-dimethylcysteine in rats, Am. J. Physiol. 273:H1493–H1501.

    PubMed  CAS  Google Scholar 

  • Vazquez-Torres, A., Jones-Carson, J., and Balish, E., 1996, Peroxynitrite contributes to the candidacidal activity of nitric oxide-producing macrophages, Infect. Immun. 64:3127–3133.

    PubMed  CAS  Google Scholar 

  • Wagner, D. A., and Tannenbaum, S. R., 1982, Enhancement of nitrate biosynthesis by Escherichia coli lipopolysaccharide, in: Nitrosamines and Human Cancer, Banbury Report 12 (P. N. Magee, ed.), Cold Spring Harbor Press, Cold Spring Harbor, N.Y., pp. 437–441.

    Google Scholar 

  • Walsh, G. P., Tan, E. V, dela Cruz, E. C., Abalos, R. M., Billahermosa, L. G., Young, L. J., Cellona, R. V, Nazareno, J. B., and Horwitz, M. A., 1996, The Philippine cynomolgus monkey (Macaca fascicularis) provides a new nonhuman primate model of tuberculosis that resembles human disease, Nature Med. 2:430–436.

    PubMed  CAS  Google Scholar 

  • Wang, C. H., Liu, C. Y., Lin, H. C., Yu, C. T., Chung, K. F., and Kuo, H. P., 1998, Increased exhaled nitric oxide in active pulmonary tuberculosis due to inducible NO synthase upregulation in alveolar macrophages, European Respiratory J. 11:809–815.

    CAS  Google Scholar 

  • Warren, J. B., Loi, R., Rendell, N. B., and Taylor, G. W., 1990, Nitric oxide is inactivated by the bacterial pigment pyocyanin, Biochem. J. 266:921–923.

    PubMed  CAS  Google Scholar 

  • Watson, K. C., 1967, Intravascular Salmonella typhi as a manifestation of the carrier state, Lancet 2:332–334.

    PubMed  CAS  ISI  Google Scholar 

  • Wayne, L. G., 1994, Dormancy of Mycobacterium tuberculosis and latency of disease, Eur. J. Clin. Microbiol. Infect. Dis. 13:908–914.

    Article  PubMed  CAS  Google Scholar 

  • Wei, X.-Q., Charles, I. G., Smith, A., Ure, J., Feng, G.-J., Huang, F.-P., Xu, D., Muller, W., Moncada, S., and Liew, F. Y., 1995, Altered immune responses in mice lacking inducible nitric oxide synthase, Nature 375:408–411.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Wheeler, P. R., and Ratledge, C., 1994, Metabolism of Mycobacterium tuberculosis, in: Tuberculosis: Pathogenesis, Protection, and Control (B. R. Bloom, ed.), American Society for Microbiology, Washington, D.C., pp 353–385.

    Google Scholar 

  • WHO, 1997, Anti-tuberculosis drug resistance in the world. The WHO/IUALTD. A global project on anti-tuberculosis drug resistance surveillence. WHO/TB/97.229. (WWW.WHO.CH/GTB/ Publications/DRITW/index.HTML).

    Google Scholar 

  • Wientjes, F. B., and Segal, A. W., 1995, NADPH oxidase and the respiratory burst, Semin. Cell Biol. 6:357–365.

    PubMed  CAS  Google Scholar 

  • Woods, L. F. J., Wood, J. M., and Gibbs, P. A., 1981, The involvement of nitric oxide in the inhibition of the phosphoroclastic system in Clostridium sporogenes by sodium nitrite, J. Gen. Microbiol. 125:399–406.

    PubMed  CAS  Google Scholar 

  • Xie, Q.-W., Whisnant, R., and Nathan, C., 1993, Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon gamma and bacterial lipopolysaccharide, J. Exp. Med. 177:1779–1784.

    Article  PubMed  CAS  Google Scholar 

  • Yu, K., Mitchell, C., Xing, Y., Magliozzo, R. S., Bloom, B. R., and Chan, J., (1999), Relative toxicity of nitrogen oxides and related oxidants on mycobacteria: M. tuberculosis is resistant to peroxynitrite anion. Tubercle and Lung Dis. In press.

    Google Scholar 

  • Zhu, L., Gunn, C., and Beckman, J. S., 1992, Bactericidal activity of peroxynitrite, Arch. Biochem. Biophys. 208:452–457.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Chan, J., Flynn, J. (2002). Nitric Oxide in Mycobacterium tuberculosis Infection. In: Fang, F.C. (eds) Nitric Oxide and Infection. Springer, Boston, MA. https://doi.org/10.1007/0-306-46816-6_14

Download citation

  • DOI: https://doi.org/10.1007/0-306-46816-6_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46147-7

  • Online ISBN: 978-0-306-46816-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics