Skip to main content

The Role of Transition Metal Ions in Free Radical-Mediated Damage

  • Chapter
Reactive Oxygen Species in Biological Systems

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal, K., Sharma, A., and Talukder, G., 1989, Effects of copper on mammalian cell components, Chem. Biol. Interact. 69:1–16.

    CAS  PubMed  Google Scholar 

  • Ahmad, M. S., Fazal, F., Rahman, A., Hadi, S. M., and Parish, J. H., 1992, Activities of flavonoids for the cleavage of DNA in the presence of Cu(II): Correlation with generation of reactive oxygen species, Carcinogenesis 13:605–608.

    CAS  Google Scholar 

  • Akman, S. A., Doroshow, J. H., and Kensler, T. W., 1992, Copper-dependent site-specific mutagenesis by benzoyl peroxide in the sup F gene to the mutation reporter plasmid pS189, Carcinogenesis 13:1783–1787.

    CAS  PubMed  Google Scholar 

  • Akman, S. A., Kensler, T. W., Doroshow, J. H., and Dizdaroglu, M., 1993, Copper ion-mediated modification of bases in DNA in vitro by benzoyl peroxide, Carcinogenesis 14:1971–1974.

    CAS  PubMed  Google Scholar 

  • Ambrosio, G., Zweier, J. L., Jacobus, W. E., Weisfeldt, M. L., and Flaherty, J. T., 1987, Improvement of postischemic myocardial function and metabolism induced by administration of deferoxamine at the time of reflow: The role of iron in the pathogenesis of reperfusion injury, Lab. Invest. 76:906–915.

    CAS  Google Scholar 

  • Ames, B. N., 1983, Dietary carcinogens and anticarcinogens, Science 221:1256–1264.

    CAS  PubMed  Google Scholar 

  • Anbar, M., and Levitzki, B., 1966, Copper-induced radiolytic deactivation of α-amylase and catalase, Radiat. Res. 27:32–34.

    CAS  Google Scholar 

  • Appelbaum, Y. J., Kuvin, J., Chevion, M., and Uretzky, G., 1988, TPEN, a heavy metal chelator, protected the isolated perfused rat heart from reperfusion induced arrhythmias, J. Mol. Cell. Cardiol. 20(Suppl. V): Abstract #32.

    Google Scholar 

  • Appelbaum, Y. J., Kuvin, J., Borman, J. B., Uretzky, G., and Chevion, M., 1990, The protective role of neocuproine against cardiac damage in isolated perfused rat heart, Free Radical Biol. Med. 8:133–143.

    Article  CAS  Google Scholar 

  • Aronovitch, J., Samuni, A., Godinger, D., and Czapski, G., 1986, In vivo degradation of bacterial DNA by H2O2 and O-phenanthroline, in Superoxide and Superoxide Dismutase in Chemistry, Biology and Medicine (G. Rotilio, ed.), pp. 364–348, Elsevier, Amsterdam.

    Google Scholar 

  • Arroyo, C., Kramer, J., Dickens, B., and Weglicki, W., 1987, Identification of free radicals in myocardial ischemia/reperfusion by spin trapping with nitrone DMPO, FEBS Lett. 221:101–104.

    Article  CAS  PubMed  Google Scholar 

  • Aruoma, O., Kaur, H., and Halliwell, B., 1991, Oxygen free radicals in human diseases, J. R. Soc. Health. 111:172–177.

    CAS  PubMed  Google Scholar 

  • Aust, S. D., Morehouse, L. A., and Thomas, C. E., 1985, Role of metals in oxygen radical reaction, Free Radical Biol. Med. 1:3–25.

    CAS  Google Scholar 

  • Ayene, I. S., Dodia, C., and Fisher, A. B., 1992, Role of oxygen in oxidation of lipid and protein during ischemia/reperfusion in isolated perfused rat lung, Arch. Biochem. Biophys. 296:183–189.

    Article  CAS  PubMed  Google Scholar 

  • Balkley, J. B., 1993, Endothelial xanthine oxidase: A radical transducer of inflammatory signals for reticuloendothelial activation, Br. J. Surg. 80:684–686.

    Google Scholar 

  • Bar, P. R., 1995, Neuroprotective effects of radical scavengers in an intact dorsal root ganglion hypoxia model, Ann. N. Y. Acad. Sci. 765:111–118.

    CAS  PubMed  Google Scholar 

  • Basoglu, A., Kocak, H., Pac, M., Cerrahogly, M., Bakan, N., Yekeler, I., Yuksek, M. S., and Goksu, S., 1992, Oxygen free radical scavengers and reperfusion injury in dog lung preserved in cold ischemia, Thorac. Cardiovasc. Surf;. 40:144–147.

    CAS  Google Scholar 

  • Beauchamp, C., and Fridovich, I., 1970, A mechanism of the production ofethylene from ethanol, J. Biol. Chem. 245:4641–4646.

    CAS  PubMed  Google Scholar 

  • Beinert, H., 1991, Copper in Biological Systems: A Report from “The 6th Manziana Conference,” September 23–27, J. Inorg. Biochem. 44:173–218.

    Article  CAS  PubMed  Google Scholar 

  • Berenshtein, E., Banin, E., Pe’er, J., Kitrossky, N., and Chevion, M., 1996, Ga/DFO protect retina against reperfusion injury, VIII Biennial Meeting International Society for Free Radical Research, Barcelona, p. 157.

    Google Scholar 

  • Bernier, M., Hearse, D. J., and Manning, A. S., 1986, Reperfusion-induced arrhythmias and oxygen-derived free radicals. Studies with “anti-free radical” interventions and a free radical-generating system in the isolated perfused rat heart, Circ. Res. 58:331–340.

    CAS  PubMed  Google Scholar 

  • Birnboim, H. C., 1982, DNA strand breakage in human leukocytes exposed to a tumor promoter phorbol-myristate acetate, Science 215:1247–1249.

    CAS  PubMed  Google Scholar 

  • Birnboim, H. C., 1992, Effect of lipophilic chelators on oxyradical-induced DNA strand breaks in human granulocytes: Paradoxical effect of 1, 10-phenanthroline, Arch. Biochem. Biophys. 294:17–21.

    Article  CAS  PubMed  Google Scholar 

  • Bleijenberg, B. G., Eljk, H. G. V., and Eijnse, B., 1971, The determination of non-heme iron and transferrin in cerebrospinal fluid, Clin. Chim. Acta 31:277–281.

    Article  CAS  PubMed  Google Scholar 

  • Borg, D. C., Schaich, K. M., Elmore, J. J., and Bell, J. A., 1978, Cytotoxic reaction of free radical species of oxygen, Photochem. Photobiol. 28:887–907.

    CAS  PubMed  Google Scholar 

  • Borg, D. C., and Schaich, K. M., 1984, Cytotoxicity from coupled redox cycling of autoxidizing xenobiotics and metals, Israel J. Chem. 24:38–53.

    CAS  Google Scholar 

  • Braughler, J. M., Pregenzer, J. F., Chase, R. L., Duncan, L. A., Jacobsen, E. J., and McCall, J. M., 1987, Novel 21-amino steroids as potent inhibitors of iron-dependent lipid peroxidation, J. Biol. Chem. 262:10438–10440.

    CAS  PubMed  Google Scholar 

  • Bray, T. M., and Bettger, W. J., 1990, The physiological role of zinc as an antioxidant, Free Radical Biol.Med. 8:281–291.

    Article  CAS  Google Scholar 

  • Breuer, W., Epsztein, S., Milligram, P., and Cabantchik, Z. I., 1995, Transport of iron and other transition metals into cells revealed by a fluorescent probe, Am. J. Physiol. 268:C1354–C1361.

    CAS  PubMed  Google Scholar 

  • Breuer, W., Epsztein, S., and Cabantchik, Z. I., 1996, Dynamics of the cytosolic chelatable iron pool of K562 cells, FEBS Lett. 382:304–308.

    Article  CAS  PubMed  Google Scholar 

  • Bryan, S. E., Vizard, D. L., Beary, D. A., La Biche, R. A., and Hardy, K. J., 1981, Partitioning of zinc and copper within subnuclear nucleoprotein particles, Nucleic Acids Res. 9:5811–5823.

    CAS  PubMed  Google Scholar 

  • Buettner, G. R., 1988, In the absence of catalytic metals ascorbate does not autoxidize at pH 7: Ascorbate as a test for catalytic metals, J. Biochem. Biophys. Methods 16:27–40.

    Article  CAS  PubMed  Google Scholar 

  • Buettner, G. R., 1990, Ascorbate oxidation: UV absorbance of ascorbale and ESR spectroscopy of the ascorbyl radical as assays for iron, Free Radical Res. Commun. 10:5–9.

    CAS  Google Scholar 

  • Buettner, G. R., Oberley, L. W., and Leuthauser, S. W. H. C., 1978, The effect of iron on the distribution of superoxide and hydroxyl radicals as seen by spin trapping and on the superoxide dismutase assay, Photochem. Photobiol. 28:693–695.

    CAS  PubMed  Google Scholar 

  • Cabantchik, Z. I., Glickstein, H., Milgram, P., and Breuer, W., 1996, A fluorescence assay for assessing chelation of intracellular iron in a membrane model system and in mammalian cells, Anal. Biochem. 233:221–227.

    Article  CAS  PubMed  Google Scholar 

  • Cadenas, E., 1989, Biochemistry of oxygen toxicity, Annu. Rev. Biochem. 58:79–110.

    Article  CAS  PubMed  Google Scholar 

  • Calderaro, M., Martins, E. A. L., and Meneghini, R., 1993, Oxidative stress by menadione affects cellular copper and iron homeostasis, Mol. Cell. Biochem. 126:17–23.

    Article  CAS  PubMed  Google Scholar 

  • Cameron, E., Pauling, L., and Leibovitz, B., 1979, Ascorbic acid and cancer, Cancer Res. 39:663–681.

    CAS  PubMed  Google Scholar 

  • Cao, W., Carney, J. M., Duchon, A., Floyd, R. A., and Chevion, M., 1988, Oxygen free radical involvement in ischemia and reperfusion injury to brain, Neurosci. Lett. 88:233–238.

    Article  CAS  PubMed  Google Scholar 

  • Chan, P. H., Charles, J., Epstein, H., Kinouchi, Kamii, H., Chen, S. F., Carlson, E., Gafni, J., Yang, G., and Reola, L., 1996, Neuroprotective role of Cu,Zn-superoxide dismutase in ischemic brain damage, Ad. Neurol. 71:271–280.

    CAS  Google Scholar 

  • Chevion, M., 1988, A site specific mechanism for free radical induced biological damage: The essential role of redox-active transition metals, Free Radical Biol. Med. 5: 27–37.

    Article  CAS  Google Scholar 

  • Chevion, M., 1991, Protection against free radical-induced and transition metal-mediated damage: The use of “pull” and “push” mechanisms, Free Radical Res. Commun. 12–13:691–696.

    Google Scholar 

  • Chevion, M., Mager, J., and Glaser, G., 1983, Favism-inducing agents, in Handbook of Naturally Occurring Food Toxicants (M. Rechigl, Jr., ed.), pp. 63–79, CRC Press, Boca Raton.

    Google Scholar 

  • Chevion, M., Jiang, Y., Har-El, R., Berenshtein, E., Uretzky, G., and Kitrossky, N., 1993, Copper and iron are mobilized following myocardial ischemia: Possible criteria for tissue injury, Proc. Natl. Acad. Sci. USA 90:1102 1106.

    PubMed  Google Scholar 

  • Chow, H. S., Lynch-3rd, J. J., Rose, K., and Choi, D. W., 1994, Trolox attenuates cortical neuronal injury induced by iron, ultraviolet light, glucose deprivation, or AMPA, Brain Res. 639(1):102–108.

    Article  CAS  PubMed  Google Scholar 

  • Clemens, J. A., and Panetta, J. A., 1994, Neuroprotection by antioxidants in model of global and focal ischemia, Ann. N. Y. Acad. Sci. 738:250–256.

    CAS  PubMed  Google Scholar 

  • Czapski, G.,1984, On the use of ·OH scavengers in biological systems, Israel J.Chem. 24:29–32.

    Google Scholar 

  • Czapski, G., and Ilan, Y. A., 1978, On the generation of the hydroxyl agent from the superoxide radical: Can the Haber-Weiss reaction be the source of ·OH radicals? Photochem. Photobiol. 28:651–654.

    CAS  Google Scholar 

  • Darley-Usmar, V. M., Hersey, A., and Garland, L. G., 1989, A method for comparative assessment of antioxidant as peroxyl radical scavengers, Biochem. Pharmacol. 38:1645–1649.

    Article  Google Scholar 

  • Das, D. K., 1993, Pathophysiology of Reperfusion Injury, CRC Press, Boca Raton.

    Google Scholar 

  • Davison, A. J., Kettle, A. J., and Fatur, D. J., 1986, Mechanism of the inhibition of catalase by ascorbale, J. Biol. Chem. 261:1193–1200.

    CAS  PubMed  Google Scholar 

  • DeBoer, D. A., and Clark, R. E., 1992, Iron chelation in myocardial preservation after ischemia-reperfusion injury: The importance of pretreatment and toxicity, Ann. Thorac. Surg. 53:412–418.

    CAS  PubMed  Google Scholar 

  • Denicola, A., Souza, J. M., Gatti, R. M., Augusto, O., and Radi, R., 1995, Desferrioxamine inhibition of the hydroxyl radical-like reactivity of peroxynitrite: Role of hydroxamic groups, Free Radical Biol. Med. 19:11–19.

    Article  CAS  Google Scholar 

  • Dizdaroglu, M., Aruoma, O. I., and Halliwell, B., 1990, Modification of bases in DNA by copper ion-1, 10-phenanthroline complexes, Biochemistry 29:8447–8451.

    Article  CAS  PubMed  Google Scholar 

  • Eaton, J. W., 1996, Iron: The essential poison, Redox Rep. 2:215.

    Google Scholar 

  • Emerit, I., and Cerutti, P., 1981, Tumor promoter phorbol-12-myristate-13-acetate induces chromosomal damage via indirect action, Nature 293:144–146.

    Article  CAS  PubMed  Google Scholar 

  • Evans, P. J., and Halliwell, B., 1994, Measurement of iron and copper in biological systems: Bleomycin and copper-phenanthroline assays, Methods Enzymol. 233:83–92.

    Google Scholar 

  • Ferradini, C., Foos, J., and Houee, C., 1978, The reaction between superoxide anion and hydrogen peroxide, Photochem. Photobiol. 28:697–700.

    CAS  Google Scholar 

  • Ferreira, R., Burgos, M., Milei, J., Llesuy, S., Molteni, L., Hourquebie, H., and Boveris, A., 1990, Effect of supplementing cardioplegic solution with deferoxamine on reperfused human myocardium, J. Thorac. Cardiovasc. Surg. 100:708–714.

    CAS  PubMed  Google Scholar 

  • Frank, L., and Massaro, D., 1980, Oxygen toxicity, Am. J. Med. 69:117–126.

    Article  CAS  PubMed  Google Scholar 

  • Frei, B., England, L., and Ames, B. N., 1989, Ascorbate is an outstanding antioxidant in human blood plasma, Proc. Natl. Acad. Sci. USA 86:6377–6381.

    CAS  PubMed  Google Scholar 

  • Friedl, H. P., Till, G. O., Ryan, U. S., and Ward, P. A., 1989, Mediator-induced activation of xanthine oxidase in endothelial cells, FASEB J. 3:2512–2518.

    CAS  PubMed  Google Scholar 

  • Gabutti, V., and Piga, A., 1996, Results of long-term iron-chelating therapy, Acta Haematol. 95:26–36.

    CAS  PubMed  Google Scholar 

  • Gamelin, L. M., and Zager, R. A., 1988, Evidence against oxidant injury as a critical mediator of postischemic acute renal failure, Am. J. Physiol. 255:F450–F460.

    CAS  PubMed  Google Scholar 

  • Garlick, P. B., Davies, M. J., Hearse, M. J., and Slater, T. F., 1987, Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy, Circ. Res. 61:757–760.

    CAS  PubMed  Google Scholar 

  • Gehbach, P. L., and Purple, R. L., 1994, Enhancement of retinal recovery by conjugated deferoxamine after ischemia-reperfusion, Invest. Ophthalm. Vis. Sci. 35(2):669–676.

    Google Scholar 

  • Geierstanger, B. H., Kagawa, T. F., Chen, S. L., Quigley, G. T, and Ho, P. S., 1991, Base-specific binding of copper(II) to Z-DNA: The 1.3 angstrom single crystal structure of d(m5CGUAm5CG) in the presence of CuCl2, J. Biol. Chem. 266:20185–20191.

    CAS  PubMed  Google Scholar 

  • Gerschman, R., 1981, Historical introduction to the “free radical theory” of oxygen toxicity, in Oxygen and Living Processes, an Interdisciplinary Approach (D. Gilbert, ed.), pp. 44–46, Springer-Verlag, Berlin.

    Google Scholar 

  • Gerschman, R., Gilbert, D., Nye, S. W., Dwyer, P., and Fenn, W. O., 1954, Oxygen poisoning and X-irradiation: A mechanism in common, Science 119:623–626.

    CAS  PubMed  Google Scholar 

  • Goldstein, S., and Czapski, G., 1986, The role and mechanism of metal ions and their complexes in enhancing damage in biological systems or in protecting these systems from the toxicity of O -2 , Free Radical Biol. Med. 2:3–11.

    CAS  Google Scholar 

  • Goldstein, S., Meyerstein, D., and Czapski, G., 1993, The Fenton reagents, Free Radical Biol. Med. 15:435–445.

    Article  CAS  Google Scholar 

  • Gottlieb, R. A., Burleson, K. O., and Cloner, R. A., 1994, Reperfusion injury induced apoptosis in rabbit cardiomyocytes, J. Clin. Invest. 94:1621–1628.

    CAS  PubMed  Google Scholar 

  • Gower, J., Healing, G., and Green, C., 1989, Measurement by HPLC of desferrioxamine-available iron in rabbit kidneys to assess the effect of ischemia on the distribution of iron within the total pool, Free Radical Res. Commun. 5:291–299.

    CAS  Google Scholar 

  • Graf, E., Mahoney, J. R., Bryant, R. G., and Eaton, J. W., 1984, Iron-catalyzed hydroxyl radical formation. Stringent requirement for free iron coordination site, J. Biol. Chem. 259:3620–3624.

    CAS  PubMed  Google Scholar 

  • Granger, D. N., Rutili, G., and McCord, J. M., 1981, Superoxide radical in feline intestinal ischemia, Gastroenterology 81:22–29.

    CAS  PubMed  Google Scholar 

  • Green, E. S. R., Rice-Evans, H., Rice-Evans, P., Davies, M. J., Salah, N., and Rice-Evans, C. A., 1993, The efficacy of mono-hydroxamates as free radical scavenging agents compared with di-and tri-hydroxamates, Biochem. Pharmacol. 45:357–366.

    Article  CAS  PubMed  Google Scholar 

  • Gutteridge, J. M. C., 1992, Ferrous ions detected in cerebrospinal fluid by using bleomycin and DNA damage, Clin. Sci. 82:315–320.

    CAS  PubMed  Google Scholar 

  • Gutteridge, J. M. C., and Wilkins, S., 1983, Copper salt-dependent hydroxyl radical formation damage to proteins acting as antioxidants, Biochim. Biophys. Acta 759:38–41.

    CAS  PubMed  Google Scholar 

  • Gutteridge, J. M. C., Richmond, R., and Halliwell, B., 1979, Inhibition of the iron-catalyzed formation of hydroxyl radicals from superoxide and of lipid peroxidation by desferrioxamine, Biochem. J. 184:469–472.

    CAS  PubMed  Google Scholar 

  • Haber, F., and Weiss, J., 1934, The catalytic decomposition of hydrogen peroxide by iron salts, Proc. R. Soc. London Ser. A 147:332–351.

    Google Scholar 

  • Hallgren, B., and Sowander, P., 1958, The effect of age on the non-haemin iron in the human brain, J. Neurochem. 3:41–51.

    CAS  PubMed  Google Scholar 

  • Halliwell, B., 1978, Superoxide-dependent formation of hydroxyl radicals in the presence of iron chelates, FEBS Lett. 92:321–326.

    Article  CAS  PubMed  Google Scholar 

  • Halliwell, B., 1989, Protection against tissue damage in vivo by desferrioxamine: What is its mechanism of action? Free Radical Biol. Med. 7:645–651.

    Article  CAS  Google Scholar 

  • Halliwell, B., 1990, How to characterize a biological antioxidant, Free Radical Res. Commun. 9:1–32.

    CAS  Google Scholar 

  • Halliwell, B., and Gutteridge, J. M. C., 1984, Oxygen toxicity, oxygen radicals, transition metals and disease, Biochem. J. 219:1–14.

    CAS  PubMed  Google Scholar 

  • Halliwell, B., and Gutteridge, J. M. C., 1985, The importance of free radicals and catalytic metal ions in human disease, Mol. Aspects Med. 8:89–193.

    CAS  PubMed  Google Scholar 

  • Halliwell, B., and Gutteridge, J. M. C., 1989, Free Radicals in Biology and Medicine, Oxford University Press (Clarendon), London.

    Google Scholar 

  • Halliwell, B., and Gutteridge, J. M. C., 1990, Role of free radicals and catalytic metal ions in human diseases: An overview, Methods Enzymol. 186:1–85.

    CAS  PubMed  Google Scholar 

  • Halliwell, B., Gutteridge, J. M., and Cross, C. E., 1992, Free radicals, antioxidants, and human disease: Where are we now? J. Lab. Clin. Med. 119:598–620.

    CAS  PubMed  Google Scholar 

  • Har-El, R., and Chevion, M., 1989, Zn(II) protect against free radical-induced damage: Studies on single and double-strand DNA breakage, Free Radical Res. Commun. 12–13:509–515.

    Google Scholar 

  • Harrison, W. W., Netsky, M. G., and Brown, M. D., 1968, Trace elements in human brain: Copper, zinc, iron and magnesium, Clin. Chim. Acta 21:55–60.

    Article  CAS  PubMed  Google Scholar 

  • Hearse, D. J., Manning, A. S., Downey, J. M., and Yellon, D. M., 1986, Xanthine oxidase: A critical mediator of myocardial injury during ischemia and reperfusion? Acta Physiol. Scand. Suppl. 548:65–78.

    CAS  PubMed  Google Scholar 

  • Held, K. D., and Biaglow, J. E., 1993a, Role of copper in the oxygen radical-mediated toxicity of the thiol-containing radioprotector dithiothreitol in mammalian cells, Radiat. Res. 134:375–382.

    CAS  PubMed  Google Scholar 

  • Held, K. D., and Biaglow, J. E., 1993b, Mechanisms of the oxygen radical-mediated toxicity of various thiol-containing compounds in cultured mammalian cells, Radiat. Res. 139:152–123.

    Google Scholar 

  • Herbert, V, Shaw, S., and Jayatilleke, E., 1996, Vitamin C-driven free radical generation from iron, J. Nutr. 126:1213S–1220S.

    CAS  PubMed  Google Scholar 

  • Hershko, C., Pinson, A., and Link, G., 1996, Prevention of anthracycline cardiotoxicity by iron chelation, Acta Haematol. 95:87–92.

    CAS  PubMed  Google Scholar 

  • Hill, J. M., and Switzer, R. C., 1984, The regional distribution and cellular localization of iron in the rat brain, Neuroscience 11:595–603.

    Article  CAS  PubMed  Google Scholar 

  • Holt, S., Gunderson, M., Joyce, K., Nayini, N. R., Eyster, G. F., Garitano, A. M., Zonia, C., Krause, G. S., Aust, S. D., and White, B. C., 1986, Myocardial tissue iron delocalization and evidence for lipid peroxidation after two hours of ischemia, Ann. Emerg. Med. 15: 1155–1159.

    Article  CAS  PubMed  Google Scholar 

  • Howell, J. M., and Gawthorne, J. M.,1987, Copper on Animal and Man, CRC Press, Boca Raton.

    Google Scholar 

  • Imlay, J. A., Chin, S. M., and Linn, S., 1988, Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro, Science 240:640–642.

    CAS  PubMed  Google Scholar 

  • Inoue, S., Yamamoto, K., and Kawanishi, S., 1990, DNA damage induced by metabolites of O-phenylphenol in the presence of copper(II) ion, Chem. Res. Toxicol. 3:144–149.

    Article  CAS  PubMed  Google Scholar 

  • Irons, R. D., 1985, Quinones as toxic metabolites of benzene, J. Toxicol. Environ. Health 16:673–678.

    CAS  PubMed  Google Scholar 

  • Kari, F. W., Bucher, J., Eustis, S. L., Haseman, J. K., and Huff, J. E., 1992, Toxicity and carcinogenicity of hydroquinone in F344/N rats and B6csF1 mice, Food Chem. Toxicol. 30:737–747.

    CAS  PubMed  Google Scholar 

  • Karwatowska-Prokopczuk, E., Czarnowska, E. and Beresewicz, A., 1992, Iron availability and free radical induced injury in the isolated ischemic/reperfused rat heart, Cardiovasc. Res. 26:58–66.

    CAS  PubMed  Google Scholar 

  • Kawanishi, S., Inoue, S., and Kawanishi., M., 1989, Human DNA damage induced by 1,2,4-benzenetriol, a benzene metabolite, Cancer Res. 49:164–168.

    CAS  PubMed  Google Scholar 

  • Kinnula, V. l., Crapo, J. D., and Raivio, K. O., 1995, Biology of disease. Generation and disposal of reactive oxygen metabolites in the lung, Lab Invest. 73(1):3–19.

    CAS  PubMed  Google Scholar 

  • Kohen, R., and Chevion, M., 1985, Paraquat toxicity is enhanced by iron and inhibited by desferrioxamine in laboratory mice, Biochem. Pharmacol. 34:1841–1843.

    Article  CAS  PubMed  Google Scholar 

  • Kohen, R., and Chevion, M., 1986, Transition metals potentiate paraquat toxicity, Free Radical Res. Commun. 1:79–88.

    Google Scholar 

  • Kohen, R., Szyf, M., and Chevion, M., 1986, Quantitation of single and double strand DNA breaks in vitro and in vivo, Anal. Biochem. 154:485–491.

    Article  CAS  PubMed  Google Scholar 

  • Koppenol, W. H., and Butler, J., 1985, Energetics in interconversion reactions of oxyradicals, Adv. Free Radical Biol. 1:91–131.

    CAS  Google Scholar 

  • Koppenol, W. H., Butler, J.,and Leenwen, J.W.V, 1978, TheHaber-Weiss cycle, Photochem. Photobiol. 28:655–660.

    CAS  Google Scholar 

  • Korbashi, P., Katzhendler, J., Saltman, P., and Chevion, M., 1989, Zinc protects Escherichia coli against copper-mediated paraquat-induced damage, J. Biol. Chem. 264:8479–8482.

    CAS  PubMed  Google Scholar 

  • Kozlov, A. V., Yegorov, D. Y., Vladimirov, Y. A., and Azizova, O. A., 1992, Intracellular free iron in liver tissue and liver homogenate: Studies with electron paramagnetic resonance on the formation of paramagnetic complexes with Desferal and nitric oxide, Free Radical Biol. Med. 13:9–16.

    Article  CAS  Google Scholar 

  • Li, Y., and Trush, M. A., 1993a, Oxidation of hydroquinone by copper: Chemical mechanism and biological effects, Arch. Biochem. Biophys. 300:346–355.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., and Trush, M. A., 1993b, DNA damage resulting from the oxidation of hydroquinone by copper: Role for a Cu(II)/Cu(I) redox cycle and reactive oxygen generation, Carcinogenesis 14:1303–1311.

    CAS  PubMed  Google Scholar 

  • Li, Y., and Trush, M. A., 1994, Reactive oxygen-dependent DNA damage resulting from the oxidation of phenolic compounds by a copper-redox cycle mechanism, Cancer Res. 54:1895–1898.

    Google Scholar 

  • Linder, M. C.,1991, Biochemistry of Copper, Plenum Press, New York.

    Google Scholar 

  • Manson, P. N., Antheneli, R. N., Jim, M., Bulkley, G. B., and Hoopes, J. E., 1983, The role of oxygen-free radicals in ischemic tissue injury in island skin flaps, Ann. Surg. 198:87–90.

    CAS  PubMed  Google Scholar 

  • Marx, G., and Chevion, M., 1986, Site-specific modification of albumin by free radicals, Biochem. J. 236:397–400.

    CAS  PubMed  Google Scholar 

  • Marx, J. J. M., and Van Asbeck, B. S., 1996, Use of iron chelators in preventing hydroxyl radical damage: Adult respiratory distress syndrome as an experimental model for the pathophysiology and treatment of oxygen-radical-mediated tissue damage, Acta Haematol. 95:49–62.

    CAS  PubMed  Google Scholar 

  • Massa, E. M., and Giulivi, C., 1993, Alkoxyl and methyl radical formation during cleavage of tert-butyl hydroperoxide by a mitochondrial membrane-bound, redox active copper pool: An ESR study, Free Radical Biol. Med. 14:559–565.

    Article  CAS  Google Scholar 

  • Mayers, C. L., Weiss, S. J., Krish, M. M., and Shlafer, M., 1985, Involvement of hydrogen peroxide and hydroxyl radical in the oxygen paradox: Reduction of creatine kinase release by catalase, allopurinol or deferoxamine, but not by superoxide dismutase, J. Mol. Cell. Cardiol. 17:675–684.

    Google Scholar 

  • McCord, J. M., 1985, Oxygen-derived free radicals in postischemic tissue injury, N. Engl. J. Med. 312:159–163.

    CAS  PubMed  Google Scholar 

  • McCord, J. M., and Day, E. D., 1978, Superoxide-dependent production of hydroxyl radical catalyzed by iron-EDTA complex, FEBS Lett. 86:139–143.

    Article  CAS  PubMed  Google Scholar 

  • McCord, J. M., and Fridovich, I., 1969, Superoxide dismutase: An enzyme function for erythrocytes, J. Biol. Chem. 244:6049–6055.

    CAS  PubMed  Google Scholar 

  • Mello Filho, A. C. D., and Meneghini, R., 1985, Protection of mammalian cells by O-phenanthroline from lethal and DNA-damaging effects produced by active oxygen species, Biochim. Biophys. Acta 847:82–89.

    Google Scholar 

  • Menasche, P., Pasquier, C., Bellucci, S., Lorente, P., Jaillon, P., and Piwnica, A., 1988, Deferoxamine reduced neutrophil mediated free radical production during cardiopulmonary bypass in man, J. Thorac. Cardiovasc. Surg. 96:582–589.

    CAS  PubMed  Google Scholar 

  • Naito, S., Ono, Y., Somiya, I., Inoue, S., Ito, K., Yamamoto, K., and Kawanishi, S., 1994, Role of active oxygen species in DNA damage by pentachlorophenol metabolites, Mutat. Res. 310:79–88.

    CAS  PubMed  Google Scholar 

  • Navok, T., and Chevion, M., 1984, Transition metals mediate enzymatic inactivation caused by favism-inducing agents, Biochem. Biophys. Res. Commun. 122:297–303.

    Article  CAS  PubMed  Google Scholar 

  • Nayak, M. S., Kita, M., and Marmor, M. F., 1993, Protection of the rabbit retina from ischemic injury by superoxide dismutase and catalase, Invest. Ophthalmol. Vis. Sci. 34:2018–2022.

    CAS  PubMed  Google Scholar 

  • Nayini, N. R., White, B. C., Aust, S. D., Huang, R. R., Indrieri, R. J., Evans, A. T., Bialek, H., Jacobs, W. A., and Komara, J., 1985, Post resuscitation iron delocalization and malondialdehyde production in the brain following prolonged cardiac arrest, Free Radical Biol. Med. 1:111–116.

    CAS  Google Scholar 

  • Nohl, H., and Jordan, W., 1987, The involvement of biological quinones in the formation of hydroxyl radicals via the Haber-Weiss reaction, Bioorg. Chem. 15:374–382.

    Article  CAS  Google Scholar 

  • Nohl, H., Jordan, W., and Youngman, R. J., 1986, Quinones in biology: Function in electron transfer and oxygen activation, Adv. Free Radical Biol. Med. 2:211–279.

    CAS  Google Scholar 

  • Nohl, H., Stolze, K., Napetschnig, S., and Ishikawa, T., 1991, Is oxidative stress primarily involved in reperfusion injury of the ischemic heart? Free Radical Biol. Med. 11:581–588.

    Article  CAS  Google Scholar 

  • Oberhammer, F. A., Pavalka, M., and Sharma, S., 1992, Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor b1, Proc. Natl. Acad. Sci. USA 89:5408–5412.

    CAS  PubMed  Google Scholar 

  • O’Connell, J. F., Klein-Szanto, A. P., DiGiovanni, D. M., Fries, J. W., and Slaga, T. J., 1986, Enhanced malignant progression of mouse skin tumors by the free-radical generator benzoyl peroxide, Cancer Res. 46:2863–2865.

    CAS  PubMed  Google Scholar 

  • O’Halloran, T. V., 1993, Transition metals in control of gene expression, Science 261:715–725.

    CAS  PubMed  Google Scholar 

  • Ophir, A., Berenshtein, E., Kitrossky, N., Berman, E. R., Photiou, S., Rothman, Z., and Chevion, M., 1993, Hydroxyl radical generation in the cat retina during reperfusion following ischemia, Exp. Eye Res. 57:351–357.

    Article  CAS  PubMed  Google Scholar 

  • Ophir, A., Berenshtein, E., Kitrossky, N., and Averbukh, E., 1994, Protection of the transiently ischemic cat retina by zinc-desferrioxamine, Invest. Ophthalmol. Vis. Sci. 35:1212–1222.

    CAS  PubMed  Google Scholar 

  • Opie, L. H., 1989, Reperfusion injury and its pharmacological modification, Circulation 80:1049–1062.

    CAS  PubMed  Google Scholar 

  • Packer, L., Tritschler, H. J., and Wesel, K., 1997, Neuroprotection by the metabolic antioxidant α-lipoic acid, Free Radical Biol. Med. 22(l/2):359–378.

    CAS  Google Scholar 

  • Peleg, I., Zer, H., and Chevion, M., 1992, Paraquat toxicity in Pisum sativum: Effects on soluble and membrane-bound proteins, Physiol. Plant. 86:131–135.

    Article  CAS  Google Scholar 

  • Pezzano, H., and Podo, F., 1980, Structure of binary complexes of mono-and polynucleotides with metal ions of the first transition group, Chem. Rev. 80:365–399.

    Article  CAS  Google Scholar 

  • Powell, S., Saltmann, P., Uretzky, G., and Chevion, M., 1990, The effect of zinc on reperfusion arrhythmias in the isolated perfused rat heart, Free Radical Biol. Med. 8:33–46.

    Article  CAS  Google Scholar 

  • Powell, S. R., Hall, D., and Shih, A., 1991, Copper loading of hearts increases postischemic reperfusion injury, Circ. Res. 69:881–885.

    CAS  PubMed  Google Scholar 

  • Powis, G., 1989, Free radical formation by antitumor quinones, Free Radical Biol. Med. 6:63–101.

    Article  CAS  Google Scholar 

  • Priestley, J., 1906, The Discovery of Oxygen, University of Chicago Press, Chicago.

    Google Scholar 

  • Prutz, W. A., Butler, J., and Land, E. J., 1990, Interaction of Cu(I) with nucleic acids, Int. J. Radiat. Biol. 58:215–234.

    CAS  PubMed  Google Scholar 

  • Rahman, A., Shahabuddin, Hadi, S. M., Parish, J. H., and Ainley, K., 1989, Strand scission in DNA induced by quercetin and Cu(II): Role of Cu(I) and oxygen free radicals, Carcinogenesis 10:1833–1839.

    CAS  PubMed  Google Scholar 

  • Rao, G. S., 1991, Release of 2-thiobarbituric acid reactive products from glutamate, deoxypuridine or DNA during autoxidation of dopamine in the presence of copper ions, Pharmacol. Toxicol. 69:164–166.

    CAS  PubMed  Google Scholar 

  • Rice-Evans, C. A., and Diplock A. T., 1993, Current status of antioxidant therapy, Free Radical Biol. Med. 15:77–96.

    Article  CAS  Google Scholar 

  • Rosen, A. D., and Frumin, N. V., 1979, Focal epileptogenesis following intracortical haemoglobin injection, Exp. Neurol. 66:277–284.

    Article  CAS  PubMed  Google Scholar 

  • Rumyantseva, G. V., Kennedy, C. H., and Mason, R. P., 1991, Trace transition metal-catalyzed reactions in the microsomal metabolism of alkyl hydrazines to carbon-centered free radicals, J. Biol. Chem. 266:21422–21427.

    CAS  PubMed  Google Scholar 

  • Samuni, A., Kalkstein, A., and Czapski, G., 1980, Does oxygen enhance the radiation-induced inactivation of penicillinase? Radiat. Res. 82:65–70.

    CAS  Google Scholar 

  • Samuni, A., Chevion, M., and Czapski, G., 1981, Unusual copper-induced sensitization of the biological damages due to superoxide radicals, J. Biol. Chem. 256:12632–12635.

    CAS  PubMed  Google Scholar 

  • Samuni, A., Aronovitch, J., Godinger, D., Chevion, M., and Czapski, G., 1983, On the cytotoxicity of vitamin C and metal ions: A site-specific Fenton mechanism, Eur. J. Biochem. 137:119–124.

    Article  CAS  PubMed  Google Scholar 

  • Samuni, A., Chevion, M., and Czapski, G., 1984, Roles of copper and O -2 in the radiation induced inactivation of T7 bacteriophage, Radiat. Res. 99:56–572.

    Google Scholar 

  • Shinar, E., Navok, T., and Chevion, M., 1983, The analogous mechanisms of enzymatic inactivation induced by ascorbate and superoxide in the presence of copper, J. Biol. Chem. 258:14778–14783.

    CAS  PubMed  Google Scholar 

  • Shlafer, M., Brosamer, K., Forder, J. R., Simon, R. H., Ward, P. A., and Grum, C. M., 1990, Cerium chloride as a histochemical marker of hydrogen peroxide in reperfused ischemic hearts, J. Mol. Cell. Cardiol. 22:83–97.

    Article  CAS  PubMed  Google Scholar 

  • Sigman, D., 1986, Nuclease activity of 1, 10-phenanthroline-copper-ion, Acc. Chem. Res. 19:180–186.

    Article  CAS  Google Scholar 

  • Snyder, R., Witz, G., and Goldstein, D., 1993, The toxicology of benzene, Environ. Health Perspect. 100:293–306.

    CAS  PubMed  Google Scholar 

  • Stadtman, E. R., 1990, Metal ion-catalyzed oxidation of proteins: Biochemical mechanism and biological consequences, Free Radical Biol. Med. 9:315–325.

    CAS  Google Scholar 

  • Stern, A., 1985, Oxidative Stress, pp. 331–349, Academic Press, New York.

    Google Scholar 

  • Stoewe, R., and Prutz, W. A., 1987, Copper-catalyzed DNA damage by ascorbate and hydrogen peroxide, Free Radical Biol. Med. 3:97–105.

    CAS  Google Scholar 

  • Swauger, J. E., Dolan, P. M., Zweier, J. L., Kuppusamy, P., and Kensler, T. W., 1991, Role of benzoyoxyl radical in DNA damage mediated by benzoyl peroxide, Chem. Res. Toxicol. 4:233–228.

    Article  Google Scholar 

  • Szabo, M. E., Dray-Lefaix, M. T., Doly, M., and Braquest, P., 1991a, Free radical-mediated effects in reperfusion injury: A histologic study with SOD and EGB761 in rat retina, Ophthalmic Res. 23:225–234.

    CAS  PubMed  Google Scholar 

  • Szabo, M. E., Dray-Lefaix, M. T., Doly, M., Carre, C., and Braquest, P., 1991b, Ischemia and reperfusion-induced histologic changes in the rat retina, Invest. Ophthalmol. Vis. Sci. 32:1471–1478.

    CAS  PubMed  Google Scholar 

  • Thederahn, T. B., Kuwabara, M. C., Larsen, T. A., and Sigman, D. S., 1989, Nuclease activity of 1, 10-phenanthroline-copper: Kinetic mechanism, J. Am. Chem. Soc. 111:4941–4946.

    Article  CAS  Google Scholar 

  • Tynecka, M., 1995, [The role of iron in the pathology of nervous system], Neurol. Neurochir. Pol. 29(3):409–417.

    Google Scholar 

  • Vandeplassche, G., Hermans, C., Thone, F., and Borgers, M., 1989, Mitochondrial hydrogen peroxide generation by NADH-oxidase activity following regional myocardial ischemia in the dog, J. Mol. Cell. Cardiol. 21:383–392.

    Article  CAS  PubMed  Google Scholar 

  • Van Reyk, D. M., and Dean, R. T., 1996, The iron-selective chelator desferal can reduce chelated copper, Free Radical Res. 24:55–60.

    Google Scholar 

  • Van Steveninck, J., Van der Zee, J. and Dubbelman, T. M. A. R., 1985, Site-specific and bulk-phase generation of hydroxyl radicals in the presence of cupric irons and thiol compounds, Biochem. J. 232:309–311.

    PubMed  Google Scholar 

  • Voogd, A., Sluiter, W., Eijk, H. G. V., and Koster, J. F., 1992, Low molecular weight iron and the oxygen paradox in isolated rat hearts, J. Clin. Invest. 90:2050–2055.

    CAS  PubMed  Google Scholar 

  • Voogd, A., Sluiter, W., and Koster, J. F., 1994, The increased susceptibility to hydrogen peroxide of the (post-)ischemic rat heart is associated with the magnitude of the low molecular weight iron pool, Free Radical Biol. Med. 16:453–458.

    Article  CAS  Google Scholar 

  • Wacker, W. E. C., and Vallee, B. L., 1959, Nucleic acids and metals, J. Biol. Chem. 234:3257–3262.

    CAS  Google Scholar 

  • Walling, C., 1982, The nature of the primary oxidants in oxidation mediated by metal ions, in Oxidase and Related Redox Systems. (T. E. King, H. S. Mason, and M. Morrison, eds.) pp. 85–97, Pergamon Press, Elmsford, NY.

    Google Scholar 

  • Weight, S. C., Bell, P. R. F., and Nicholson, M. L., 1996, Renal ischemia-reperfusion injury, B. J. Surg. 83:162–170.

    CAS  Google Scholar 

  • Willmore, L. J., Ballinger, W. E., Boggs, W., and Rubin, G. W. S. J. J., 1980, Dendritic alteration in rat isocortex within an iron-induced chronic epileptic focus, Neurosurgery 7:142–146.

    CAS  PubMed  Google Scholar 

  • Willmore, L. J., Triggs, W. J., and Grey, J. D., 1986, The role of iron-induced hippocampal peroxidation in acute epileptogenesis, Brain Res. 382:422–426.

    CAS  PubMed  Google Scholar 

  • Yamamoto, K., and Kawanishi, S., 1989, Hydroxyl free radical is not the main active species in site-specific DNA damage induced by copper(II) ion and hydrogen peroxide, J. Biol. Chem. 264:15435–15440.

    CAS  PubMed  Google Scholar 

  • Yamamoto, K., and Kawanishi, S., 1991a, Site-specific DNA damage induced by hydrazine in the presence of manganese and copper ion, J. Biol. Chem. 266:1509–1515.

    CAS  PubMed  Google Scholar 

  • Yamamoto, K., and Kawanishi, S., 1991b, Site-specific DNA damage induced by phenylhydrazine and phenelzine in the presence of Cu(II) and Fe(IlI) complexes: Roles of active oxygen species and carbon radicals, Chem. Res. Toxicol. 5:440–446.

    Google Scholar 

  • Youdim, M. B. H., 1988a, Brain Iron. Neurochemical and Behavioral Aspects, Taylor & Francis, London.

    Google Scholar 

  • Youdim, M. B. H., 1988b, Iron in the brain: implication for Parkinson’s and Alzheimer’s diseases, Mt. Sinai J. Med. 55:97–101.

    CAS  PubMed  Google Scholar 

  • Youdim, M. B. H., and Green, A. R., 1978, Iron deficiency and neurotransmitter synthesis and function, Proc. Nutr. Soc. 37:173–179.

    CAS  PubMed  Google Scholar 

  • Yourtee, D. M., Elkins, L. L., Nalvarte, E. L., and Smith, R. E., 1992, Amplification of doxorubicin mutagenicity by cupric ion, Toxicol. Appl. Pharmacol. 116:57–65.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, B. Z., Har-El, R., Kitrossky, N., and Chevion, M., 1998, New modes of action of desferrioxamine: Scavenging of semiquinone radical and stimulation of hydrolysis of tetrachlorohydroquinone, Free Radical Biol. Med. 24:360–369.

    Article  CAS  Google Scholar 

  • Zweier, J. L., Flaherty, J. T., and Weisfeldt, M. L., 1987, Direct measurement of free radicals generation following reperfusion of ischemic myocardium, Proc. Natl. Acad. Sci. USA 84:1404–1407.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Chevion, M., Berenshtein, E., Zhu, BZ. (2002). The Role of Transition Metal Ions in Free Radical-Mediated Damage. In: Reactive Oxygen Species in Biological Systems. Springer, Boston, MA. https://doi.org/10.1007/0-306-46806-9_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-46806-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45756-2

  • Online ISBN: 978-0-306-46806-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics