Skip to main content

The Steady-State Concentrations of Oxygen Radicals in Mitochondria

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Backstrom, D., Norling, B., Eherenberg, A., and Ernster, L., 1970, Electron spin resonance measurement on ubiquinone-depleted and ubiquinone-replenished submitochondrial particles, Biochim. Biophys. Acta 197:108–111.

    CAS  PubMed  Google Scholar 

  • Bert, P., 1878, Barometric Pressure Researches in Experimental Pathology [translated from the 1878. French. edition by M. A. Hitchcock and F. A. Hitchcock, Columbus, Ohio, College Book Co., 1943].

    Google Scholar 

  • Beyer, R. E., Noble, W. M., and Hirschfeld, T. J., 1962, Alterations of rat-tissue coenzyme Q (ubiquinone) levels by various treatments, Biochim. Biophys. Acta 57:376–379.

    Article  CAS  Google Scholar 

  • Boveris, A., and Cadenas, E., 1975, Mitochondrial production of superoxide anion and its relationship to the antimycin insensitive respiration, FEBS Lett. 54:311–314.

    Article  CAS  PubMed  Google Scholar 

  • Boveris, A., and Cadenas, E., 1982, Production of superoxide radicals and hydrogen peroxide in mitochondria, in Superoxide Dismutase (L. W. Oberley, ed.), pp. 15–30, CRC Press, Boca Raton.

    Google Scholar 

  • Boveris, A., and Chance, B., 1973, The mitochondrial generation of hydrogen peroxide: general properties and effect of hyperbaric oxygen. Biochem. J. 134:707–716.

    CAS  PubMed  Google Scholar 

  • Boveris, A., Peralta Ramos, M. C. de, Stoppani, A. O. M., and Foglia, V. G., 1969, Phosphorylation, oxidation, and ubiquinone content in diabetic mitochondria, Proc. Soc. Exp. Biol. Med. 132:170–174.

    Google Scholar 

  • Boveris, A., Oshino, N., and Chance, B., 1972, The cellular production of hydrogen peroxide, Biochem. J. 128:617–630.

    CAS  PubMed  Google Scholar 

  • Boveris, A., Cadenas, E., and Stoppani, A. O. M., 1976, Role of ubiquinone in the mitochondrial generation of hydrogen peroxide, Biochem. J. 156:435–444.

    CAS  PubMed  Google Scholar 

  • Boveris, A., Martino, E., and Stoppani, A. O. M., 1977, Evaluation of the horseradish peroxidase-scopoletin method for the measurements of hydrogen peroxide formation in biological systems. Anal. Biochem. 80:145–158.

    Article  CAS  PubMed  Google Scholar 

  • Cadenas, E., and Boveris, A., 1980, Enhancement of hydrogen peroxide formation by protophores and ionophores in antimycin-supplemented mitochondria, Biochem. J. 188:31–37.

    CAS  PubMed  Google Scholar 

  • Cadenas, E., Boveris, A., Ragan, C. I., and Stoppani, A. O. M, 1977, Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef heart mitochondria, Arch. Biochem. Biophys. 80:248–257.

    Google Scholar 

  • Chance, B., and Oshino, N., 1971, Kinetics and mechanisms of catalase in peroxisomes of the mitochondrial fraction, Biochem. J. 122:225–233.

    CAS  PubMed  Google Scholar 

  • Chance, B., and Williams, G. R., 1956, The respiratory chain and oxidative phosphorylation, Adv. Enzymol. 17:65–137.

    CAS  Google Scholar 

  • Chance, B., Jamieson, D., and Coles, H., 1965, Energy-linked pyridine nucleotide reduction: Inhibitory effects of hyperbaric oxygen in vitro and in vivo, Nature 206:257–263.

    CAS  PubMed  Google Scholar 

  • Chance, B., De Vault, D., Legallais, V, Mela, L., and Yonetani, T, 1967, Kinetics of electron transfer reactions in biological systems, in Fast Reactions and Primary Processes in Chemical Kinetics (S. Claesen, ed.), p. 437, Interscience, New York.

    Google Scholar 

  • Chance, B., Boveris, A., Oshino, N., and Loschen, G., 1971, The nature of the catalase intermediate in its biological function, in Oxidases and Related Redox Systems, Vol. I (T.E. King, H. S. Mason, and M. Morrison, eds.), pp. 350–353, University Park Press, Baltimore.

    Google Scholar 

  • Chance, B., Sies, H., and Boveris, A., 1979, Hydroperoxide metabolism in mammalian organs, Physiol. Rev. 59:527–605.

    CAS  PubMed  Google Scholar 

  • Costa, L. E., Boveris, A., Koch, O. R., and Taquini, A. C., 1988, Liver and heart mitochondria in rats submitted to chronic hypobaric hypoxia, Am. J. Physiol. 255:C123–C129.

    CAS  PubMed  Google Scholar 

  • Davies, K. J. A., Quintanilha, A. T, Brooks, G. A., and Packer, L., 1982, Free radicals and tissue damage produced by exercise, Biochem. Biophys. Res. Commun. 107:1198–1205.

    CAS  PubMed  Google Scholar 

  • de Duve, C., 1965, The separation and characterization of subcellular particles, Harvey Lect. Ser. 59:48–87.

    Google Scholar 

  • Dionisi, O., Terranova, T., and Azzi, A., 1975, Superoxide radicals and hydrogen peroxide formation in mitochondria from normal and neoplastic tissues, Biochim. Biophys. Acta 403:292–301.

    CAS  PubMed  Google Scholar 

  • Eanes, R. Z., and Kun, E., 1971, Separation and characterization of aconitase hydratase isoenzymes from pig tissues, Biochim. Biophys. Acta 227:204–210.

    CAS  PubMed  Google Scholar 

  • Forman, H. J., and Boveris, A., 1982, Superoxide and hydrogen peroxide in mitochondria, in Free Radicals in Biology, Vol. 5 (W. B. Pryor, ed.), pp. 65–90, Academic Press, New York.

    Google Scholar 

  • Forman, H., and Fridovich, I., 1973, Superoxide dismutase: A comparison of rate constants, Arch. Biochem. Biophys. 158:396–400.

    Article  CAS  PubMed  Google Scholar 

  • Forman, H. J., and Kennedy, J., 1976, Dihydroorotate-dependent superoxide production in rat brain and liver. A function of the primary dehydrogenase, Arch. Biochem. Biophys. 173:219.

    Article  CAS  PubMed  Google Scholar 

  • Fridovich, I., 1985, Cytochrome c, in CRC Handbook of Methods for Oxygen Radicals Research (R.A. Greenwald, ed.), pp.213–215, CRC Press, Boca Raton.

    Google Scholar 

  • Fridovich, I., and Handler, P., 1961, Detection of free radicals generated during enzymic oxidation by the initiation of sulfite oxidation, J. Biol. Chem. 236:1836–1840.

    CAS  PubMed  Google Scholar 

  • Gardner, P. R., and Fridovich, I., 1992, Inactivation-reactivation of aconitase in Escherichia coli, J. Biol. Chem. 267:8757–8763.

    CAS  PubMed  Google Scholar 

  • Gardner, P., and White, C. W., 1995, Application of the aconitase method to the assay of superoxide in the mitochondrial matrices of cultured cells: Effects of oxygen, redox-cycling agents, TNF-α 1L-1, LPS, and inhibitors of respiration, in The Oxygen Paradox (K. J. A. Davies and F. Ursini, eds.), pp. 33–50, Cleup University Press, Padova, Italy.

    Google Scholar 

  • Gerschman, R., 1964, Biological effects of oxygen. in Oxygen in the Animal Organism (F. Dickens, and E. Neil, eds.), pp. 475–494, Pergamon Press, Elmsford, NY.

    Google Scholar 

  • Gerschman, R., Gilbert, D. L., Nye, S. W., Dwyer, P., and Fenn, W. O., 1954, Oxygenpoisoning and X-irradiation: A mechanism in common, Science 119:623–626.

    CAS  PubMed  Google Scholar 

  • Giulivi, C., 1989, Metabolism of hydroperoxides in eukaryotic cells, Ph.D. dissertation, University of Buenos Aires, Argentina.

    Google Scholar 

  • Giulivi, C., and Cadenas, E., 1998, The role of mitochondrial glutathione in DNA base oxidation, Biochem. Biophys. Acta, in press.

    Google Scholar 

  • Giulivi, C., Boveris, A., and Cadenas, E., 1995, Hydroxyl radical generation during mitochondrial electron transfer and the formation of 8-hydroxydesoxyguanosine in mitochondrial DNA, Arch. Biochem. Biophys. 316:909–916.

    Article  CAS  PubMed  Google Scholar 

  • Glusker, J. P., 1971, Aconitase, in The Enzymes, Vol. V (P. D. Boyer, ed.), pp. 413–439, Academic Press, New York.

    Google Scholar 

  • Hackenbrock, C. R., 1968, Chemical and physical fixation of isolated mitochondria in low-energy and high-energy states, Proc. Natl. Acad. Sci. USA 61:598–605.

    Google Scholar 

  • Halliwell, B., and Gutteridge, J.M. C., 1989, in Free Radicals in Biology and Medicine, Oxford University Press (Clarendon), London.

    Google Scholar 

  • Kennedy, M. C., Emptage, M. H., Dreyer, J.-L., and Beinert, H., 1983, The role of iron in the activation-inactivation of aconitase. J. Biol. Chem. 258:11098–11105.

    CAS  PubMed  Google Scholar 

  • Ksenzenko, M., Konstantinov, A., Khomutov, G. B., Tikhonov, A. N., and Ruuge, E., 1983, Effect of electron transfer inhibitors on superoxide generation in the cytochrome bc1 site of the mitochondrial respiratory chain, FEBS Lett. 155:19–24.

    Article  CAS  PubMed  Google Scholar 

  • Lavoisier, A.L., 1783, Memoires de Mé decine et de Physique Mé dicale, Vol. 5, p. 569, Societe Royal de Medicine, Paris.

    Google Scholar 

  • Lehninger, A. L., 1964, Mitochondria in the intact cell, in The Mitochondrion: Molecular Basis of Structure and Function, pp. 17–40, Benjamin, New York.

    Google Scholar 

  • Loschen, G., Flohé, L., and Chance, B., 1971, Respiratory chain linked H2O2 production in pigeon heart mitochondria, FEBS Lett. 18:261–264.

    Article  CAS  PubMed  Google Scholar 

  • Loschen, G., Azzi, A., and Flohé, L., 1973, Mitochondrial H2O2 formation: Relationship with energy conservation. FEBS Lett. 33:84–88.

    Article  CAS  PubMed  Google Scholar 

  • Loschen, G., Azzi, A., Richter, C., and Flohé, L.,1974a, Superoxide radicals as precursors of mitochondrial hydrogen peroxide, FEBS Lett. 42:68–72.

    Google Scholar 

  • Loschen, G., Azzi, A., and Flohé, L., 1974b, Mitochondrial hydrogen peroxide formation, in Alcohol and Aldehyde Metabolizing Systems (R. G. Thurman, T. Yonetani, J. R. Williamson, and B. Chance, eds.), pp. 215–229, Academic Press, New York.

    Google Scholar 

  • Massa, E.M., and Giulivi, C., 1993, Alkoxyl and methyl radical formation during cleavage of tert-butylhydroperoxide by a mitochondrial membrane-bound, redox active pool of copper: An EPR study, Free Radical Biol. Med. 14:559–565.

    Article  CAS  Google Scholar 

  • McConkey, E. H., 1982, Molecular evolution, intracellular organization, and the quinary structure of proteins, Proc. Natl. Acad. Sci. USA 79:3236–3240.

    CAS  PubMed  Google Scholar 

  • Menzel, D. B., 1970, Toxicity of ozone, oxygen, and radiation, Annu. Rev. Pharmacol. 10:379–394.

    Article  CAS  PubMed  Google Scholar 

  • Morrison, J. F, 1954, The purification of aconitase, Biochem. J. 56:99–105.

    CAS  PubMed  Google Scholar 

  • Oshino, N., Chance, B., Sies, H., and Bûcher, T.,1973a, Therole of H2O2 generation in perfused rat liver and the reaction of catalase compound I and hydrogen donors, Arch. Biochem. Biophys. 154:117–131.

    Google Scholar 

  • Oshino, N., Oshino, R., and Chance, B., 1973b, The characteristics of the peroxidatic reaction of catalase in ethanol oxidation, Biochem. J. 131:555–563.

    CAS  PubMed  Google Scholar 

  • Oshino, N., Jamieson, D., Sugano, T, and Chance, B., 1975a, Optical measurement of the catalase-hydrogen peroxide intermediate (compound 1) in the liver of anaesthesized rats and its implication to hydrogen peroxide production in situ, Biochem. J. 146:67–77.

    CAS  PubMed  Google Scholar 

  • Oshino, N., Jamieson, D., and Chance, B., 1975b, The properties of hydrogen peroxide production under hyperoxic and hypoxic conditions of perfused rat liver, Biochem. J. 146:53–65.

    CAS  PubMed  Google Scholar 

  • Pedersen, S., Tata, J. R., and Ernster, E.,1963, Ubiquinone (coenzyme Q) and the regulation of basal metabolic rate by thyroid hormones, Biochim. Biophys. Ada 69:407–409.

    Google Scholar 

  • Priestley, J., 1794, The Discovery of Oxygen, Part 1, Alembic Club Reprints, No. 7, Simpkin, Marshall, Hamilton and Kent, London.

    Google Scholar 

  • Ragan, C. I., Cadenas, E., Boveris, A., and Stoppani, A. O. M., 1977, Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef heart mitochondria, Arch. Biochem. Biophys. 180:248–257.

    PubMed  Google Scholar 

  • Rich, P. A., Boveris, A., Bonner, W. D., Jr., and Moore, A. L., 1976, Hydrogen peroxide generation by the alternate oxidase of higher plants, Biochem. Biophys. Res. Commun. 71:695–703.

    CAS  PubMed  Google Scholar 

  • Richter, C., Park, J.-W., and Ames, B., 1988, Normal oxidative damage to mitochondrial and nuclear DNA is extensive, Proc. Natl. Acad. Sci. USA 85:6465–6467.

    CAS  PubMed  Google Scholar 

  • Ruzicka, F. J., and Crane, F. L., 1970, Quinone interaction with the respiratory chain-linked NADH dehydrogenase of beef heart mitochondria, Biochim. Biophys. Acta 223:71–85.

    CAS  Google Scholar 

  • Salminen, A., and Vihko, V., 1983, Lipid peroxidation in exercise myopathy, Exp. Mol. Pathol. 38:380–388.

    CAS  PubMed  Google Scholar 

  • Scheele, C. W.,1782, Chemische Abhandlungen von Luft und Feuer, 2nd ed., p. 132.

    Google Scholar 

  • Schnaitman, C., and Greenawalt, J. W., 1968, Enzymic properties of the inner and outer membranes of rat liver mitochondria, J. Cell Biol. 38:158–168.

    Article  CAS  PubMed  Google Scholar 

  • Sies, H., and Chance, B., 1970, The steady-state level of catalase compound I in isolated hemoglobin-free perfused rat liver, FEBS Lett. 11:172–176.

    Article  CAS  PubMed  Google Scholar 

  • Sies, H., Bûcher, T., Oshino, N, and Chance, B., 1973, Heme occupancy of catalase in hemoglobin-free perfused rat liver and isolated rat liver catalase, Arch. Biochem. Biophys. 154:106–116.

    Article  CAS  PubMed  Google Scholar 

  • Srere, P. A., 1980, The infrastructure of the mitochondrial matrix. Trends Biochem. Sci. 5:120–121.

    Article  CAS  Google Scholar 

  • Srere, P. A., 1982, The structure of the mitochondrial inner membrane-matrix compartment, Trends Biochem. Sci. 7:375–378.

    Article  CAS  Google Scholar 

  • Sugano, T., Oshino, N., and Chance, B., 1974, Mitochondrial functions under hypoxic conditions. The steady-states of cytochrome c reduction and of energy metabolism, Biochim. Biophys. Acta 347:340–358.

    CAS  PubMed  Google Scholar 

  • Thurman, R. G., Ley, H. G., and Scholz, R., 1972, Hepatic microsomal ethanol oxidation, hydrogen peroxide formation, and the role of catalase, Eur. J. Biochem. 25:420.

    Article  CAS  PubMed  Google Scholar 

  • Trounce, I., Byrne, E., and Marzuki, S., 1989, Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in ageing. Lancet 1:637–639.

    CAS  PubMed  Google Scholar 

  • Turrens, J. F., and Boveris, A., 1980, Generation of superoxide anion by the NADH-dehydrogenase of bovine heart mitochondria, Biochem. J. 191:421–427.

    CAS  PubMed  Google Scholar 

  • Tyler, D. D., 1975, Polarographic assay and intracellular distribution of superoxide dismutase in rat liver, Biochem. J. 147:493–504.

    CAS  PubMed  Google Scholar 

  • Tzagoloff, A., and Myers, A.M., 1986, Genetics of mitochondrial biogenesis, Annu. Rev. Biochem. 55:249–285.

    Article  CAS  PubMed  Google Scholar 

  • Villafranca, J. J., and Mildvan, A. S., 1971, The mechanism of aconitase action, J. Biol. Chem. 246:772–779.

    CAS  PubMed  Google Scholar 

  • von Jagow, G., and Link, T. A., 1986, Use of specific inhibitors on the mitochondrial bc1 complex, Methods Enzymol. 126:253–271.

    Google Scholar 

  • von Jagow, G., Link, T. A., and Ohnishi, T., 1986, Organization and function of cytochrome b and ubiquinone in the cristae membrane of beef heart mitochondria, J. Bioenerg. Biomembr. 18:157–179.

    Article  Google Scholar 

  • Wallace, D.C., 1992a, Diseases of the mitochondrial DNA, Annu. Rev. Biochem. 61:1175–1212.

    Article  CAS  PubMed  Google Scholar 

  • Wallace, D.C., 1992b, Mitochondrial genetics: A paradigm for aging and degenerative diseases? Science 256:628–632.

    CAS  PubMed  Google Scholar 

  • Yonetani, T., and Ray, G. S., 1965, Studies on cytochrome c peroxidase. I. Purification and some properties. J. Biol. Chem. 240:4503–4508.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Giulivi, C., Boveris, A., Cadenas, E. (2002). The Steady-State Concentrations of Oxygen Radicals in Mitochondria. In: Reactive Oxygen Species in Biological Systems. Springer, Boston, MA. https://doi.org/10.1007/0-306-46806-9_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-46806-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45756-2

  • Online ISBN: 978-0-306-46806-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics