Skip to main content

Sources and Effects of Reactive Oxygen Species in Plants

  • Chapter
  • 422 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam, A., Farkas, T, Somlyai, G., Hevesi, M., and Kiraly, Z., 1989, Consequence of O2 generation during a bacterially induced hypersensitive reaction in tobacco: Deterioration of membrane lipids, Physiol. Mol. Plant Pathol. 34:13–26.

    Article  CAS  Google Scholar 

  • Adam, A., Ersek, T., Barna, B., and Kiraly, Z., 1990, Role of oxidative stress in plants on the development of necrosis induced by pathogens, Radicals, Ions and Tissue Damage 1990:1–18.

    Google Scholar 

  • Adam, A. L., Bestwick, C. S., Galal, A. A., Manninger, K., Barna, B., and Mansfield, J. W., 1993, What is the putative source of free radical generation during hypersensitive response in plants?, in Oxygen Free Radicals and Scavengers in the Natural Sciences (G. Mozsik, I. Emerit, J. Feher, B. Matkovics, and A. Vineze, eds.), pp. 35–43, Akademiai Kiado, Budapest.

    Google Scholar 

  • Allen, R., 1995, Dissection of oxidative stress tolerance using transgenic plants, Plant Physiol. 107:1049–1054.

    CAS  PubMed  Google Scholar 

  • Anderson, A., Rogers, K., Tepper, C., Blee, K., and Cardon, J., 1991, Timing of molecular events following elicitor treatment of plant cells, Physiol. Mol. Plant Pathol. 38:1–13.

    CAS  Google Scholar 

  • Apostol, I., Heinstein, P. F., and Low, P. S., 1989, Rapid stimulation of an oxidative burst during elicitation of cultured plant cells, Plant Physiol. 90:109–116.

    CAS  Google Scholar 

  • Asada, K., 1994, Production and action of active oxygen species in photosynthetic tissues, in Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants (C. H. Foyer and P. M. Mullineaux eds.), pp. 77–105, CRC Press, Boca Raton.

    Google Scholar 

  • Asada, K., and Badger, M. R., 1984, Photoreduction of 18O2 and H218O2 with concomitant evolution of 16O2 in intact spinach chloroplasts: Evidence for scavenging of hydrogen peroxide by peroxidase, Plant Cell Physiol. 25:1169–1179.

    CAS  Google Scholar 

  • Atkinson, M. M., 1993, Molecular mechanisms of pathogen recognition by plants, Adv. Plant Pathol. 10:35–64.

    Google Scholar 

  • Auh, C., and Murphy, T., 1995, Plasma membrane redox enzyme is involved in the synthesis of superoxide and hydrogen peroxide by Phytophthora elicitor-stimulated rose cells, Plant Physiol. 107:1241–1247.

    CAS  PubMed  Google Scholar 

  • Badger, M. R., 1985, Photosynthetic oxygen exchange, Annu. Rev. Plant Physiol. 36:27–53.

    Article  CAS  Google Scholar 

  • Baker, C. J., and Orlandi, E. W., 1997, Active oxygen in plant pathogenesis, Annu. Rev. Phytopathol. 33:299–321.

    Google Scholar 

  • Baker, C. J., O’Neill, N. R., Keppler, L. D., and Orlandi, E. W., 1991, Early Responses during plant-bacteria interactions in tobacco cell suspensions, Phytopathology 81:1504–1507.

    Google Scholar 

  • Baker, C. J., Mock, N. M., Glazener, J. A., and Orlandi, E. W., 1993a, Recognition responses in pathogen/non-host and race/cultivar interactions involving soybean (Glycine max) and Pseudomonas syringae pathovars, Physiol. Mol. Plant Pathol. 43:81–94.

    Article  CAS  Google Scholar 

  • Baker, C. J., Orlandi, E. W., and Mock, N. M., 1993b, Harpin, an elicitor of the hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production in suspension cells, Plant Physiol. 102:1341–1344.

    CAS  PubMed  Google Scholar 

  • Baker, C. J., Harmon, G. L., Glazener, J. A., and Orlandi, E. W., 1995, A non-invasive technique for monitoring peroxidative and H2O2-scavenging activities during interactions between bacterial plant pathogens and suspension cells, Plant Physiol. 108:353–359.

    CAS  PubMed  Google Scholar 

  • Baker C. J., Orlandi E. W., Anderson A. J., 1997, Oxygen metsabolism in plant/bacteria interactions: Role of bacterial concentration and H2O2-scavenging in survival under biological and artificial oxidative stress, Physiol. Mol. Plant Pathol. 51:401–415.

    Article  CAS  Google Scholar 

  • Bao, W., O’Malley, D. M., Whetten, R., and Sederoff, R. R., 1993, A laccase associated with lignification in Loblolly pine xylem, Science 260:672–674.

    CAS  Google Scholar 

  • Bateman, D. F., and Bashman, H. G., 1976, Degradation of plant cell walls and membranes by microbial enzymes, in Encyclopedia of Plant Physiology New Series, Physiological Plant Pathology, Volume 4 (R. Heitefuss and P.H. Williams, eds.), pp. 316–355, Springer-Verlag, Berlin.

    Google Scholar 

  • Bilger, W., and Björkman, O., 1991, Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L., Planta 184:226.

    CAS  Google Scholar 

  • Bors, W., Langebartels, C., Michel, C., and Sandermann, H., Jr., 1989, Polyamines as radical scavengers and protectants against ozone damage, Phytochemistry 28:1589–1595.

    CAS  Google Scholar 

  • Bowler, C., Slooten, L., Vandenbranden, S., DeRycker, R., Botteman, J., Sybesma, C., Van Montagu, M., and Inze, D., 1991, Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants, EMBO J. 10(7):1723–1732.

    CAS  PubMed  Google Scholar 

  • Bradley, D. J., Kjellbom, P.,and Lamb, C. J.,1992, Elicitor-and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: A novel, rapid defense response, Cell 1970:21–30.

    Google Scholar 

  • Brisson, L. F., Tenhaken, R., and Lamb, C. J., 1994, Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance, Plant Cell 6(12):1703–1712.

    Article  CAS  PubMed  Google Scholar 

  • Chai, H. B., and Doke, N., 1987a, Superoxide anion generation: A response of potato leaves to infection with Phytophthora infestans, Physiol. Biochem. 77(5):645–649.

    CAS  Google Scholar 

  • Chai, H. B., and Doke, N., 1987b, Systemic activation of O2 generating reaction, superoxide dismutase, and peroxidase in potato plants in relation to induction of systemic resistance to Phytophthora infestans, Ann. Phytopathol. Soc. Japan 53(5):585–590.

    CAS  Google Scholar 

  • Chamulitrat, W., and Mason, R. P., 1989, Lipid peroxyl radical intermediates in the peroxidation of polyunsaturated fatty acids by lipoxygenase-Direct electron spin resonance investigations, J. Biol. Chem. 264:20968–20973.

    CAS  PubMed  Google Scholar 

  • Chandra, S., and Low, P., 1995, Role of phosphorylation in elicitation of the oxidative burst in cultured soybean cells, Proc. Natl. Acad. Sci. USA 92:4120–4123.

    CAS  PubMed  Google Scholar 

  • Chandra, S., Heinstein, P. F., and Low, P., 1996, Activation of phospholipase A by plant defense elicitors, Plant Physiol. 110:979–986.

    CAS  PubMed  Google Scholar 

  • Chen, Z., Silva, H., and Klessig, D. F., 1993, Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid, Science 262:1883–1886.

    CAS  PubMed  Google Scholar 

  • Czaninski, Y., Sachot, R. M., and Catesson, A. M., 1993, Cytochemical localization of hydrogen peroxide in lignifying cell walls, Ann. Bot. 72(6):547–550.

    Article  CAS  Google Scholar 

  • Davis, D., Merida, J., Legendre, L., Low, P. S., and Heinstein, P., 1993, Independent elicitation of the oxidative burst and phytoalexin formation in cultured plant cells, Phytochemistry 32(3):607–611.

    Article  CAS  Google Scholar 

  • Davis, K. R., Lyon, G. D., Darvill, A. G., and Albersheim, P., 1984, Host-pathogen interactions XXV. Endopolygalacturonic acid lyase from Erwinia carotovora elicits phytoalexin accumulation by releasing plant cell wall fragments, Plant Physiol. 74:52–60.

    CAS  Google Scholar 

  • Degousee, N., Triantaphylides, C., and Montillet, J.-L., 1994, Involvement of oxidative processes in the signalingmechanismsleading to the activation of glyceollin synthesis in soybean (Glycine max), Plant Physiol. 104:945–952.

    CAS  PubMed  Google Scholar 

  • del Rio, L. A., Sandalio, L. M., Palma, J. M., Bueno, P., and Corpas, F. J., 1992, Metabolism of oxygen radicals in peroxisomes and cellular implications, Free Radical Biol. Med. 13:557–580.

    Google Scholar 

  • Desikan, R., Hancock, J., Coffey, M., and Neill, S., 1996, Generation of active oxygen in elicited cells of Arabidopsis thaliana is mediated by a NADPH oxidase-like enzyme, FEBS Lett. 382:213–217.

    Article  CAS  PubMed  Google Scholar 

  • Devlin, W, S., and Gustine, D. L., 1992, Involvement of the oxidative burst in phytoalexin accumulation and the hypersensitive reaction, Plant Physiol. 100:1189–1195.

    CAS  Google Scholar 

  • Dodge, A. D., and Gillham, D. J., 1986, Methods for assessing the action of light-activated herbicides. (i) The assessment of lipid peroxidation, Aspects Appl. Biol. 11:97–104.

    Google Scholar 

  • Doke, N., 1983a, Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components, Physiol. Plant Pathol. 23:345–357.

    CAS  Google Scholar 

  • Doke, N., 1983b, Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal wall components of Phytophthora infestans and specific inhibition of the reaction by suppressors of hypersensitivity, Physiol. Plant Pathol. 23:359–367.

    CAS  Google Scholar 

  • Doke, N., 1985, NADPH-dependent O2 generation in membrane fractions isolated from wounded potato tubers inoculated with Phytophthora infestans, Physio0l. Plant Pathol. 27:311–322.

    CAS  Google Scholar 

  • Doke, N., and Ohashi, Y., 1988, Involvement of an O2 generating system in the induction of necrotic lesions on tobacco leaves infected with tobacco mosaic virus, Physiol. Mol. Plant Pathol. 32:163–175.

    CAS  Google Scholar 

  • Dwyer, S., Legendre, L., Heinstein, P., Low, P., and Leto, T., 1996, Plant and human neutrophil oxidative burst complexes contain immunologically related proteins, Biochim. Biophys. Acta Gen. Subj. 1289(2):231–237.

    Google Scholar 

  • El-Moshaty, F. I. B., Pike, S. M., Novacky, A. J., and Sehgal, O. P., 1993, Lipid peroxidation and superoxide production in cowpea (Vigna unguiculata) leaves infected with tobacco ringspot virus or southern bean mosaic virus, Physiol. Mol. Plant Pathol. 43:109–119.

    Article  CAS  Google Scholar 

  • Foyer, C. H., Descourvieres, P., and Kunert, K J., 1994, Protection against oxygen radicals: An important defense mechanism studied in transgenic plants. Plant Cell Environ. 17:507–523.

    CAS  Google Scholar 

  • Freebairn, H. T., 1957, Reversal of inhibitory effects of ozone on oxygen uptake of mitochondria, Science 126:303–304.

    CAS  PubMed  Google Scholar 

  • Freebairn, H. T., and Taylor, O. C., 1960, Prevention of plant damage from air-borne oxidizing agents. Proc. Am. Soc. Hortic. Sci. 76:693–699.

    CAS  Google Scholar 

  • Freudenberg, K., 1968, The constitution and biosynthesis of lignin, in Constitution and Biosynthesis of Lignin (K. Freudenberg and A. C. Neish, eds.), pp. 45–122, Springer-Verlag, Berlin.

    Google Scholar 

  • Glazener, J., Orlandi, E. W., Harmon, G. L., and Baker, C. J., 1991, An improved method for monitoring active oxygen in bacteria-treated suspension cells using luminol-dependent chemiluminescence, Physiol. Mol. Plant Pathol. 39:123–133.

    Article  CAS  Google Scholar 

  • Glazener, J., Orlandi, E., and Baker, C., 1996, The active oxygen response of cell suspensions to incompatible bacteria is not sufficient to cause hypersensitive cell death, Plant Physiol. 110:759–763.

    CAS  PubMed  Google Scholar 

  • Gomez, L., Braga, M., and Dietrich, S., 1994, Involvement of active oxygen species and peroxidases in phytoalexin production induced in soybean hypocotyls by an elicitor from a saprophytic fungus, J. Brazil. Assoc. Adv. Sci. 46(3):153–156.

    CAS  Google Scholar 

  • Gönner, M. V., and Schlösser, E., 1993, Oxidative stress in interactions between Avena saliva L. and Drechslera spp., Physiol. Mol. Plant Pathol. 42:221–234.

    Article  Google Scholar 

  • Good, N., and Hill., R., 1955, Photochemical reduction of oxygen in chloroplast preparations. II. Mechanisms of the reaction with oxygen, Arch. Biochem. Biophys. 57:355–366.

    Article  CAS  PubMed  Google Scholar 

  • Green, R., and Fluhr, R., 1995, UV-B-induced PR-1 accumulation is mediated by active oxygen species, Plant Cell 7:203–212.

    Article  CAS  PubMed  Google Scholar 

  • Gross, G. G., Janse, C., and Elstner, E. F.,1977, Involvementofmalate, monophenols, and the superoxide radical in H,O2 formation by isolated cell walls from horseradish (Armoracia lapathifolia Gilib), Planta 136:271–276.

    Google Scholar 

  • Haga, M., Kohno, Y., Iwata, M., and Sekizawa, Y., 1995. Superoxide anion generation in rice blade protoplasts with the blast fungus proteoglucomannan elicitor as determined by CLA-phenyl luminescence and its suppression by treating the elicitor with x-D-mannosidase, Biosci. Biotechnol. Biochem. 59(6):969–973.

    CAS  Google Scholar 

  • Halliwell, B., 1991, Oxygen radicals: Their formation in plant tissues and their role in herbicide damage, in Herbicides (N. R. Baker, and M. P. Percival, eds.), pp. 87–129, Elsevier, Amsterdam.

    Google Scholar 

  • Harkin, J. M., and Obst, J. R., 1973, Lignification in trees: Indication of exclusive peroxidase participation, Science 180:296–298.

    CAS  Google Scholar 

  • Herouart, D., Bowler, C., Willekens, H., Van Camp, W., Slooten, L., Van Montagu, M., and Inze, D., 1993, Genetic engineering of oxidative stress resistance in higher plants, Philos. Trans. R. Soc. London Ser. B 342: 235–240.

    CAS  Google Scholar 

  • Higuchi, T., 1985, Biosynthesis of lignin, in Biosynthesis and Biodegradation of Wood Components, (T. Higuchi, ed.), pp. 141–160, Academic Press, Orlando.

    Google Scholar 

  • Kangasjarvi, J., Talvinen, J., Utriainen, M., and Karjalainen, R., 1994, Plant defense systems induced by ozone, Plant Cell Environ. 17:783–794.

    CAS  Google Scholar 

  • Kawakita, K., and Doke, N., 1994, Involvement of a GTP-binding protein in signal transduction in potato tubers treated with the fungal elicitor from Phytophthora infestans. Plant Sci. 96:81–86.

    Article  CAS  Google Scholar 

  • Keppler, L. D., and Baker, C. J., 1989, Superoxide-initiated lipid peroxidation in a bacteria-induced hypersensitive reaction in tobacco cell suspensions, Phytopathology 79:555–562.

    CAS  Google Scholar 

  • Keppler, L. D., Atkinson, M. M.. and Baker, C. J., 1988, Association of “active oxygen” with induction of increased extracellular pH in tobacco suspension cultures by pectic oligosaccharides, Curr. Top Plant Biochem. Physiol. 7:230.

    Google Scholar 

  • Keppler, L. D., Baker, C. J., and Atkinson, M. M., 1989, Active oxygen production during a bacteria-induced hypersensitive reaction in tobacco suspension cells, Phytopathology 79:974–978.

    CAS  Google Scholar 

  • Kiraly, Z., El-Zahaby, H., Galal, A., Abdou, S., Adam, A., Barna, B., and Klement, Z., 1993, Effect of oxy free radicals on plant pathogenic bacteria and fungi and on some plant diseases, in Oxygen Free Radicals and Scavengers in the Natural Sciences (G. Mozsik, I. Emerit, J. Feher, B. Matkovics, and A. Vincze, eds.), pp. 9–19, Akademiai Kiado, Budapest.

    Google Scholar 

  • Legendre, L., Heinstein, P. F, and Low, P. S., 1992, Evidence for participation of GTP-binding proteins in elicitation of the rapid oxidativc burst in cultured soybean cells, J. Biol. Chem. 267:20140–20147.

    CAS  PubMed  Google Scholar 

  • Levine, A., Tenhaken, R., Dixon, R., and Lamb, C., 1994, H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response, Cell 79:583–593.

    Article  CAS  PubMed  Google Scholar 

  • Lindner, W. A., Hoffmann, C., and Grisebach, H., 1988, Rapid elicitor-induced chemiluminescence in soybean cell suspension cultures, Phytochemistry 27(8):250l–2503.

    Article  Google Scholar 

  • Low, P. S., and Dwyer, S. C., 1994, Comparison of the oxidative burst signaling pathways of plants and human neutrophils, Proc. 1994 Korean Bot. Soc. 1994:75–87.

    Google Scholar 

  • Low, P. S., and Merida, J., 1996, The oxidative burst in plant defense: Function and signal transduction. Physiol. Plant. 96:533–542.

    Article  CAS  Google Scholar 

  • Lupu, R., Grossman, S., and Cohen, Y., 1980, The involvement of lipoxygenase antioxidants in pathogenesis of powdery mildew on tobacco plants, Physiol. Plant Pathol. 16:241–248.

    CAS  Google Scholar 

  • Lynch, D. V., and Thompson, J. E., 1984, Lipoxygenase-mediated production of superoxide anion in senescing plant tissue, FEBS Lett. 173:251–254.

    Article  CAS  Google Scholar 

  • May, M. J., and Leaver, C. J., 1993, Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures, Plant Physiol. 103:621–627.

    CAS  PubMed  Google Scholar 

  • Mehler, A. H., 1951, Studies on reactions of illuminated chloroplasts. II. Stimulation and inhibition of the reaction with molecular oxygen, Arch. Biochem. Biophys. 34:339–351.

    Article  CAS  Google Scholar 

  • Mehlhorn, H., and Wellburn, A. R., 1994, Man-induced causes of free radical damage to plants: O3 and other gaseouspollutants, in Causes of Photooxidative Stress and Ameliorationof Defense Systems inPlants, (C. H. Foyer and P. M. Mullineaux, eds.), pp. 155–175, CRC Press, Boca Raton.

    Google Scholar 

  • Mehlhorn, H., Tabner, B. J., and Wellburn, A. R., 1990, Electron spin resonance evidence for the formation of free radicals in plants exposed to ozone, Physiol. Plant. 79:377–383.

    Article  CAS  Google Scholar 

  • Minardi, P., and Mazzucchi, U., 1988, No evidence of direct superoxide anion effect in hypersensitive death of Pseudomonas syringae Van Hall in tobacco leaf tissue, J. Phytopathol. 122:351–358.

    CAS  Google Scholar 

  • Montalbini, P., 1992, Inhibition of hypersensitive response by allopurinol applied to the host in the incompatible relationship between Phaseolus vulgaris and Uromyces phaseoli, J. Phytopathol. 134:218–228.

    CAS  Google Scholar 

  • Montillet, J. F., and Degousee, N., 1991, Hydroperoxides induce glyceollin accumulation in soybean, Plant Physiol. Biochem. 29(6):689–694.

    CAS  Google Scholar 

  • Moran, J. F., Becana, M., Iturbe-Ormaetxe, I., Frechilla, S., Klucas, R. V., and Aparicio-Tejo, P., 1994, Drought induces oxidative stress in pea plants, Planta 194(3):346–352.

    Article  CAS  Google Scholar 

  • Nakamura, W., 1967, Studies on the biosynthesis of lignin. I. Disproof against the catalytic activity of laccase in the oxidation of coniferyl alcohol, J. Biochem. 62:54–61.

    CAS  PubMed  Google Scholar 

  • Neuenschwander, U., Vernooij, B., Friedrich, L., Uknes, S., Kessmann, H., and Ryals, J., 1995, Is hydrogen peroxide a second messenger of salicylic acid in systemic acquired resistance? Plant J. 8(2):227–233.

    Article  CAS  Google Scholar 

  • Olson, P. D., and Varner, J. E., 1993, Hydrogen peroxide and lignification, Plant J. 4(5):887–892.

    Article  CAS  Google Scholar 

  • Osmond, C. B., and Grace, S. C., 1995, Perspectives on photoinhibition and photorespiration in the field: Quintessential inefficiencies of the light and dark reactions of photosynthesis? J. Exp. Bot. 46:1351–1362.

    CAS  Google Scholar 

  • Ouf, M. P., Gazar, A. A., Shehata, Z. A., Abdou, E. S., Kiraly, Z., and Barna, B., 1993, The effect of superoxide anion on germination and infectivity of wheat stem rust (Puccinia graminis Pers. f. sp. tritici Eriks and Henn.) uredospores, Cereal Res. Commun. 21(l):31–37.

    CAS  Google Scholar 

  • Palma, J. M., Garrido, M., Rodriguez-Garcia, M. I., and del Rio, L. A., 1991, Peroxisome proliferation and oxidative stress mediated by activated oxygen species in plant peroxisomes. Arch. Biochem. Biophys. 287:68–74.

    Article  CAS  PubMed  Google Scholar 

  • Pastori, G. M., and del Rio, L. A., 1994, An activated-oxygen-mediated role for peroxisomes in the mechanism of senescence of Pisum sativum L. leaves, Planta 193:385–391.

    Article  CAS  Google Scholar 

  • Peng, M., and Kuc, J., 1992, Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks, Phytopathology 82:696–699.

    CAS  Google Scholar 

  • Price, A. H., Atherton, N., and Hendry, G. A. F., 1989, Plants under drought stress generate active oxygen. Free Radical Res. Commum. 8:61–66.

    CAS  Google Scholar 

  • Qian, Y.-C., Nguyen, T., and Murphy, T. M, 1993, Effect of washing on the plasma membrane and on stress reactions of cultured rose cells, Plant Cell Tissue Organ Culture 35:245–252.

    Article  Google Scholar 

  • Rennenberg, H., and Polle, A., 1994, Protection from oxidative stress in transgenic plants, Biochem. Soc. Trans. 22(4):936–940.

    CAS  PubMed  Google Scholar 

  • Rüffer, M., Steipe, B., and Zenk, M., 1995, Evidence against specific binding of salicylic acid to plant catalase, FEBS Lett. 377:175–180.

    Article  PubMed  Google Scholar 

  • Rusterucci, C., Stallaert, V., Milat, M.-L., Pugin, A., Ricci, P., and Blein, J.-P, 1996, Relationship between active oxygen species, lipid peroxidation, necrosis, and phytoalexin production induced by elicitins in Nicotiana, Plant Physiol. 111:885–891.

    CAS  PubMed  Google Scholar 

  • Sandalio, L. M., Palma, J. M., and del Rio, L. A., 1987, Localization of manganese superoxide dismutase in peroxidsomes isolated from Pisum sativum L., Plant Sci. 51:1–8.

    Article  CAS  Google Scholar 

  • Sandalio, L. M., Fernandez, V. M., Ruperez, F. L., and del Rio, L. A., 1988, Superoxide free radicals are produced in glyoxisomes. Plant Physiol. 87:1–4.

    CAS  Google Scholar 

  • Schwacke, R., and Hager, A., 1992, Fungal elicitors induce a transient release of active oxygen species from cultured spruce cells that is dependent on Ca2+ and protein-kinase activity, Planta 187:136–141.

    Article  CAS  Google Scholar 

  • Sen Gupta, A., Webb, R., Holaday, A., and Alien, R. D., 1993, Overexpression of superoxide dismutase protects plants from oxidative stress. Plant Physiol. 103:1067–1073.

    CAS  Google Scholar 

  • Shaaltiel, Y., Glazer, A., Bocion, P. F., and Gressel, J., 1988, Cross tolerance to herbicidal and environmental oxidants of plant biotypes tolerant to paraquat, sulfur dioxide, and ozone, Pestic. Biochem. Physiol. 31:13–23.

    Article  CAS  Google Scholar 

  • Smirnoff, N., 1993, The role of active oxygen in the response of plants to water deficit and desiccation, New Phytol. 125:27–58.

    CAS  Google Scholar 

  • Sonike, K., 1996, Photoinhibition of photosystem I: Its physiological significance in the chilling sensitivity of plants, Plant Cell Physiol. 37:239–247.

    Google Scholar 

  • Sterjiades, R., Dean, J. F. D., and Eriksson, K. E. L., 1992, Laccase from sycamore maple (Acer pseudoplatanus) polymerizes monolignols, Plant Physiol. 99:1162–1168.

    CAS  Google Scholar 

  • Takahashi, M., and Asada, K., 1988, Superoxide production in aprotic interior of chloroplast thylakoids, Arch. Biochem. Biophys. 267:714–722.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, M., Kono, Y., and Asada, K., 1980, Reduction of plastocyanin with superoxide and superoxide dismutase-dependent oxidation of plastocyanin by hydrogen peroxide, Plant Cell Physiol. 21:1431–1438.

    CAS  Google Scholar 

  • Tenhaken, R., Levine, A., Brisson, L., Dixon, R., and Lamb, C., 1995, Function of the oxidative burst in hypersensitive disease resistance, Proc. Natl. Acad. Sci. USA 92:4158–4163.

    CAS  PubMed  Google Scholar 

  • Thompson, J. E., Brown, J. H., Paliyath, G., Todd, J. F, and Yao, K., 1991., Membrane phospholipid catabolism primes the production of activated oxygen in senescing tissues, in Active Oxygen/Oxidative Stress and Plant Metabolism. (E. Pell and K. Steffen, eds.), pp. 57–66, American Society Of Plant Physiologists, Rockville.

    Google Scholar 

  • Tolbert, N. E., 1981, Metabolic pathways in peroxisomes and glyoxysomes, Annu. Rev. Biochem. 50:133–157.

    Article  CAS  PubMed  Google Scholar 

  • Viard, M.-P, Martin, F., Pugin, A., Ricci, P., and Blein, J.-P, 1994, Protein phosphorylation is induced in tobacco cells by the elicitor cryptogein, Plant Physiol. 104:1245–1249.

    CAS  PubMed  Google Scholar 

  • Wojtaszek, P., Trethowan, J., and Bolwell, G. P., 1995, Specificity in the immobilization of cell wall proteins in response to different elicitor molecules in suspension-cultured cells of French bean (Phaseolus vulgaris L.), Plant Mol. Biol. 28:1075–1087.

    Article  CAS  PubMed  Google Scholar 

  • Wu, G., Shortt, B., Lawrence, E., Levine, E. B., and Fitzsimmons, K. C., 1995, Disease resistance conferred by expression of a gene encoding H2O2 glucose oxidase in transgenic potato plants, Plant Cell 7:1357–1368.

    CAS  PubMed  Google Scholar 

  • Yahraus, T., Chandra, S., Legendre, L., and Low, P. S., 1995, Evidence for a mechanically induced oxidative burst, Plant Physiol. 109:1259–1266.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Baker, C.J., Orlandi, E.W. (2002). Sources and Effects of Reactive Oxygen Species in Plants. In: Reactive Oxygen Species in Biological Systems. Springer, Boston, MA. https://doi.org/10.1007/0-306-46806-9_18

Download citation

  • DOI: https://doi.org/10.1007/0-306-46806-9_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45756-2

  • Online ISBN: 978-0-306-46806-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics