Skip to main content

The Chemical Biology of Nitric Oxide

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu-Soud, H. M., Wang, J., Rousseau, D. L., Fukuto, J. M., Ignarro, L. J., and Stuchr, D. J. 1995, Neuronal nitric oxide synthase self-inactivates by forming a ferrous-nitrosyl complex during aerobic catalysis, J. Biol. Chem. 270:22997–23006.

    CAS  PubMed  Google Scholar 

  • Adams, M. L., Nock, B., Truong, R., and Cicero, T. J., 1992, Nitric oxide control of steroidogenesis: Endocrine effects of NG-nitro-L-arginine and comparisons to alcohol, Life Sci. 50:PL35–40.

    Article  CAS  PubMed  Google Scholar 

  • Antonini, E., and Brunori, M., 1971, The derivatives of ferrous hemoglobin and myoglobin, Frontiers Biol. 21:31–33.

    Google Scholar 

  • Arroyo, P. L., Hatch-Pigott, V, Mower, H. F., and Cooney, R. V., 1992, Mutagenicity of nitric oxide and its inhibition by antioxidants, Mutat. Res. 281:193–202.

    Article  CAS  PubMed  Google Scholar 

  • Bastian, N., Yim, C. Y., Hibbs, J. B., and Samlowski, W. E., 1994, Induction of iron-derived ESR signals in murine cancers by nitric oxide: Evidence for multiple intracellular targets, J. Biol. Chem. 269:5127–5131.

    CAS  PubMed  Google Scholar 

  • Bates, T. E., Loesch, A., Burnstock, G., and Clark, J. B., 1996, Mitochondrial nitric oxide synthase: A ubiquitous regulator of oxidative phosphorylation? Biochem. Biophys. Res. Commun. 218:40–44.

    Article  CAS  PubMed  Google Scholar 

  • Bazylinkski, D. A., and Hollocher, T. C., 1985, Metmyoglobin and methemoglobin as efficient traps for nitrosyl hydride (nitroxyl) in neutral aqueous solution, J. Am. Chem. Soc. 107:7982–7986.

    Google Scholar 

  • Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. H., and Freeman, B. A., 1990, Apparent hydroxyl radical production by peroxylnitrites: Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA 87:1620–1624.

    CAS  PubMed  Google Scholar 

  • Beckman, J. S., Ischiropoulos, H., Zhu, L., van der Woerd, M., Smith, C., Chen, J., Harrison, J., Martin, J. C., and Tsai, M., 1992, Kinetics of superoxide dismutase-and iron-catalyzed nitration of phenolics by peroxynitrite, Arch. Biochem. Biophys. 298:438–445.

    Article  CAS  PubMed  Google Scholar 

  • Beckman, J. S., Chen, J., Ischiropoulos, H., and Crow, J. P., 1994a, Oxidative chemistry of peroxynitrite, Methods Enzymol. 233:229–240.

    CAS  PubMed  Google Scholar 

  • Beckman, J. S., Ye, Y. Z., Anderson, J., Chen, M. A., Accavitti, M. A., Tarpey, M. M., and White, C. R., 1994b, Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry, Biol. Chem. Hoppe-Seyler 375:81–88.

    Google Scholar 

  • Bonner, F. T., and Akhtar, M. J., 1981, Formation of nitrosyltricyanonickelate in a direct NO-displacement reaction, Inorg. Chem. 20:3155–3160.

    Article  CAS  Google Scholar 

  • Bonner, F. T., and Pearsall, K. A., 1982, Aqueous nitrosyliron(II) chemistry, 1. Reduction of nitrite and nitric oxide by iron(II) and (trioxodinitrato)iron(II) in acetate buffer. Intermediacy of nitrosyl hydride, Inorg. Chem. 21:1973–1978.

    Article  CAS  Google Scholar 

  • Bonner, F. T., and Ravid, B., 1975, Thermal decomposition of oxyhyponitrite (sodium trioxodinitrate(II)) in aqueous solution, Inorg. Chem. 14:558–563.

    Article  CAS  Google Scholar 

  • Bonner, F. T., and G. Stedman, 1996, The chemistry of nitric oxide and redox-related species, in Methods in Nitric Oxide Research (M. Feelisch and J. Stamler, eds.), pp. 13–18, Wiley, New York.

    Google Scholar 

  • Bouton, C., Raveau, M., and Drapier, J. C., 1996, Modulation of iron regulatory protein function. Further roles of nitrogen and oxygen-derived reactive species, J. Biol. Chem. 271:2300–2306.

    CAS  PubMed  Google Scholar 

  • Bredt, D. S., Hwang, P. M., and Snyder, S. H., 1990, Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770.

    Article  CAS  PubMed  Google Scholar 

  • Bredt, D. S., Glatt, C E., Hwang, P. M., Fotuhi, M., Dawson, T. M., and Snyder, S. H., 1991, Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase, Neuron 7:615–624.

    Article  CAS  PubMed  Google Scholar 

  • Brown, G. C., 1995a, Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase, FEBS Lett. 369: 136–139.

    Article  CAS  PubMed  Google Scholar 

  • Brown, G. C., 1995b, Reversible binding and inhibition of catalase by nitric oxide, Eur. J. Biochem. 232:188–191.

    Article  CAS  PubMed  Google Scholar 

  • Brown, G. C., Bolanos, J. P., Heale, S. J., and Clark, J. B., 1995, Nitric oxide produced by activated astrocytes rapidly and reversibly inhibits cellular respiration, Neurosci. Lett. 193:201–204.

    Article  CAS  PubMed  Google Scholar 

  • Brunelli, L., Koppenol, W. H., Bertolini, A., and Beckman, J. S., 1994, Catalase can scavenge nitric oxide, Circulation 90:A2461

    Google Scholar 

  • Burstyn, J. N., Yu, A. E., Dierks, E. A., Hawkins, B. K., and Dawson, J. H. 1995, Studies of the heme coordination and ligand binding properties of soluble guanylyl cyclase (sGC): Characterization of Fe(Il)sGC and Fe(II)sGC(CO) by electronic absorption and magnetic circular dichroism spectroscopies and failure of CO to activate the enzyme, Biochemistry 34:5896–5903.

    Article  CAS  PubMed  Google Scholar 

  • Buxton, G. V, Greenstock, C. L., Helman, W. P., and Ross, A. B., 1988, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution, J. Phys. Chem. Ref. Data 17:513–886.

    CAS  Google Scholar 

  • Cassina, A., and Radi, R., 1996, Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport, Arch. Biochem. Biophys. 328:309–316.

    Article  CAS  PubMed  Google Scholar 

  • Castro, L., Rodrigue, M., and Radi, R., 1994, Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide, J. Biol. Chem. 269:29409–29415.

    CAS  PubMed  Google Scholar 

  • Cayatte, A. J., Palacino, J. J., Horten, K., and Cohen, R. A., 1994, Chronic inhibition of nitric oxide production accelerates neointima formation and impairs endothelial function in hypercholesterolemic rabbits, Arterioscler. Thromb. 14:753–759.

    CAS  PubMed  Google Scholar 

  • Chen, L. Y., Lawson, D. L., and Mehta, J. L., 1994, Reduction in human neutrophil superoxide anion generation by n-3 polyunsaturated fatty acids: Role of cyclooxygenase products and endothelium-derived relaxing factor, Thromb. Res. 76:317–322.

    Article  CAS  PubMed  Google Scholar 

  • Clancy, R. M., Leszczynska-Piziak, J., and Abramson, S. B., 1992, Nitric oxide, an endothelial cell relaxation factor, inhibits neutrophil superoxide anion production via a direct action on the NADPH oxidase, J. Clin. Invest. 90: 1116–121.

    CAS  PubMed  Google Scholar 

  • Clarkson, R. B., Norby, S. W., Boyer, S., Vahdi, N., Smirnov, A., Nims, R. W., and Wink, D. A., 1995, Direct observation of the kinetics of accumulation and disappearance of nitric oxide within the Chinese hamster ovary cells using a novel intracellular electron paramagnetic resonance technique, Biochim. Biophys. Acta 1243:496–502.

    PubMed  Google Scholar 

  • Cleeter, M. W., Cooper, J. M, Darley-Usmar, V. M., Moncada, S., and Schapira, A. H., 1994, Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases, FEBS Lett. 345:50–54.

    Article  CAS  PubMed  Google Scholar 

  • Cook, J. A., Wink, D. A., Blount, V., Krishna, M. C., and Hanbauer, I., 1996, Effects of nitric oxide on the uptake mechanisms of dopamine. Insights into potential mechanisms of NO-mediated neurotoxicity, Neurochem. Int. 516:609–617.

    Google Scholar 

  • Corbett, J. A., Kwon, G., Turk, J., and McDaniel, M. L., 1993, IL-1 beta induces the coexpression of both nitric oxide synthase and cyclooxygenase by islets of Langerhans: Activation of cyclooxygenase by nitric oxide, Biochemistry 32:13767–13770.

    CAS  PubMed  Google Scholar 

  • Cosentino, F., Sill, J. C., and Katusie, Z. S., 1994, Role of superoxide anions in the mediation of endothelium-dependent contractions, Hypertension 23:229–235.

    CAS  PubMed  Google Scholar 

  • Cotton, F. A., and Wilkinson, G., eds., 1988, Advanced Inorganic Chemistry, Wiley, New York.

    Google Scholar 

  • Culotta, E., and Koshland, D. E., 1992, NO, news is good news, Science 258:1862–1865.

    CAS  PubMed  Google Scholar 

  • Davidge, S. T., Baker, P. N., Laughlin, M. K., and Roberts, J. M., 1995, Nitric oxide produced by endothelial cells increases production of eicosanoids through activation of prostaglandin H synthase, Circ. Res. 77:274–283.

    CAS  PubMed  Google Scholar 

  • Deinum, G., Stone, J. R., Babcock, G. T., and Marietta, M. A., 1996, Binding of nitric oxide and carbon monoxide to soluble guanylate cyclase as observed with resonance Raman spectroscopy, Biochemistry 35:1540–1547.

    CAS  PubMed  Google Scholar 

  • DeMaster, E. G., Quasi, B. J., Redfern, B., and Nagasawa, H. T., 1995, Reaction of nitric oxide with the free sulfhydryl group of human serum albumin yields a sulfenic acid and nitrous oxide, Biochemistry 34:11494–11499.

    Article  CAS  PubMed  Google Scholar 

  • deRojas-Walker, T., Tamir, S., Ji, H., Wishnok, J. S., and Tannenbaum, S. R., 1995, Nitric oxide induces oxidative damage in addition to deamination in macrophagc DNA, Chem. Res. Toxicol. 8:473–477.

    Article  CAS  PubMed  Google Scholar 

  • DeRubertis, F. R., Craven, P. A., and Pratt, D. W., 1978, Electron spin resonance study of the role of nitrosyl-heme in the activation of guanylate cyclase by nitrosoguanidine and related agonists, Biochem. Biophys. Res. Commim. 83:158–167.

    CAS  Google Scholar 

  • Doyle, M. P., and Hoekstra, J. W., 1981, Oxidation of nitrogen oxide by bound dioxygen in hemoproteins, J. Inorg. Biochem. 14:351–356.

    Article  CAS  PubMed  Google Scholar 

  • Doyle, M. P.and Mahapatro, S. N., 1984, Nitric oxide dissociation from trioxodinitrate(II) in aqueous solution, J. Am. Chem. Soc. 106:3678–3679.

    Article  CAS  Google Scholar 

  • Doyle, M. P., Mahapatro, S. N., Broene, R. D., and Guy, J. K., 1988, Oxidation and reduction of hemoproteins by trioxodinitrate(II). The role of nitrosyl hydride and nitrite, J. Am. Chem. Soc. 110:593–599.

    CAS  Google Scholar 

  • Drapier, J. C., and Bouton, C., 1996, Modulation by nitric oxide of metalloprotein regulatory activities, BioEssay 18:1–8.

    Google Scholar 

  • Drapier, J. C., Pellat, C., and Henry, Y, 1991, Generation of EPR detectable nitrosyl-iron complexes in tumor target cells cocultured with activated macrophage, J. Biol. Chem. 269:5127–5131.

    Google Scholar 

  • Drapier, J. C., Hirling, H., Wietzerbin, J., Kaildy, P., and Kuhn, L. C., 1993, Biosynthesis of nitric oxide activates iron regulatory factor in macrophages, EMBO J. 12:3643–3649.

    CAS  PubMed  Google Scholar 

  • Edwards, J. C., Barry, B. K., Gruetter, D. Y, Ohlstein, E. H., Baricos, W. H., and Ignarro, L. J., 1981, Activation of hepatic guanylate cyclase by nitrosyl-heme complexes. Comparison of unpurified and partially purified enzyme, Biochem. Pharmacol. 30:2531–2538.

    Article  CAS  PubMed  Google Scholar 

  • Epstien, I. R., Kustin, K., and Warshaw, L. J., 1980, A kinetic study of the oxidation of iron(II) by nitric acid, J. Am. Chem. Soc. 102:3751–3757.

    Google Scholar 

  • Farias-Eisner, R., Chaudhuri, G., Aeberhard, E., and Fukuto, J. M., 1996, The chemistry and tumoricidal activity of nitric-oxide hydrogen-peroxide and the implications to cell resistance susceptibility, J. Biol. Chem. 271:6144–6151.

    CAS  PubMed  Google Scholar 

  • Feelisch, M., 1991, The biochemical pathways of nitric oxide formation from nitrovasodilators: Appropriate choice of exogenous NO donors and aspects of preparation and handling of aqueous NO solutions, J. Cardiovusc. Pharmacol. 17:S25–S33.

    CAS  Google Scholar 

  • Feelisch, M., and Noack, H., 1987, Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase, Eur. J. Pharmacol. 139:19–30.

    Article  CAS  PubMed  Google Scholar 

  • Feelisch, M., and Stamler, J. S., 1996, Donors of nitrogen oxides, in Methods in Nitric Oxide Research (M. Feelisch and J. Stamler, eds.), pp. 71–118, Wiley, New York.

    Google Scholar 

  • Feelisch, M., Noack, E., and Schroder, H., 1988, Explanation of the discrepancy between the degree of organic nitrate decomposition, nitrite formation and guanylate cyclase stimulation, Eur. Heart J. Suppl A:57–62.

    Google Scholar 

  • Feelisch, M., te Pool, M., Zamora, R., Deussen, A., and Moncada, S., 1994, Understanding the controversy over the identity of EDRF, Nature 368:62–64.

    Article  CAS  PubMed  Google Scholar 

  • Feldman, P. L., Griffith, O. W., and Stuehr, D. J., 1993, The surprising life of nitric oxide, Chem. Eng. News 71:26–38.

    CAS  Google Scholar 

  • Floris, R., Piersma, S. R., Yang, G., Jones, P., and Wever, R., 1993, Interaction of myeloperoxidase with peroxynitrite. A comparison with lactoperoxidase, horse radish peroxidase and catalase, Eur. J. Biochem. 215:767–775.

    Article  CAS  PubMed  Google Scholar 

  • Ford, P. C, Wink, D. A., and Stanbury, D. M., 1993, Autoxidation kinetics of aqueous nitric oxide, FEBS Lett. 326:1–3.

    Article  CAS  PubMed  Google Scholar 

  • Forstermann, U., Gorsky, L. D., Pollock, J. S., Schmidt, H. H. H. W., Heller, M., and Murad, F., 1990, Regional distribution of EDRF/NO-synthesizing enzyme(s) in rat brain, Biochem. Biophys. Res. Commun. 168:727–732.

    Article  CAS  PubMed  Google Scholar 

  • Fukuto, J. M., Hobbs, A. J, and Ignarro, L. S., 1993, Coversion of nitroxyl (HNO) to nitric oxide (NO) in biological systems: The role of physiological oxidants and relevance to the biological activity of HNO, Biochem. Biophys. Res. Commun. 196:707–713.

    Article  CAS  PubMed  Google Scholar 

  • Furchgott, R. F., and Vanhoutte, P. M., 1989, Endothelium-derived relaxing and contracting factors, FASEB J. 3:2007–2018.

    CAS  PubMed  Google Scholar 

  • Furchgott, R. F., and Zawadzki, J. V., 1980, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine, Nature 288:373–376.

    Article  CAS  PubMed  Google Scholar 

  • Garthwaite, J., Charles, S. L., and Chess-Williams, R., 1988, Endothelium-derived relaxing factor release on activation of NMDA receptors suggests a role as intercellular messenger in the brain, Nature 336:385–388.

    Article  CAS  PubMed  Google Scholar 

  • Gaston, B., Reilly, J., Drazen, J. M., Fackler, J., Ramdev, P., Arnelle, D., Mullins, M. E., Sugarbaker, D. J., Chee, C., Singel, D. J., Loscalzo, J., and Stamler, J. S., 1993, Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways, Proc. Natl. Acad. Sci. USA 90:10957–10961.

    CAS  PubMed  Google Scholar 

  • Geng, Y, Hansson, G. K., and Holme, E., 1992, Interferon-gamma and tumor necrosis factor synergize to induce nitric oxide production and inhibit mitochondrial respiration in vascular smooth muscle cells, Circ. Res. 71:1268–1276.

    CAS  PubMed  Google Scholar 

  • Gerzer, R., Bohme, E., Hofmann, F., and Schultz, G., 1981a, Soluble guanylate cyclase purified from bovine lung contains heme and copper, FEBS Lett. 132:71–74.

    Article  CAS  PubMed  Google Scholar 

  • Gerzer, R., Hofmann, F, and Schultz, G., 1981b, Purification of a soluble, sodium-nitroprusside-stimulated guanylate cyclase from bovine lung, Eur. J. Biochem. 116:479–486.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein, S., and Czapski, G., 1995, Kinetics of nitric oxide autoxidation in aqueous solution in absence and presence of various reductants. The nature of the oxidizing intermediates, J. Am. Chem. Soc. 117:12078–12088.

    Article  CAS  Google Scholar 

  • Gorbunov, N. V., Osipov, A. N., Day, B. W., Zayas-Rivera, B., Kagan, V. E., and Elsayed, N. M., 1995, Reduction of ferrylmyoglobin and ferrylhemoglobin by nitric oxide: A protective mechanism against ferryl hemo-protein-induced oxidations, Biochemistry 34:6689–6699.

    Article  CAS  PubMed  Google Scholar 

  • Gow, A., Duran, D., Thom, S. R., and Ischiropoulos, H., 1996, Carbon dioxide enhancement of peroxynitrite-mediated protein tyrosine nitration, Arch. Biochem. Biophys. 333:42–48.

    Article  CAS  PubMed  Google Scholar 

  • Gratzel, M., Taniguchi, S., and Henglein, A., 1970, Pulsradiolytische Untersuchung kurzlebiger zwischenprodukte der NO-reduktion in wassriger losung, Ber. Bunsenges. Phys. Chem. 74:292–297.

    Google Scholar 

  • Green, L. C., Ruiz de Luzuriaga, K., Wagner, D. A., Rand, W., Istfan, N., Young, V. R., and Tannenbaum, S. R., 1981, Nitrate biosynthesis in man, Proc. Natl. Acad. Sci. USA 78:7764–7768.

    CAS  PubMed  Google Scholar 

  • Griffith, O. W., and Stuehr, D. J., 1995, Nitric oxide synthases: Properties and catalytic mechanism, Annu. Rev. Physiol. 57:707–736.

    Article  CAS  PubMed  Google Scholar 

  • Griscavage, J. M., Fukuto, J. M., Komori, Y., and Ignarro, L. J., 1994, Nitric oxide inhibits neuronal nitric oxide synthase by interacting with the heme prosthetic group. Role of tetrahydrobiopterin in modulating the inhibitory action of nitric oxide, J. Biol. Chem. 269:21644–21649.

    CAS  PubMed  Google Scholar 

  • Griscavage, J. M., Hobbs, A. J., and Ignarro, L. J., 1995, Negative modulation of nitric oxide synthase by nitric oxide and nitroso compounds, Adv. Pharmacol. 34:215–234.

    CAS  PubMed  Google Scholar 

  • Gnsham, M. B., and Everse, J., 1991, Prooxidant activity of hemoglobin and myoglobin, in Peroxidases in Chemistry and Biology, Vol. I (J. Evers, K. E. Evers, and M. B. Grisham, eds.), pp. 335–344, Wiley, New York.

    Google Scholar 

  • Grisham, M. B., and Miles, A. M., 1994, Effects of aminosalicylates and immunosuppressive agents on nitric oxide dependent N-nitrosation reactions, Biochem. Pharmacol. 47:1897–1902.

    Article  CAS  PubMed  Google Scholar 

  • Halliwell, B., and Gutteridge, J. M. C., 1986, Oxygen free radicals and iron in relation to biology and medicine: Some problems and concepts, Arch. Biochem. Biophys. 246:501–514.

    Article  CAS  PubMed  Google Scholar 

  • Halliwell, B., and Gutteridge, J. M. C., 1989a, in Free Radicals in Biology and Medicine, pp. 210–211, Oxford University Press (Clarendon), London.

    Google Scholar 

  • Halliwell, B., and Gutteridge, J. M. C., 1989b, in Free Radicals in Biology and Medicine, pp. 416–509, Oxford University Press (Clarendon), London.

    Google Scholar 

  • Hausladen, A., and Fridovich, I., 1994, Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not, J. Biol. Chem. 269:29405–29408.

    CAS  PubMed  Google Scholar 

  • Hayashi, K., Noguchi, N., and Niki, E., 1995, Action of nitric oxide as an antioxidant against oxidation of soybean phosphatidylcholine liposomal membranes, FEBS Lett. 370:37–40.

    Article  CAS  PubMed  Google Scholar 

  • Hempel, S. L., Monick, M. M., He, B., Yano, T., and Hunninghake, G. W., 1994, Synthesis of prostaglandin H synthase-2 by human alveolar macrophages in response to lipopolysaccharide is inhibited by decreased cell oxidant tone, J. Biol. Chem. 269:32979–32984.

    CAS  PubMed  Google Scholar 

  • Hentze, M. W., and Kuhn, L. C., 1996, Molecular control of vertebrate iron metabolism:mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress, Proc. Natl. Acad. Sci. USA 93:8175–8182.

    Article  CAS  PubMed  Google Scholar 

  • Hibbs, J. B., Vavrin, Z., and Taintor, R. R., 1987, L-Arginine is required for the expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells, J. Immunol. 1380:550–565.

    Google Scholar 

  • Hobbs, A. J., Fukuto, J. M., and Ignarro, L. J., 1994, Formation of free nitric oxide from L.-arginine by nitric source, Proc. Natl. Acad. Sci. USA 91:10992–10999.

    CAS  PubMed  Google Scholar 

  • Hogg, N., Darley-Usmar, V. M., Wilson, M. T., and Moncada, S., 1993, The oxidation of a human low-density lipoprotein by the simultaneous generation of superoxide and nitric oxide, FEBS Lett. 326:199–203.

    Article  CAS  PubMed  Google Scholar 

  • Hogg, N., Struck, A., Goss, S. P., Santanam, N., Joseph, J., Parthasarathy, S., and Kalyanaraman, B., 1995, Inhibition of macrophage-dependent low density lipoprotein oxidation by nitric-oxide donors, J. Lipid Res 36:1756–1762.

    CAS  PubMed  Google Scholar 

  • Hoshino, M., Ozawa, K., Seki, H., and Ford, P.C., 1993, Photochemistry of nitric oxide adducts of water-soluble iron(III) porphyrin and ferrihemoproteins studied by nanosecond laser photolysis, J. Am. Chem. Soc. 115:9568–9575.

    Article  CAS  Google Scholar 

  • Howard-Flanders, P., 1957, Effect of nitric oxide on the radiosensitivity of bacteria, Nature 180:1191–1192.

    CAS  PubMed  Google Scholar 

  • Hubbard, N. E., and Erickson, K. L., 1995, Role of 5′-lipoxygenase metabolites in the activation of peritoneal macrophages for tumoricidal function, Cell. Immunol. 160:115–122.

    Article  CAS  PubMed  Google Scholar 

  • Huie, R. E., and Padmaja, S., 1993, The reaction of NO with superoxide, Free Radical Res. Commun. 18:195–199.

    CAS  Google Scholar 

  • Hurshman, A. R., and Marietta, M. A., 1995, Nitric oxide complexes of inducible nitric oxide synthase: Spectral characterization and effect on catalytic activity, Biochemistry 34:5627–5634.

    Article  CAS  PubMed  Google Scholar 

  • Ignarro, L. J., 1989, Endothelium-derived nitric oxide: Pharmacology and relationship to the actions of organicesters, Pharm. Res. 6:651–659.

    Article  CAS  PubMed  Google Scholar 

  • Ignarro, L. J., 1990, Biosynthesis and metabolism of endothelium-derived nitric oxide, Annu. Rev. Pharmacol. Toxicol. 30:535–560.

    Article  CAS  PubMed  Google Scholar 

  • Ignarro, L. J., Barry, B. K., Gruetter, D. Y., Edwards, J. C., Ohlstein, E. H., Gruetter, C. A., and Baricos, W. H., 1980a, Guanylate cyclase activation by nitroprusside and nitroguanidine is related to formation of S-nitrosothiol intermediates, Biochem. Biophys. Res. Commun. 94:93–100.

    Article  CAS  PubMed  Google Scholar 

  • Ignarro, L. J., Edwards, J. C., Gruetter, D. Y., Barry, B. K., and Gruetter, C. A., 1980b, Possible involvement of S-nitrosothiols activation of guanylate cyclase nitroso compounds, FEBS Lett. 110:275–278.

    Article  CAS  PubMed  Google Scholar 

  • Ignarro, L. J., Degnan, J. N., Baricos, W. H., Kadowitz, P. J., and Wolin, M. S., 1982a, Activation of purified guanylate cyclase by nitric oxide requires heme: Comparison of heme-deficient, heme-reconstituted, and heme-containing forms of soluble enzyme from bovine lung, Biochim. Biophys. Acta 718:49–59.

    CAS  PubMed  Google Scholar 

  • Ignarro, L. J., Wood, K. S., and Wolin, M. S., 1982b, Activation of purified soluble guanylate cyclase by protoporphyrin IX, Proc. Natl. Acad. Sci. USA 79:2870–2873.

    CAS  PubMed  Google Scholar 

  • Ignarro, L. J., Ballot B., and Wood, K. S., 1984, Regulation of soluble guanylate cyclase activity by porphyrins and metalloporphyrins, J. Biol. Chem. 259:6201–6207.

    CAS  PubMed  Google Scholar 

  • Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E., and Chaudhuri, G., 1987, Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide, Proc. Natl. Acad. Sci. USA 84:9265–9269.

    CAS  PubMed  Google Scholar 

  • Imai, Y., Kolb, H., and Burkart, V, 1993, Nitric oxide production from macrophages is regulated by arachidonic acid metabolites, Biochem. Biophys. Res. Commun. 197:105–109.

    Article  CAS  PubMed  Google Scholar 

  • Inoue S., and Kawanishi, S., 1995, Oxidative DNA damage induced by simultaneous generation of nitric oxide andsuperoxide, FEBS Lett. 371:86–88.

    Article  CAS  PubMed  Google Scholar 

  • Inoue, T., Fukuo, K., Morimoto, S., Koh, E., and Ogihara, T., 1993, Nitric oxide mediates interleukin-1-induced prostaglandin E2 production by vascular smooth muscle cells, Biochem. Biophys. Res. Commun. 194:420–424.

    Article  CAS  PubMed  Google Scholar 

  • Ischiropoulos, H., Zhu, L., Chen, J., Tsai, M., Martin, J. C, Smith, C. D., and Beckman, J. S., 1992, Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase, Arch. Biochem. Biophys. 298:431–437.

    CAS  PubMed  Google Scholar 

  • Ischiropoulos, H., Nelson, J., Duran, D., and Al-Mehdi, A., 1996, Reactions of nitric oxide and peroxynitrite with organic molecules and ferrihorseradish peroxidases: Interference with the determination of hydrogen peroxide, Free Radical Biol. Med. 20:373–381.

    Article  CAS  Google Scholar 

  • Jaffrey, S. R., Cohen, N. A., Rouault, T. A., Klausner, R. D., and Synder, S. H., 1994, The iron-responsive elements binding protein: A target for synaptic actions of nitric oxide, Proc. Natl. Acad. Sci. USA 91:12994–12998.

    CAS  PubMed  Google Scholar 

  • Juedes, M. J., and Wogan, G. N., 1996, Peroxynitnte-induced mutation spectra of pSP189 following replication in bacteria and in human cells, Mutat. Res. 349:51–61.

    CAS  PubMed  Google Scholar 

  • Kanner, J., Harel, S., and Granit, R., 1991, Nitric oxide as an antioxidant, Arch. Biochem. Biophys. 289:130–136.

    Article  CAS  PubMed  Google Scholar 

  • Kanner, J., Harel, S., and Granit, R., 1992, Nitric oxide, an inhibitor of lipid oxidation by lipoxygenase, cyclooxygenase and hemoglobin, Lipids 27:46–49.

    CAS  PubMed  Google Scholar 

  • Kelner, M. J., and Uglik, S. R, 1994, Mechanism of prostaglandin E2 release and increase in PGH2/PGE2 isomerase activity by PDGF: Involvement of nitric oxide, Arch. Biochem. Biophys. 312:240–243.

    Article  CAS  PubMed  Google Scholar 

  • Khatsenko, O. G., Gross, S. S., Rifkind, A. B., and Vane, J. R., 1993, Nitric oxide is a mediator of the decrease in cytochrome P450-dependent metabolism caused by immunostimulants, Proc. Natl. Acad. Sci. USA 90:11147–11151.

    CAS  PubMed  Google Scholar 

  • Kim, Y.-M., Bergonia, H. A., Muller, C., Pitt, B. R., Watkins, W. D., and Lancaster, J. R., 1995a, Loss and degradation of enzyme-bound heme induced by cellular nitroxide synthesis, J. Biol. Chem. 270:5710–5713.

    CAS  PubMed  Google Scholar 

  • Kim, Y.-M., Bergonia, H. A., Muller, C., Pitt, B. R., Watkins, W. D., and Lancaster, J. R., 1995b, Nitric oxide and intracellular heme. Adv. Pharmacol. 34:277–291.

    CAS  PubMed  Google Scholar 

  • King, P. A., Anderson, V. E., Edwards, J. O., Gustafson, G., Plumb, R. C., and Suggs, J. W., 1992, A stable solid that generates hydroxyl radical upon dissolution in aqueous solution: Reactions with proteins and nucleic acids, J. Am. Chem. Soc. 114:5430.

    CAS  Google Scholar 

  • Klausner, R. D., Rouault, T. A., and Harford, J. B., 1993, Regulating the fate of mRNA: The control of cellular iron metabolism, Cell 72:19–28.

    Article  CAS  PubMed  Google Scholar 

  • Knowles, R. G., Darley-Usmar, V., and Moncada, S., 1996, Nitric oxide and peroxynitrite exert distinct effects on mitochondrial respiration which are differentially blocked by glutathione or glucose, Biochem. J. 314:877–880.

    PubMed  Google Scholar 

  • Kooy, N. W., Royall, J. A., Ischiropoulos, H., and Beckman, J. S., 1994, Peroxynitrite-mediated oxidation of dihydrorhodamine 123, Free Radical Biol. Med 16:149–156.

    Article  CAS  Google Scholar 

  • Koppenol, W. H., Moreno, J. J., Pryor, W. A., Ischiropoulos, H., and Beckman, J. S., 1992, Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide, Chem. Res. Toxicol. 5:834–842.

    Article  CAS  PubMed  Google Scholar 

  • Kroncke, K.-D., Fechsel, K., Schmidt, T., Zenke, F. T, Dasting, I., Wesener, J. R., Bettermann, H., Breunig, K.D., and Kolb-Bachofen, V., 1994, Nitric oxide destoys zinc-finger clusters inducing zinc release from metallothionein and inhibition of the zinc finger-type yeast transcription activator LAC9, Biochem. Biophys. Res. Commun. 200:1105–1110.

    Article  CAS  PubMed  Google Scholar 

  • Kurose, I., Miura, S., Fukumura, D., Yonei, Y, Saito, H., Tada, S., Suematsu, M., and Tsuchiya, M., 1993, Nitric oxide mediates Kupffer cell-induced reduction of mitochondrial energization in hepatoma cells: A comparison with oxidative burst, Cancer Res. 53:2676–2682.

    CAS  PubMed  Google Scholar 

  • Lancaster, J., 1994, Simulation of the diffusion and reaction of endogenously produced nitric oxide, Proc. Natl. Acad.Sci.USA 91:8137–8141

    CAS  PubMed  Google Scholar 

  • Lancaster, J. R., and Hibbs, J. B., 1990, EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages, Proc. Natl. Acad. Sci. USA 87:1223–1227.

    CAS  PubMed  Google Scholar 

  • Laskey, R. E., and Mathews, W. R., 1996, Nitric oxide inhibits peroxynitrite-induced production of hydroxyei-cosatetraenoic acids and F2-isoprostancs in phosphatidylcholine liposomes, Arch. Biochem. Biophys. 330:193–198.

    Article  CAS  PubMed  Google Scholar 

  • Laszlo, F., and Whittle, B. J., 1995, Colonic microvascular integrity in acute endotoxaemia: Interactions between constitutive nitric oxide and 5-lipoxygenase products, Eur. J. Pharmacol. 277:Rl–3.

    Article  Google Scholar 

  • Laszlo, F., Whittle, B. J., and Moncada, S., 1994, Interactions of constitutive nitric oxide with PAF and thromboxane on rat intestinal vascular integrity in acute endotoxaemia, Br. J. Pharmacol. 113:1131–1136.

    CAS  PubMed  Google Scholar 

  • Laval, F., and Wink, D. A., 1994, Inhibition by nitric oxide of the repair protein O6-methylguanine-DNA-methyltransferase, Carcinogenesis 15:443–447.

    CAS  PubMed  Google Scholar 

  • Lee, M., Arosio, P., Cozzi, A., and Chasteen, N. D., 1994, Identification of the EPR-active iron-nitrosyl complexes in mammalian ferritins, Biochemistry 33:3679–3687.

    CAS  PubMed  Google Scholar 

  • Lewis, R. S., Tamir, S., Tannenbaum, S. R., and Deen, W. H., 1995, Kinetic analysis of the fate of nitric oxide synthesized by macrophages in vitro, J. Biol. Chem. 270:29350–29355.

    CAS  PubMed  Google Scholar 

  • Li, Y., Severn, A., Rogers, M. V., Palmer, R. M., Moncada, S., and Liew, E. Y., 1992, Catalase inhibits nitric oxide synthesis and the killing of intracellular Leishmania major in murine macrophages, Eur. J. Immunol. 22:441–446.

    CAS  PubMed  Google Scholar 

  • Lisdero, C., Riobo, N., Schopfer, F., and Boveris, A., 1996, Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles, Arch. Biochem. Biophys. 328:85–92.

    PubMed  Google Scholar 

  • Liu, R. H., Baldwin, B., Tennant, B. C., and Hotchkiss, J. H., 1991, Elevated formation of nitrate and N-nitrosodimethylamine in woodchucks (Marmota monax) associated with chronic woodchuck hepatitis virus infection, Cancer Res. 51:3925–3929.

    CAS  PubMed  Google Scholar 

  • Liu, R. H., Jacob, J. R., Tennant, B. C., and Hotchkiss, J. H., 1992, Nitrite and nitrosamine synthesis by hepatocytes isolated from normal woodchucks (Marmota monax) and woodchucks chronically infected with woochuck hepatitis virus, Cancer Res. 52:4139–4143.

    CAS  PubMed  Google Scholar 

  • Loscalzo, J., Benoit, S. E., Valeri, C. R., Barnard, M. R., and Michelson, A. D., 1996, Decreased platelet inhibition by nitric oxide in two brothers with a history of arterial thrombosis, J. Clin. Invest. 97:979–987.

    PubMed  Google Scholar 

  • Lymar, S. V., and Hurst, J. K., 1995, Rapid reaction between peroxynitrite ion and carbon dioxide: Implications for biological activity, J. Am. Chem. Soc. 290:52–57.

    Google Scholar 

  • Lymar, S. V., Jiang, Q., and Hurst, J. K., 1996, Mechanism of carbon dioxide-catalyzed oxidation of tyrosine by peroxynitrite, Biochemistry 35:7855–7861.

    Article  CAS  PubMed  Google Scholar 

  • Maccarrone, M., Corasaniti, M. T., Gucrrieri, P., Nistico, G., and Finazzi Agro, A., 1996, Nitric oxide donor compounds inhibit lipoxygenase activity Biochem. Biophys. Res. Commun. 219:128–133.

    Article  CAS  PubMed  Google Scholar 

  • Maragos, C. M., Morley, D., Wink, D. A., Dunams, T. M., Saavedra, J. E., Hoffman, A., Bove, A. A., Isaac, L., Hrabie, J. A., and Keefer, L. K., 1991, Complexes of NO with nucleophiles as agents for the controlled biological release of nitric oxide. Vasorelaxant effects, J. Med. Chem. 34:3242–3247.

    Article  CAS  PubMed  Google Scholar 

  • Marietta, M. A., 1988, Mammalian synthesis of nitrite, nitrate, nitric oxide and N-nitrosating agents, Chem. Res. Toxicol. 1:249–257.

    Google Scholar 

  • Marietta, M. A., 1993, Nitric oxide synthase structure and mechanism, J. Biol. Chem. 268:12231–12234.

    Google Scholar 

  • Marietta, M. A., 1994, Nitric oxide synthase: Aspects concerning structure and catalysis, Cell 78:927–930.

    CAS  Google Scholar 

  • McDaniel, M. L., Kwon, G., Hill, J. R., Marshall, C. A., and Corbett, J. A., 1996, Cytokines and nitric oxide in islet inflammation and diabetes, Proc. Soc. Exp. Biol. Med. 211:24–32.

    CAS  PubMed  Google Scholar 

  • Miles, A. M., Gibson, M., Krishna, M., Cook, J. C., Pacelli, R., Wink, D. A., and Grisham, M. B., 1995, Effects of superoxide on nitric oxide-dependent N-nitrosation reactions, Free Radical Res. 233:379–390.

    Google Scholar 

  • Miles, A. M., Bohle, D. S., Glassbrenner, P. A., Hansert, B., Wink, D. A., and Grisham, M. B., 1996, Modulation ofsuperoxide-dependent oxidation andhydroxylationreactionsby nitric oxide, J. Biol. Chem. 271:40–47.

    Article  CAS  PubMed  Google Scholar 

  • Misra, R. R., Hochadel, J. F, Smith, G. T., Waalkes, M. P., and Wink, D. A., 1996, Evidence that nitric oxide enhances cadmium toxicity by displacing the metals from metallothionein, Chem. Res. Toxicol. 10:326–332.

    Google Scholar 

  • Mitchell, J. B., Wink, D. A., DeGraff, W., Gamson, J., Keefer, L. K., and Krishna, M. C., 1993, Hypoxic mammalian cell radiosensitization by nitric oxide, Cancer Res. 53:5845–5848.

    CAS  PubMed  Google Scholar 

  • Molina y Vedia, L.. McDonald, B., Reep, B., Brune, B., DiSilvio, M., Billiar, T. R., and Lapctina, E. G., 1992, Nitric oxide-induced S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation, J. Biol. Chem. 267:24929–24932.

    CAS  PubMed  Google Scholar 

  • Moncada, S., Palmer, R. M. J., and Higgs, E. A., 1991, Nitric oxide: Physiology, pathophysiology, and pharmacology, Pharmacol. Rev. 43:109–142.

    CAS  PubMed  Google Scholar 

  • Moreneo, J. J., and Pryor, W. A., 1992, Inactivation of a-l-proteinase inhibitor by peroxynitrite, Chem. Res. Toxicol. 5:425–431.

    Google Scholar 

  • Moro, M. A., Knowles, R. G., Darley-Usmar, V., and Moncada, S., 1996, Nitric oxide and peroxynitrite exert distinct effects on mitochondrial respiration which are differentially blocked by glutathione or glucose, Biochem. J. 314:877–880.

    PubMed  Google Scholar 

  • Murad, F., 1994, The nitric oxide-cyclic GMP signal transduction system for intracellular and intercellular communication, Recent Prog. Horm. Res. 49:239–248.

    CAS  PubMed  Google Scholar 

  • Myers, P. R., Minor, R. L., Guerra, R., Bates, J. N., and Harrison, D. G., 1990, Vasorelaxant properties of the endothelium derived relaxing factor more closely resemble S-nilrosocysteine than nitric oxide, Nature 345:161–163.

    Article  CAS  PubMed  Google Scholar 

  • Nakalsuka, M., and Osawa, Y., 1994, Selective inhibition of the 12-lipoxygenase pathway of arachidonic acid metabolism by L-arginine or sodium nitroprusside in intact human platelets, Biochem. Biophys. Res. Commun. 200:1630–1634.

    Google Scholar 

  • Natlian, C, and Xie, Q., 1994, Regulation of biosynthesis of nitric oxide, J. Biol Chem. 269:13725–13728.

    Google Scholar 

  • Nguyen, T., Brunson, D., Crespi, C. L., Penman, B. W., Wishnok, J. S., and Tannenbaum, S. R., 1992, DNA damage and mutation in human cells exposed to nitric oxide, Proc. Natl. Acad. Sci. USA 89:3030–3034.

    CAS  PubMed  Google Scholar 

  • Nikano, M, Kimura, H., Hara, M., Kuroiwa, M., Kato, M., Totsune, K., and Yoshikawa, T., 1990, A highly sensitive method for determining both Mn-and Cu-Zn superoxide dismutase activities in tissue and blood cells, Anal. Biochem. 187:277–280.

    Google Scholar 

  • Nunoshiba, T., DeRojas-Walker, T., Wishnok, J. S., Tannenbaum, S. R., and Demple, B., 1993, Activation by nitric oxide of an oxidalive-stress response that defends Escherichia coli against macrophages. Proc. Natl. Acad. Sci. USA 90:9993–9997.

    CAS  PubMed  Google Scholar 

  • Ohlstein, E. H., Wood, K. S., and Ignarro, L. J., 1982, Purification and properties of heme-deficient hepatic soluble guanylate cyclase: Effects of heme and other factors on enzyme activation by NO, NO-heme, and protoporphyrin IX, Arch. Biochem. Biophys. 218:187–198.

    Article  CAS  PubMed  Google Scholar 

  • Oyekan, A. O., 1995, The suppression by lipopolysaccharide of cytochrome P450-dependent renal vasodilation in the rat is mediated by nitric oxide, Eur. J. Phurmacol. 277:123–132.

    CAS  Google Scholar 

  • Pacelli, R., Krishna, M. C., Wink, D. A., and Mitchcll, J. B., 1994, Nitric oxide protects DNA from hydrogen peroxide-induced double strand cleavage, Proc. Am. Assoc. Cancer Res. 35:540.

    Google Scholar 

  • Padmaja, S., and Huie, R. E., 1993, The reaction of nitric oxide with organic peroxyl radicals, Biochem. Biophys. Res. Commun. 195:539–544.

    Article  CAS  PubMed  Google Scholar 

  • Palmer, R. M. J., Ferrige, A. G., and Moncada, S., 1987, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526.

    Article  CAS  PubMed  Google Scholar 

  • Pellat, C., Henry, Y, and Drapiers, J. C., 1990, IFN-α activated maerophages: Detection by electron paramagnetic resonance of complexes between L-arginine-derived nitric oxide and non-heme iron, Biochem. liiophys. Res. Commun. 166:119–125.

    CAS  Google Scholar 

  • Pires, M., Ross, D. S., and Rossi, M. J., 1994, Kinetic and mechanistic aspects of the NO oxidation by O2 in aqueous phase, Int. J. Chem. Kinet. 26:1207–1227.

    Article  CAS  Google Scholar 

  • Pryor, W. A., and Squadrilo, G. L., 1996, The chemistry of peroxynitrite and peroxynitrous acid: Products from the reaction ol nitric oxide with superoxide. Am. J. Physiol. 268:L699–72l.

    Google Scholar 

  • Pryor, W. A., Church, D. E, Govindan, C. K., and Crank, G., 1982, Oxidation of thiols by nitric oxide and nitrogen dioxide: Synthetic utility and toxicological implications, J. Org. Chem. 47:156–159.

    Article  CAS  Google Scholar 

  • Pryor, W. A., Jin, X., and Squadrito, G., 1994, One and two electron oxidations of melhionineby peroxynitrite, Proc. Natl. Acad. Sci. USA 92:11173–11177.

    Google Scholar 

  • Pufahl, R. A., Wishnok, J. S., Marletta, M A., 1995, Hydrogen peroxide-supported oxidation of NG-hydroxy-L-arginine by nitric oxide synthase. Biochemistry 34:1930–1941.

    Article  CAS  PubMed  Google Scholar 

  • Radi, R., Beckman, J. S., Hush, K. M., and Freeman, B. A., 1991, Peroxynitrite-induced membrane lipid peroxidation: Cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophyx. 288:481–487.

    CAS  Google Scholar 

  • Roberts A. B., Vodovotz, Y, Roche, N. S., Sporn, M. B., and Nathan, C. F, 1992, Role of nitric oxide in antagonistic effects of transforming growth factor-beta and interleukin-1 beta on the beating rate of cultured cardiac myocytes, Mol. Endocrinol. 6:1921–1930.

    Article  CAS  PubMed  Google Scholar 

  • Rousseau, D. L., Sing, S., Ching, Y C., and Sassoroli, M., 1988, Nitrosyl cytochrome c oxidase. Formation and properties of mixed valence enzyme, J. Biol. Chem. 263:5681–5685.

    CAS  PubMed  Google Scholar 

  • Routledge, M. N., Wink, D. A., Reefer, L. K., and Dipple, A., 1993, Mutations induced by saturated aqueous nitric oxide in the pSP189 supF gene in human Ad293 and E. coli MBM7070 cells, Carcinogenesis 14:1251–1254.

    CAS  PubMed  Google Scholar 

  • Routledge, M. N., Mirsky, F. J., Wink, D. A., Keefer, L. K., and Dipple, A., 1994a, Nitrite-induced mutations in a forward mutation assay: Influence of nitrite concentration and pH, Mutat. Res. 322:341–346.

    CAS  PubMed  Google Scholar 

  • Routledge, M. N., Wink, D. A., Keefer, L. K., and Dipple, A., 1994b, DNA sequence changes induced by two nitric oxide donor drugs in the supF assay, Chem. Res. Toxicol. 7:628–632.

    Article  CAS  PubMed  Google Scholar 

  • Rubbo, H., Radi, R., Trujillo, M., Telleri, R., Kalyanaraman, B., Barnes, S., Kirk, M., and Freeman, B. A., 1994, Nitric oxide regulation of superoxide and peroxynitrite dependent lipid peroxidation: Formation of novel nitrogen containing oxidized lipid derivatives, J. Biol. Chem. 269:26066–26075.

    CAS  PubMed  Google Scholar 

  • Rubbo, H., Parthasarathy, S., Barnes, S., Kirk, M., Kalyanaraman, B., and Freeman, B. A., 1995, Nitric oxide inhibition of lipoxygenase-dependent liposome and low-density lipoprotein oxidation: Termination of radical chain propagation reactions and formation of nitrogen-containing oxidized lipid derivatives, Arch. Biochem. Biophys. 324:15–25.

    Article  CAS  PubMed  Google Scholar 

  • Ryoyama, K., Nomura, T., and Nakamura, S., 1993, Inhibition of macrophage nitric oxide production by arachidonate-cascade inhibitors, Cancer Immunol. Immunother. 37:385–389.

    Article  CAS  PubMed  Google Scholar 

  • Salgo, M. G., Stone, K., Squadrito, G. L., Battista, J. R., and Pryor, W. A., 1995, Peroxynitrite causes DNA nicks in plasmid pBR322, Biochem. Biophys. Res. Commun. 210:1025–1030.

    Article  CAS  PubMed  Google Scholar 

  • Salvemini, D., Misko, T. P., Masferrer, J. L., Seibert, K., Currie, M. G., and Needleman, P., 1993, Nitric oxide activates cyclooxygenase enzymes, Proc. Natl. Acad. Sci. USA 90:7240–7244.

    CAS  PubMed  Google Scholar 

  • Salvemini, D., Seibert, K., Masferrer, J. L., Misko, T. P., Currie, M. G., and Needleman, P., 1994, Endogenous nitric oxide enhances prostaglandin production in a model of renal inflammation, J. Clin. Invest. 93:1940–1947.

    CAS  PubMed  Google Scholar 

  • Saran, M., and Bors, W., 1994, Pulse radiolysis for investigation of nitric oxide-related reactions, Methods Enzymol. 233:20–34.

    CAS  Google Scholar 

  • Sautebin, L., and Di Rosa, M., 1994, Nitric oxide modulates prostacyclin biosynthesis in the lung of endotoxin-treated rats, Eur. J. Pharmacol. 262:193–196.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, H. H. M., Hofmann, H., Schindler, U., Shutenko, Z. S., Cunningham, D. D., and Feelisch, M., 1996, No NO from NO synthase, Proc. Natl. Acad. Sci. USA 93:14492–14497.

    CAS  PubMed  Google Scholar 

  • Schwartz, S. E., and White, W. H., 1983, Trace Atmospheric Constituents. Properties, Transformation and Fates, pp. 1–117, Wiley, New York.

    Google Scholar 

  • Schwarz, M. A., Lazo, J. S., Yalowich, J. C., Allen, W. P., Whitmore, M., Bergonia, H. A., Tzeng, E., Billiar, T. R., Robbins, P. D., Lancaster, J. R., and Pitt, B. R., 1995, Metallothionein protects against the cytotoxic and DNA damaging effects of nitric oxide, Proc. Natl. Acad. Sci. USA, 92:4452–4456.

    CAS  PubMed  Google Scholar 

  • Seccia, M., Perugini, C., Albano, E., and Bellomo, G., 1996, Inhibition of Cu2+-induced LDL oxidation by nitric oxide: A study using NO donors with different half-time of NO release, Biochem. Biophys. Res. Commun. 220:306–309.

    Article  CAS  PubMed  Google Scholar 

  • Singel, D. J., and Lancaster, J. R., 1996, Electron paramagnetic resonance spectroscopy and nitric oxide biology, in Methods in Nitric Oxde Research (M. Feelisch and J. Stamler, eds.), pp. 341–346, Wiley, New York.

    Google Scholar 

  • Stadler, J., Billiar, T. R., Curran, R. D., Stuehr, D. J., Ochoa, J. B., and Simmons, R. L., 1991, Effect of exogenous and endogenous nitric oxide on mitochondrial respiration of rat hepatocytes, Am. J. Physiol. 260:C910–C916.

    CAS  PubMed  Google Scholar 

  • Stadler, J., Harbrecht, B. G., Di Silvio, M., Curran, R. D., Jordan, M. L., Simmons, R. L., and Billiar, T. R., 1993, Endogenous nitric oxide inhibits the synthesis of cyclooxygenase products and interleukin-6 by rat Kupffer cells, J. Leukocyte Biol. 53:165–172.

    CAS  PubMed  Google Scholar 

  • Stadler, J., Trockfeld, J., Shmalix, W. A., Brill, T., Siewert, J. R., Greim, H., and Doehmer, J., 1994, Inhibition of cytochromes P450 1A by nitric oxide, Proc. Natl. Acad. Sci. USA 91:3559–3563.

    CAS  PubMed  Google Scholar 

  • Stamler, J. S., 1994, Redox signaling: Nitrosylation and related target interactions of nitric oxide. Cell 78:931–936.

    Article  CAS  PubMed  Google Scholar 

  • Stamler, J. S., Jaraki, O., Osbourne, J., Simon, D. I., Keaney, J., Vita, J., Singel, D., Valeri, R., and Loscalzo, J., 1992, Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin, Proc. Natl. Acad. Sci. USA 89:7674–7677.

    CAS  PubMed  Google Scholar 

  • Stanbury, D. M., 1989, Reduction potentials involving inorganic free radicals in aqueous solution, Adv. Inorg. Chem. 33:69–136.

    CAS  Google Scholar 

  • Stone, J. R., and Marietta, M. A., 1994, Soluble guanylate cyclase from bovine lung: Activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous and ferric state, Biochemistry 33:5636–5640.

    CAS  PubMed  Google Scholar 

  • Stone, J. R., and Marietta, M. A., 1995, The ferrous heme of guanylate cyclase: Formation of hexacoordinate complexes with carbon monoxide and nitrosomethane, Biochemistry 34:16397–16403.

    CAS  PubMed  Google Scholar 

  • Struck, A. T., Hogg, N., Thomas, J. P., and Kalyanaraman, B., 1995, Nitric oxide donor compounds inhibit the toxicity of oxidized low-density lipoprotein to endothelial cells, FEBS Lett. 361:291–294.

    Article  CAS  PubMed  Google Scholar 

  • Stuehr, D. J., and Marietta, M. A., 1985, Mammalian nitrate biosynthesis: Mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide, Proc. Natl. Acad. Sci. USA 82:7738–7742.

    CAS  PubMed  Google Scholar 

  • Stuehr, D. J., and Nathan, C. F, 1989, A macrophage product responsible forcytostasis and respiratory inhibition in tumor target cells, J. Exp. Med. 169:1543–1555.

    CAS  PubMed  Google Scholar 

  • Stuehr, D. J., Abu-Soud, H. M., Rousseau, D. L., Feldman, P. L., and Wang, J., 1995, Control of electron transfer in neuronal nitric oxide synthase by calmodulin, substrate, substrate analogs, and nitric oxide, Adv. Pharmacol. 34:207–213.

    CAS  PubMed  Google Scholar 

  • Szabo, C., Zingarelli, B., and Salzman, A. L., 1996, Role of poly-ADP ribosyltransferase activation in the vascular contractile and energetic failure elicited by exogenous and endogenous nitric oxide and peroxynitrite, Circ. Res. 78:1051–1063.

    CAS  PubMed  Google Scholar 

  • Tsai, A. L., Wei, C., and Kulmacz, R. J., 1994, Interaction between nitric oxide and prostaglandin H synthase, Arch. Biochem. Biophys. 31:367–372.

    Google Scholar 

  • Uppu, R. M., Squadrito, G. L., and Pryor, W. A., 1996, Acceleration of pcroxynitrite oxidants by carbon dioxide, Arch. Biochem. Biophys. 327:335–343.

    Article  CAS  PubMed  Google Scholar 

  • van der Vliet, A., O’Neill, C. A., Halliwell, B., Cross, C. E., and Kaur, H., 1994, Aromatic hydroxylation and nitration of phenylalanine and tyrosine by peroxynitrite. Evidence for hydroxyl radical production from peroxynitrite, FEBS Lett. 339:89–92.

    PubMed  Google Scholar 

  • van der Vliet, A., Eiserich, J. P., O’Neill, C. A., Halliwell, B., and Cross, C. E., 1995, Tyrosine modification by reactive nitrogen species: A closer look, Arch. Biochem. Biophys. 319:341–349.

    PubMed  Google Scholar 

  • Vanin, A. F., Mordvintcev, P. I., Hausschildt, S., and Mulsch, A., 1992, The relationship between L-arginine nitric oxide synthases, nitrite release, and dinitrosyl-iron complex formation by activated macrophage, Biochim. Biophys. Acta 1177:37–42.

    Google Scholar 

  • Vodovotz, Y., Kwon, N., Popischil, M., Manning, J., Paik, J., and Nathan, C., 1994, Inactivation of nitric oxide synthase following prolonged incubation of mouse macrophages with interferon-gamma and bacterial lipopolysaccharide, J. Immunol 152:4110–4118.

    CAS  PubMed  Google Scholar 

  • Vodovotz, Y, Letterio, J. J., Geiser, A. G., Chesler, L., Roberts, A. B., and Sparrow, J., 1996, Control of nitric oxide production by endogenous transforming growth factor-bl and systemicnitric oxide in retinal pigment epithelial cells and peritoneal macrophages, J. Leukocyte. Biol. 60:261–270.

    CAS  PubMed  Google Scholar 

  • Walker, M. W., Kinter, M. T., Roberts, R. J., and Spitz, D. R., 1995, Nitric oxide-induced cytotoxicity: Involvement of cellular resistance to oxidative stress and the role of glutathione in protection, Pediatr. Res. 37:41–47.

    CAS  PubMed  Google Scholar 

  • Weiss, G., Goossen, B., Doppler, W., Pantopoulos, K., Werner-Felmayer, G., and Hentze, M. W., 1993, Translational regulation via iron-responsive elements by the nitric oxide/NO synthase pathway, EMBO J. 12:3651–3657.

    CAS  PubMed  Google Scholar 

  • Williams, D. L. H., 1988, Nitrosation, Cambridge University Press, London.

    Google Scholar 

  • Wink, D. A., and Laval, J., 1994, The Fpg protein, a DNA repair enzyme, is inhibited by the biomediator nitric oxide in vitro and in vivo, Carcinojenesis 15:2125–2129.

    CAS  Google Scholar 

  • Wink, D. A., Kasprzak, K. S., Maragos, C. M., Elespuru, R. K., Misra, M., Dunams, T. M., Cebula, T. A., Koch, W. H., Andrews, A. W., Allen, J. S., and Keefer, L. K., 1991, DNA deaminating ability and genotoxicity of nitric oxide and its progenitors, Science 254:1001–1003.

    CAS  PubMed  Google Scholar 

  • Wink, D. A., Darbyshire, J. R, Nims, R. W., Saveedra, J. E., and Ford, P. C., 1993a, Reactions of the bioregulatory agent nitric oxide in oxygenated aqueous media: Determination of the kinetics for oxidation and nitrosation by intermediates generated in the NO/O2 reaction, Chem. Res. Toxicol. 6:23–27.

    Article  CAS  PubMed  Google Scholar 

  • Wink, D. A., Hanbauer, I., Krishna, M. C., DeGraff, W., Gamson, J., and Mitchell, J. B.,1993b, Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species, Proc. Natl. Acad. Sci. USA 90:9813–9817.

    Google Scholar 

  • Wink, D. A., Osawa, Y., Darbyshire, J. F., Jones, C. R., Eshenaur, S. C., and Nims, R. W., 1993c, Inhibition of cytochromes P450 by nitric oxide and a nitric oxide-releasing agent, Arch. Biochem. Biophys. 300:115–123.

    Article  CAS  PubMed  Google Scholar 

  • Wink, D. A., Nims, R. W., Darbyshire, J. F., Christodoulou, D., Hanbauer, I., Cox, G. W., Laval, F., Laval, J., Cook, J. A., Krishna, M. C., DeGraff, W., and Mitchell, J. B., 1994a, Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction, Chem. Res. Toxicol. 7:519–525.

    Article  CAS  PubMed  Google Scholar 

  • Wink, D. A., Wink, C. B., Nims, R. W., and Ford, P. C., 1994b, Oxidizing intermediates generated in the Fenton reagent: Kinetic arguments against the intermediacy of the hydroxyl radical, Environ. Health Perspect. 102(Suppl.3):11–15.

    CAS  PubMed  Google Scholar 

  • Wink, D. A., Hanbauer, I., Laval, F, Cook, J. A., Krishna, M. C., and Mitchell, J. B., 1994c, Nitric oxide protects against the cytotoxic effects of reactive oxygen species, Ann. N. Y. Acad. Sci. 738:265–278.

    CAS  PubMed  Google Scholar 

  • Wink, D. A., Christodoulou, D., Ho, M., Krishna, M. C., Cook, J. A., Haul, H., Randolph, J. K., Sullivan, M., Coia, G., Murray, R., and Meyer, T., 1995a, A discussion of electrochemical techniques for the detection of nitric oxide, Methods: A Companion to Methods in Enzymology 7:71–77.

    CAS  Google Scholar 

  • Wink, D. A., Cook, J. A., Krishna, M. C., Hanbauer, I., DeGraff, W., Gamson, J., and Mitchell, J. B., 1995b, Nitric oxide protects against alkyl peroxide-mediated cytotoxicty: Further insights into the role nitric oxide plays in oxidative stress, Arch. Biochem. Biophys. 319:402–407.

    Article  CAS  PubMed  Google Scholar 

  • Wink, D. A., Cook, J., Pacelli, R., DeGraff, W., Gamson, J., Liebmann, J., Krishna, M., and Mitchell, J. B., 1996a, Effect of various nitric oxide-donor agents on peroxide mediated toxicity. A direct correlation between nitric oxide formation and protection, Arch. Biochem. Biophys. 331:241–248.

    Article  CAS  PubMed  Google Scholar 

  • Wink, D. A., Grisham, M., Mitchell, J. B., and Ford, P. C., 1996b, Direct and indirect effects of nitric oxide. Biologically relevant chemical reactions in biology of NO, Methods Enzymol. 268:12–31.

    CAS  PubMed  Google Scholar 

  • Wink, D. A., Grisham, M. B., Miles, A. M., Nims, R. W., Krishna, M. C., Pacelli, R., Teague, D., Poore, C. M. B., and Cook, J. C., 1996c, Methods for the determination of selectivity of the reactive nitrogen oxide species lor various substrates, Methods Enzymol. 268:120–130.

    CAS  PubMed  Google Scholar 

  • Wink, D. A., Hanbauer, I., Grisham, M. B., Laval, F, Nims, R. W., Laval, J., Cook, J. C., Pacelli, R., Liebmann, J., Krishna, M. C., Ford, M. C., and Mitchell, J. B., 1996d, The chemical biology of NO. Insights into regulation, protective and toxic mechanisms of nitric oxide, Curr. Top. Cell. Regul. 34:159–187.

    CAS  PubMed  Google Scholar 

  • Yermilov, V., Rubio, J., Becchi, M., Friesen, M. D., Pignatelli, B., and Ohshima, H., 1995a, Formation of 8-nitroguanine by the reaction of guanine with peroxynitrite in vitro, Carcinogenesis 16:2045–2050.

    CAS  PubMed  Google Scholar 

  • Yermilov, V., Rubio, J., and Ohshima, H., 1995b, Formation of 8-nitroguaninc in DNA treated with peroxynitrite in vitro and its rapid removal from DNA by depurination, FEBS Lett. 376:207–210.

    Article  CAS  PubMed  Google Scholar 

  • Yu, A. E., Hu, S., Spiro, T. G., and Burstyn, J. N., 1994, Resonance Raman spectroscopy of soluble guanylyl cyclase reveals displacement of distal and proximal heme ligand by NO, J. Am. Chem. Soc. 116:4117–4118.

    CAS  Google Scholar 

  • Zamora R., Grzesiok, A., Weber, H., and Feelisch, M., 1995, Oxidative release of nitric oxide accounts for guanylyl cyclase stimulating, vasodilator and anti-platelet activity of Piloty’s acid: A comparison with Angeli’s salt, Biochem. J. 312 (Pt. 2):333–339.

    CAS  PubMed  Google Scholar 

  • Zang, V., Kotowski, M., and van Eldik, R., 1988, Kinetics mechanism of the formation of Fe(Il)(edta)NO in the system Fe(II)edta/HONO/NO -2 in aqueous solution, Inorg. Chem. 27:3279–3283.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Wink, D.A., Feelisch, M., Vodovotz, Y., Fukuto, J., Grisham, M.B. (2002). The Chemical Biology of Nitric Oxide. In: Reactive Oxygen Species in Biological Systems. Springer, Boston, MA. https://doi.org/10.1007/0-306-46806-9_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-46806-9_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45756-2

  • Online ISBN: 978-0-306-46806-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics