The physics of Czochralski crystal growth

  • Werner Uelhoff
Part of the Advances in Solid State Physics book series (ASSP, volume 27)


Czochralski's crystal growth method is applied especially for the growth of nearly perfect single crystals. The resulting crystal shape is determined by the melt meniscus. Its actual shape allows the derivation of signals for controlling the growth process. Crystal perfection and shape of the growing crystal is determined by the heat flow in the crystal and by the matter and heat flow in the melt. The generation of the defects during crystal growth and possible improvements of the crystal perfection either by the application of growth in a magnetic field or in micro-gravity are discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Wassermann and P. Wincierz, in: Das Metall-Laboratorium der Metallgesellschaft AG 1918–1981. Chronik und Bibliographie (Frankfurt/Main), p.9–20Google Scholar
  2. [2]
    J. Czochralski, Z. Physik Chem. 92, 219 (1918)Google Scholar
  3. [3]
    J.C. Brice, The Growth of Crystals from the Liquids in: Selected Topics in Solid State Physics, Vol. XII, ed. by E.P. Wolfarth (North Holland, Amsterdam 1973), pp. 245Google Scholar
  4. [4]
    W.C. Dash, J. Appl. Phys. 30, 459 (1959)ADSCrossRefGoogle Scholar
  5. [5]
    H. Wenzl, A. Fattah, and W. Uelhoff, J. Crystal Growth 36, 319 (1976)ADSCrossRefGoogle Scholar
  6. [6]
    D. Geist and P. Grosse, Z. Angew. Phys. 14, 105 (1962)Google Scholar
  7. [7]
    W. Uelhoff and K. Gärtner, Rost. Kristallow. 12, 238 (1972)Google Scholar
  8. [8]
    K. Mika and W. Uelhoff, J. Crystal Growth 30, 9 (1975)ADSCrossRefGoogle Scholar
  9. [9]
    A. v.d. Hart and W. Uelhoff, J. Crystal Growth 51, 251 (1981)ADSCrossRefGoogle Scholar
  10. [10]
    E. Quintero Diplomarbeit, Aachen 1986Google Scholar
  11. [11]
    W. Uelhoff, in: Dreiländer-Jahrestagung über Kristallwachstum und Kristallzüchtung, Report JÜL-Conf-18 (Jülich 1976)Google Scholar
  12. [12]
    O. Knacke and I.N. Stranski, Ergebn. exakt. Naturw. Bd. XXVI, 383 (1952)Google Scholar
  13. [13]
    M. Mihelcic, C. Schroeck-Pauli, K. Wingerath, H. Wenzl, W. Uelhoff, and A v. d. Hart, J. Crystal Growth 57, 300 (1982)ADSCrossRefGoogle Scholar
  14. [14]
    J.A.M. Dikhoff, Philips Techn. Rundschau 25, 441 (1963, 64)Google Scholar
  15. [15]
    E. Bauser, in Festkörperprobleme/Advances in Solid State Physics, Vol. XXII, ed. by P. Grosse (Vieweg, Braunschweig 1983), p. 141Google Scholar
  16. [16]
    R. Singh, A.F. Witt, and H.C. Gatos, J. Electrochem. Soc. 115 112 (1968)CrossRefGoogle Scholar
  17. [17]
    M. Lichtensteiger, A.F. Witt, and H.C. Gatos, J. Electrochem. Soc. 118, 1013 (1971)CrossRefGoogle Scholar
  18. [18]
    W.W. Mullins and R.F. Sekerka, J. Appl. Phys. 35, 444 (1964)ADSCrossRefGoogle Scholar
  19. [19]
    J. Vidal and R. Romero, Crystal Research and Technology 16, 853 (1981)Google Scholar
  20. [20]
    Y. K. Chang A. Fattak and W. Uelhoff, submitted to J. Crystal GrowthGoogle Scholar
  21. [21]
    A. Eyer, H. Leiste, and R. Nitsche, J. Crystal Growth 71, 173 (1985)ADSCrossRefGoogle Scholar
  22. [22]
    H. C. Gatos, A. F. Witt, M. Lichtensteiger, and C. J. Herman, in: Apollo-Soyuz Test Project, Summary Science Report, Vol. I, NASA SP-412, p. 429 (1977)Google Scholar
  23. [23]
    H. C. Gatos, in: Materials Processing in the reduced gravity environment in Space, ed. by G. E. Rindone (Elsevier Science, 1982), p. 355Google Scholar
  24. [24]
    S. R. Coriell and R. F. Sekerka, J. Crystal Growth 46, 479 (1979)ADSCrossRefGoogle Scholar
  25. [25]
    R. E. Reed, W. Uelhoff, and H. L. Adair, in: Apollo-Soyuz Test Project, Summary Science Report, Vol. I, NASA SP-412, p. 367 (1977)Google Scholar
  26. [26]
    T. Carlberg, J. Crystal Growth 79, 71 (1976)ADSCrossRefGoogle Scholar
  27. [27]
    H. Hamacher, R. Jilg, and U. Merbold, in: 6th European Symposium “Materials Sciences under Microgravity Conditions” (Bordeaux 1986), p. 1Google Scholar
  28. [28]
    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Clarendon Press, Oxford 1961)zbMATHGoogle Scholar
  29. [29]
    D.T.J. Hurle, Phil, Mag. 13, 305 (1966)ADSCrossRefGoogle Scholar
  30. [30]
    K. Terashimi and T. Fukuda, J. Crystal Growth 63, 423 (1983)ADSCrossRefGoogle Scholar
  31. [31]
    D.T.J. Hurle and R.W. Series, J. Crystal Growth 73, 1 (1985)ADSCrossRefGoogle Scholar
  32. [32]
    T. Kimura, T. Katsumata, and T. Fukuda, J. Crystal Growth 79, 264 (1986)ADSCrossRefGoogle Scholar
  33. [33]
    H. Gottschalk, G. Patzer, and H. Alexander, phys. stat. sol. (a) 45, 207 (1987)ADSCrossRefGoogle Scholar
  34. [34]
    W. Zulehner, J. Crystal Growth 65, 189 (1983)ADSCrossRefGoogle Scholar
  35. [35]
    J. Friedel, Dislocations (Pergamon Press, Oxford 1964)zbMATHGoogle Scholar
  36. [36]
    W.A. Tiller, J. Appl. Phys. 29, 611 (1958)ADSCrossRefGoogle Scholar
  37. [37]
    A.S. Jordan, A.R. von Neida, and R. Caruso, J. Crystal Growth 76, 243 (1981)Google Scholar
  38. [38]
    P. Haasen, private communicationGoogle Scholar
  39. [39]
    E. Kappler, W. Uelhoff, H. Fehmer, and F. Abbink, in: Herstellung von Kupfereinkristallen kleiner Versetzungsdichte, Opladen 1971Google Scholar
  40. [40]
    H. Siethoff, J. Völkl, D. Gerthsen, and H. G. Brion, submitted to Appl. Phys. Lett.Google Scholar
  41. [41]
    W.A. Bonner, J. Crystal Growth 54, 21 (1981)ADSCrossRefGoogle Scholar
  42. [42]
    H. Fehmer and W. Uelhoff, J. Crystal Growth 13/14, 257 (1972)ADSCrossRefGoogle Scholar
  43. [43]
    E. Schönherr, in: International Conference of Crystal Growth, North Holland, Boston 1966Google Scholar
  44. [44]
    T. Kobayashi, J. Osaka, and K. Hoshikawa, J. Crystal Growth 71, 813 (1985)ADSCrossRefGoogle Scholar
  45. [45]
    D. Fehmer, Diplomarbeit, Münster 1968Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1987

Authors and Affiliations

  • Werner Uelhoff
    • 1
  1. 1.Institut für FestkörperforschungKernforschungsanlage JülichJülichFederal Republic of Germany

Personalised recommendations