Advertisement

The structure of m-degrees

  • Piergiorgio Odifreddi
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1141)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [79]
    DEGTEV: Some result on uppersemilattices and m-degrees. Alg. and Log. 18 (1979) 664–679.MathSciNetGoogle Scholar
  2. [79]
    EPSTEIN: Degrees of unsolvability: Structure and Theory. Lecture Notes in Math. 759 (1979).Google Scholar
  3. [75]
    ERSHOV: The uppersemilattice of numerations of a finite set. Alg. and Log. 14 (1975) 159–175.CrossRefGoogle Scholar
  4. [70]
    LACHLAN: Initial segments of many-one degrees. Can. J. Math. 22 (1970) 75–85.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [72]
    _____: Two theorems on many-one degrees of r.e. sets. Alg. and Log. 11 (1972) 127–132.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [72a]
    _____: Recursively enumerable many-one degrees. und Log. 11 (1972) 186–202.Google Scholar
  7. [83]
    LERMAN: Degrees of Unsolvability. Springer-Verlag 1983.Google Scholar
  8. [80]
    NERODE-SHORE: Second-order logic and first-order theories of reducibility orderings. In: The Kleene Symposium, Barwise et al. eds., North-Holland (1980) 181–200.Google Scholar
  9. [81]
    ODIFREDDI: Strong reducibilities. Bull. Am. Math. Soc. 4 (1981) 37–86.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [83]
    _____: Forcing and reducibilities, J. Symb. Log. 48 (1983) 288–310, 724–743, 1013–1034.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [?]
    _____: Classical Recursion Theory. Springer-Verlag, to appear.Google Scholar
  12. [75]
    PALIUTIN: Addendum to ERSHOV [75]. Alg. and Log. 14 (1975) 175–177.Google Scholar
  13. [44]
    POST: Recursively enumerable sets of positive integers and their decision properties. Bull. Am. Math. Soc. 50 (1944) 284–316.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [82]
    SHORE: The theories of the truth-table and Turing degrees are not elementarily equivalent. In: Logic Colloquium 1980, Van Dalen et al. eds., North-Holland (1982) 231–237.Google Scholar
  15. [84]
    _____: The arithmetic and Turing degrees are not elementarily equivalent, to appear.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Piergiorgio Odifreddi
    • 1
  1. 1.Dipartimento di InformaticaUniversità di TorinoItaly

Personalised recommendations