Advertisement

Hyperfunctions and linear partial differential equations

  • Hikosaburo Komatsu
Appendices
Part of the Lecture Notes in Mathematics book series (LNM, volume 287)

Keywords

Holomorphic Function Cohomology Group Real Analytic Function Local Cohomology Linear Partial Differential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Bengel: Sur une extension de la théorie des hyperfonctions, C. R. Acad. Sci. Paris 262 (28 fév. 1966), 499–501.MathSciNetzbMATHGoogle Scholar
  2. [2]
    G. Bengel: Régularité des solutions hyperfonctions d’une équation elliptique, C. R. Acad. Sci. Paris 262 (7 mars 1966), 569–570.MathSciNetzbMATHGoogle Scholar
  3. [3]
    G. Bengel: Das Weylsche Lemma in der Theorie der Hyperfunktionen, Thesis, Univ. Frankfurt, 1966.Google Scholar
  4. [4]
    G. Björck: Linear partial differential operators and generalized distributions, Ark. för Mat. 6 (1966), 351–407.MathSciNetCrossRefGoogle Scholar
  5. [5]
    C. C. Chou: Problème de régularité universelle, C. R. Acad. Sci. Paris 260 (1965), 4397–4399.MathSciNetzbMATHGoogle Scholar
  6. [6]
    L. Ehrenpreis: A fundamental principle for systems of linear differential equations with constant coefficients and some of its applications, Proc. Intern. Symp. on Linear Spaces, Jerusalem, 1961, pp. 161–174.Google Scholar
  7. [7]
    L. Ehrenpreis: Analytically uniform spaces and some applications, Trans. Amer. Math. Soc. 101 (1961), 52–74.MathSciNetCrossRefGoogle Scholar
  8. [8]
    R. Godement: Topologic Algébrique et Théorie des Faisceaux, Hermann, Paris, 1958.zbMATHGoogle Scholar
  9. [9]
    A. Grothendieck: Local Cohomology, Seminar at Harvard Univ., 1961.Google Scholar
  10. [10]
    R. Harvey: Hyperfunctions and partial differential equations, Proc. Nat. Acad. Sci. U.S.A., 55 (1966), 1042–1046.MathSciNetCrossRefGoogle Scholar
  11. [11]
    R. Harvey: Hyperfunctions and partial differential equations, Thesis, Stanford Univ., 1966.Google Scholar
  12. [12]
    L. Hörmander: Differentiability properties of solutions of systems of differential equations, Ark. för Mat., 3 (1958), 527–535.MathSciNetCrossRefGoogle Scholar
  13. [13]
    L. Hörmander: Linear Partial Differential Operators, Springer, Berlin, 1963.CrossRefGoogle Scholar
  14. [14]
    L. Hörmander: An Introduction to Complex Analysis in Several Variables, Van Nostrand, Princeton, 1966.zbMATHGoogle Scholar
  15. [15]
    H. Komatsu: Resolution by hyperfunctions of sheaves of solutions of differential equations with constant coefficients, Math. Ann. 176 (1968), 77–86.MathSciNetCrossRefGoogle Scholar
  16. [16]
    B. Malgrange: Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier, 6 (1955–56), 271–355.MathSciNetCrossRefGoogle Scholar
  17. [17]
    B. Malgrange: Faisceaux sur des variétés analytiques réelles, Bull. Soc. Math. France, 83 (1957), 231–237.CrossRefGoogle Scholar
  18. [18]
    B. Malgrange: Sur les systèmes différentiels à coefficients constants, Sém. Leray, Exposés 8 et 8a (1961–62), Collège de France.Google Scholar
  19. [19]
    A. Martineau: Les hyperfonctions de M. Sato, Sém. Bourbaki, 13 (1960–61), No.214.Google Scholar
  20. [20]
    M. Sato: On a generalization of the concept of functions, Proc. Japan Acad., 34 (1958), 126–130 & 604–608.MathSciNetCrossRefGoogle Scholar
  21. [21]
    M. Sato: Theory of hyperfunctions, J. Fac. Sci. Univ. Tokyo, Sec.I, 8 (1959–60), 139–193 & 387–436.MathSciNetzbMATHGoogle Scholar
  22. [22]
    J.-P. Serre: Un théorème de dualité, Comm. Math. Helv., 29 (1955), 9–26.CrossRefGoogle Scholar
  23. [23]
    J.-P. Serre: Algèbre Locale, Multiplicités, Lecture Notes in Math., 11 (1965), Springer, Berlin.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Hikosaburo Komatsu
    • 1
  1. 1.Department of MathematicsUniversity of TokyoTokyoJapan

Personalised recommendations