An introduction to the theory of hyperfunctions

  • Hikosaburo Komatsu
Conference At Katata
Part of the Lecture Notes in Mathematics book series (LNM, volume 287)


Holomorphic Function Real Analytic Function Linear Partial Differential Equation Complex Neighborhood Regular Singular Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    O. V. Besov, Investigation of a family of function spaces in connection with theorems of imbedding and extension, Trudy Mat. Inst. Steklov, 60 (1961), 42–81, Amer. Math. Soc. Translations, Ser. 2, 40 (1964), 85–126.MathSciNetGoogle Scholar
  2. [2]
    G. Björck, Linear partial differential operators and generalized distributions, Ark. Mat., 6 (1966), 351–407.MathSciNetCrossRefGoogle Scholar
  3. [3]
    N. N. Bogoliubov-D. V. Shirkov, Introduction to the Theory of Quantized Fields, Interscience, New York, 1959.Google Scholar
  4. [4]
    T. Carleman, Sur les Équations Intégrales Singulières à Noyau Réel et Symétrique, Uppsala, 1923.Google Scholar
  5. [5]
    T. Carleman, L’Intégrale de Fourier et Questions qui s’y Rattachent, Mittag-Leffler Inst., Uppsala, 1944.zbMATHGoogle Scholar
  6. [6]
    P. A. M. Dirac, The Principles of Quantum Mechanics, 2nd ed., Oxford, 1935.Google Scholar
  7. [7]
    A. Grothendieck, Local Cohomology, Harvard Univ., 1961, reprint, Lecture Notes in Math. No.41, Springer, 1967.Google Scholar
  8. [8]
    J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Yale University Press, 1923, reprint, Dover, 1952.Google Scholar
  9. [9]
    G. H. Hardy, Weierstrass’s non-differentiable function, Trans. Amer. Math. Soc., 17 (1916), 301–325.MathSciNetzbMATHGoogle Scholar
  10. [10]
    R. Harvey, Hyperfunctions and Linear Partial Differential Equations, Thesis, Stanford University, 1966.Google Scholar
  11. [11]
    L. Hörmander, An Introduction to Complex Analysis in Several Variables, Van Nostrand, Princeton, 1966.zbMATHGoogle Scholar
  12. [12]
    M. Hukuhara et M. Iwano, Étude de la convergence des solutions formelles d’un système différentiel ordinaire linéaire, Funkcial. Ekvac., 2 (1959), 1–18.MathSciNetzbMATHGoogle Scholar
  13. [13]
    M. Kashiwara, On the structure of hyperfunctions (after M. Sato), Sugaku no Ayumi, 15 (1970), 9–72 (in Japanese).Google Scholar
  14. [14]
    T. Kato and S. T. Kuroda, Theory of simple scattering and eigenfunction expansions, Functional Analysis and Related Fields, Springer, Berlin-Heidelberg-New York, 1970, pp. 99–131.zbMATHGoogle Scholar
  15. [15]
    K. Kodaira, On ordinary differential equations of any even order and the corresponding eigenfunction expansions, Amer. J. Math., 72 (1950), 502–544.MathSciNetCrossRefGoogle Scholar
  16. [16]
    H. Komatsu, Relative cohomology of sheaves of solutions of differential equations, Séminaire Lions-Schwartz, 1966, reprinted in these Proceedings, pp. 190–259.Google Scholar
  17. [17]
    H. Komatsu, Hyperfunctions and Linear Partial Differential Equations with Constant Coefficients, Seminar Notes No.22, Dept. Math., Univ. Tokyo, 1968 (in Japanese).Google Scholar
  18. [18]
    H. Komatsu, Ultradistributions and hyperfunctions, these Proceedings, pp. 162–177.Google Scholar
  19. [19]
    H. Komatsu, Ultradistributions, I, Structure theorems and characterization, to appear.Google Scholar
  20. [20]
    H. Komatsu, On the index of ordinary differential operators, J. Fac. Sci., Univ. Tokyo, Sect. IA, 18 (1971), 379–398.MathSciNetzbMATHGoogle Scholar
  21. [21]
    H. Komatsu, A local version of Bochner’s tube theorem, J. Fac. Sci., Univ. Tokyo, Sect. IA, 19 (1972), to appear.Google Scholar
  22. [22]
    G. Köthe, Dualität in der Funktionentheorie, J. Reine Angew. Math., 191 (1953), 30–49.MathSciNetzbMATHGoogle Scholar
  23. [23]
    G. Köthe, Die Randverteilungen analytischer Funktionen, Math. Z., 57 (1952), 13–33.MathSciNetCrossRefGoogle Scholar
  24. [24]
    J. E. Littlewood and R. E. A. C. Paley, Theorems on Fourier series and power series, (I), J. London Math. Soc., 6 (1931), 230–233, (II), Proc. London Math. Soc., 42 (1936), 52–89, (III), ibid., 43 (1937), 105–126.MathSciNetCrossRefGoogle Scholar
  25. [25]
    A. Martineau, Les hyperfonctions de M. Sato, Séminaire Bourbaki, 13 (1960–61), No.214.Google Scholar
  26. [26]
    A. Martineau, Distributions et valeurs au bord des fonctions holomorphes, Theory of Distributions, Proc. Intern. Summer Inst. Lisbon, 1964, Inst. Gulbenkian Ciência, Lisboa, 1964, pp. 193–326.Google Scholar
  27. [27]
    A. Martineau, Le "edge of the wedge theorem" en théorie des hyperfonctions de Sato, Proc. Intern. Conf. on Functional Analysis and Related Topics, Tokyo, 1969, Univ. Tokyo Press, 1970, pp.95–106.Google Scholar
  28. [28]
    P.-D. Methée, Systèmes différentiels du type de Fuchs en théorie des distributions, Comment. Math. Helv., 33 (1959), 38–46.MathSciNetCrossRefGoogle Scholar
  29. [28’]
    M. Morimoto, Sur les ultradistributions cohomologiques, Ann. Inst. Fourier, 19 (1969), 129–153.MathSciNetCrossRefGoogle Scholar
  30. [29]
    M. Morimoto, Sur la décomposition du faisceau des germes de singularités d’hyperfonctions, J. Fac. Sci., Univ. Tokyo, Sect. I, 17 (1970), 215–239.MathSciNetzbMATHGoogle Scholar
  31. [30]
    F. Riesz, Über die Randwerte einer analytischen Funktion, Math. Z., 18 (1922), 87–95.CrossRefGoogle Scholar
  32. [31]
    M. Riesz, Sur les fonctions conjuguées, Math. Z., 27 (1927), 218–244.CrossRefGoogle Scholar
  33. [32]
    M. Sato, On a generalization of the concept of functions, Proc. Japan Acad., 34 (1958), 126–130 and 604–608.MathSciNetCrossRefGoogle Scholar
  34. [33]
    M. Sato, Theory of hyperfunctions, J. Fac. Sci., Univ. Tokyo, Sect. I, 8 (1959–60), 139–193 and 387–436.MathSciNetzbMATHGoogle Scholar
  35. [34]
    M. Sato, Hyperfunctions and partial differential equations, Proc. Intern. Conf. on Functional Analysis and Related Topics, 1969, Univ. Tokyo Press, Tokyo, 1970, pp. 91–94.zbMATHGoogle Scholar
  36. [35]
    P. Schapira, Théorie des Hyperfonctions, Lecture Notes in Math. No.126, Springer, 1970.Google Scholar
  37. [36]
    E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-order Differential Equations, Oxford, 1946.Google Scholar
  38. [37]
    E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge, 1927.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Hikosaburo Komatsu
    • 1
  1. 1.Department of MathematicsUniversity of TokyoTokyoJapan

Personalised recommendations