Study of dynamical processes with tensor-based spatiotemporal image processing techniques

  • B. Jähne
  • H. Haußecker
  • H. Scharr
  • H. Spies
  • D. Schmundt
  • U. Schurr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1407)


Image sequence processing techniques are used to study exchange, growth, and transport processes and to tackle key questions in environmental physics and biology. These applications require high accuracy for the estimation of the motion field since the most interesting parameters of the dynamical processes studied are contained in first-order derivatives of the motion field or in dynamical changes of the moving objects. Therefore the performance and optimization of low-level motion estimators is discussed. A tensor method tuned with carefully optimized derivative filters yields reliable and dense displacement vector fields (DVF) with an accuracy of up to a few hundredth pixels/frame for real-world images. The accuracy of the tensor method is verified with computer-generated sequences and a calibrated image sequence. With the improvements in accuracy the motion estimation is now rather limited by imperfections in the CCD sensors, especially the spatial nonuniformity in the responsivity. With a simple two-point calibration, these effects can efficiently be suppressed. The application of the techniques to the analysis of plant growth, to ocean surface microturbulence in IR image sequences, and to sediment transport is demonstrated.


Image Sequence Optical Flow Motion Estimation Structure Tensor Motion Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. S. Beauchemin and J. L. Barron, 1997. The computation of optical flow, ACM Computing Surveys, 27(3), pp. 433–467.CrossRefGoogle Scholar
  2. 2.
    J. Bigün and G. Granlund, 1987. Optimal orientation detection of linear symmetry. Proc. First Intern. Conf. on Comp. Vision, ICCV'87, London, June 8–11, 1987, pp. 433–438.Google Scholar
  3. 3.
    C. H. Chu and E. J. Delp, 1989. Estimating displacement vectors from an image sequence, J. Opt. Soc. Am. A6(6), pp. 871–878.CrossRefGoogle Scholar
  4. 4.
    H. Farid and E.P. Simoncelli, 1997. Optimally rotation-equivariant directional derivative kernels. 7th Int. Conf. Computer Analysis of Images and Patterns, Kiel, pp. 207–214.Google Scholar
  5. 5.
    H. Hau\ecker, 1995. Mehrgitter-Bewegungssegmentierung in Bildfolgen mit Anwendung zur Detektion von Sedimentverlagerungen, Diploma thesis, Univ. Heidelberg.Google Scholar
  6. 6.
    H. Hau\ecker and B. JÄhne, 1997. A tensor approach for precise computation of dense displacement vector fields, Proc. Mustererkennung 1997, Braunschweig, 15–17. September 1997, E. Paulus und F. M. Wahl (Hrsg.), Informatik Aktuell, Springer, Berlin, pp. 199–208.Google Scholar
  7. 7.
    B. JÄhne, 1993. Spatio-Temporal Image Processing, Theory and Scientific Applications, Lecture Notes in Computer Science, Vol. 751, Springer, Berlin, 1993.Google Scholar
  8. 8.
    B. JÄhne, 1997. Practical Handbook on Digital Image Processing for Scientific Applications, CRC-Press, Boca Raton, FL, USA.Google Scholar
  9. 9.
    B. JÄhne, 1997. Performance characteristics of low-level motion estimators in spatiotemporal images, Proc. DAGM-Workshop Performance Characteristics and Quality of Computer Vision Algorithms, Braunschweig, September 18, 1997, W. Foerstner (ed.), Institute of Photogrammetry, Univ. Bonn.Google Scholar
  10. 10.
    B. JÄhne, 1997. SIMD-Bildverarbeitungsalgorithmen mit dem Multimedia Extension-Instruktionssatz (MMX) von Intel, Automatisierungstechnik AT, 10, pp. 453–460.Google Scholar
  11. 11.
    B. JÄhne and H. Hau\ecker, 1998. Air-Water Gas Exchange, Annual Rev. Fluid Mech., 30, pp. 443–468.CrossRefGoogle Scholar
  12. 12.
    M. Kass, and A. Witkin, 1987. Analyzing Oriented Patterns, Comp. Vision Graphics Image Proc., 37, pp. 362–385.CrossRefGoogle Scholar
  13. 13.
    H. Knutsson, 1989. Representing local structure using tensors, 6th Scandinavian Conf. Image Analysis, Oulu, Finland, pp. 244–251.Google Scholar
  14. 14.
    P. S. Liss and R. A. Duce (eds.). The Sea Surface and Global Change, Cambridge Univ. Press, Cambridge, UK, 1997.Google Scholar
  15. 15.
    B. D. Lucas, and T. Kanade. An iterative image-registration technique with an application to stereo vision, Proc. DARPA Image Understanding Workshop, pp. 121–30.Google Scholar
  16. 16.
    M. Otte, and H.-H. Nagel, 1994. Optical flow estimation: advances and comparisons, Proc. ECCV'94, Vol. II, J. O. Eklundh (ed.), Springer, Berlin, pp. 51–60.Google Scholar
  17. 17.
    W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P.:Flannery, 1992. Numerical recipes in C: The Art of Scientific Computing, Cambridge Univ. PressGoogle Scholar
  18. 18.
    A. R. Rao and B. G. Schunck, 1989. Computing oriented texture fields, Proceedings CVPR'89, San Diego, CA, pp. 61–68, IEEE Computer Society Press, Los Alamitos.Google Scholar
  19. 19.
    A. R. Rao, 1990. A Taxonomy for Texture Description and Identification, Springer, New YorkzbMATHGoogle Scholar
  20. 20.
    H. Scharr, S. Körkel, and B. JÄhne, 1997. Numerische Isotropieoptimierung von FIR-Filtern mittels QuerglÄttung, Proc. Mustererkennung 1997, Braunschweig, 15–17. September 1997, E. Paulus und F. M. Wahl (Hrsg.), Informatik Aktuell, Springer, Berlin, pp. 367–374.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • B. Jähne
    • 1
    • 2
    • 4
  • H. Haußecker
    • 1
  • H. Scharr
    • 1
  • H. Spies
    • 1
  • D. Schmundt
    • 1
    • 3
  • U. Schurr
    • 3
  1. 1.Research Group Image Processing, Interdisciplinary Center for Scientific ComputingHeidelberg UniversityHeidelberg
  2. 2.Institute for Environmental PhysicsHeidelberg UniversityHeidelberg
  3. 3.Institute of BotanyHeidelberg UniversityHeidelberg
  4. 4.Scripps Institution of OceanographyUniversity of CaliforniaSan Diego La JollaUSA

Personalised recommendations