Groups, codes and unambiguous automata

  • Pascal Weil
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 182)


Wreath Product Simple Path Minimal Ideal Surjective Morphism Transformation Semigroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Berstel, Transductions and context-free languages, Teubner, Stuttgart (1979).Google Scholar
  2. [2]
    J. Berstel, D. Perrin et al., The theory of codes, to appear.Google Scholar
  3. [3]
    S. Eilenberg, Automata, languages and machines, vol. B, Academic Press, New-York (1976).Google Scholar
  4. [4]
    G. Lallement, Semigroups and combinatorial applications, Wiley, New-York (1979).Google Scholar
  5. [5]
    E. Le Rest and M. Le Rest, Sur les relations entre un nombre fini de mots, Thèse de troisième cycle, Rouen (1979).Google Scholar
  6. [6]
    E. Le Rest and S. Margolis, On the group complexity of a finite language, in Lecture Notes in Computer Science 154, Springer (1983), 433–434.Google Scholar
  7. [7]
    S. Margolis, On the syntactic transformation semigroup of the language generated by a finite biprefix code, Theoretical Computer Science 21 (1982), 225–230.Google Scholar
  8. [8]
    D. Perrin, La transitivité du groupe d'un code bipréfixe fini, Mathematische Zeitschrift 153 (1977), 283–287.Google Scholar
  9. [9]
    D. Perrin, Sur les groupes dans les monoides finis, in Actes du Colloque Non commutative methods in algebraic and geometric combinatorics (A. de Luca ed.) Napoli (1979), 27–45.Google Scholar
  10. [10]
    D. Perrin and J.F. Perrot, A propos des groupes dans certains monoïdes syntactiques, in Lecture Notes in Mathematics 855, Springer (1980), 82–91.Google Scholar
  11. [11]
    J.E. Pin, Variétés de langages formels, Dunod, Paris (1984).Google Scholar
  12. [12]
    J.E. Pin and J. Sakarovitch, Operations and transductions that preserve rationality, in 6th G.I. Conference, Lecture Notes in Computer Science 145, Springer, 277–288.Google Scholar
  13. [13]
    G. Rindone, Groupes finis et monoïdes syntactiques, Thèse de troisième cycle, Paris (1983).Google Scholar
  14. [14]
    J. Sakarovitch, Sur la définition du produit en couronne, in Colloque Codages et transductions (Pirillo ed.), Florence (1981), 285–300.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Pascal Weil
    • 1
  1. 1.L.I.T.P.Paris Cedex 05France

Personalised recommendations