Obstacle detection by evaluation of optical flow fields from image sequences

  • Wilfried Enkelmann
Optical Flow
Part of the Lecture Notes in Computer Science book series (LNCS, volume 427)


The approach discussed in this contribution is an example for the interpretation of temporal variations in image sequences recorded by a translating camera. The encouraging results show how obstacles can be detected in image sequences taken from a translating camea by evaluation of optical flow vectors estimated with independently developed approaches. Further developments are necessary to extend the approach to more general motion and more complex environments.


Image Sequence Optical Flow Image Location Model Vector Obstacle Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aggarwal, J.K, N. Nandhakumar (1988). On the Computation of Motion from Sequences of Images — A Review. Proceedings of the IEEE, Vol. 76, No. 8 (1988) 917–935Google Scholar
  2. Bruss, A.R., B.K.P. Horn (1983). Passive Navigation. Computer Vision, Graphics, and Image Processing 21 (1983) 3–20Google Scholar
  3. Daily, M.J., J. G. Harris, K. Reiser (1987). Detecting Obstacles in Range Imagery, Image Understanding Workshop, Los Angeles/California February 23–25, 1987, 87–97Google Scholar
  4. Dickmanns, E.D., Th. Christians (1989). Relative 3D-State Estimation for Autonomous Guidance of Road Vehicles, Intelligent Autonomous Systems 2, T. Kanade, F.C.A. Groen, L.O. Hertzberger (eds.), 11–14 December, 1989, Amsterdam, 683–693Google Scholar
  5. Enkelmann, W. (1988). Investigations of Multigrid Algorithms for the Estimation of Optical Flow Fields in Image Sequences. Computer Vision, Graphics, and Image Processing (1988) 150–177Google Scholar
  6. Enkelmann, W. (1989). Interpretation of Traffic Scenes by Evaluation of Optical Flow Fields from Image Sequences, Control, Computers, Communications in Transportation, CCCT 89, Sept. 19–21, 1989, Paris, 87–94Google Scholar
  7. Koenderink, J.J., A.J. van Doorn (1977). How an ambulant observer can construct a model of the environment from the geometrical structure of the visual inflow, Kybernetik 1977, G. Hauske, E. Butenandt (eds.), Oldenbourg Verlag München Wien 1978, 224–247Google Scholar
  8. Kories, R., G. Zimmermann (1986). A Versatile Method for the Estimation of Displacement Vector Fields from Image Sequences. Workshop on Motion: Representation and Analysis, Kiawah Island Resort, Charleston/SC, May 7–9, 1986, IEEE Computer Society Press, 1986, 101–106Google Scholar
  9. Nagel, H.-H. (1987). On the estimation of optical flow: relations between different approaches and some new results. Artificial Intelligence 33 (1987) 299–324Google Scholar
  10. Nelson, R.C. (1988) Visual Navigation, PhD Thesis, Center for Automation Research, University of Maryland, August 1988, CAR-TR-380Google Scholar
  11. Olin, K.E., F.M. Vilnrotter, M.J. Daily, K. Reiser (1987) Development in Knowledge-Based Vision for Obstacle Detection and Avoidance, Image Understanding Workshop, Los Angeles/California February 23–25, 1987, 78–86Google Scholar
  12. Rehfeld, N. (1988). Dichte Verschiebungsvektorfelder entlang von Kantenzügen für zeitliche und stereoskopische Bildpaare. 10. DAGM Symposium, Zürich, 27.–29. September 1988, H. Bunke, O. Kübler, P. Stucki (Hrsg.), Mustererkennung 1988 Informatik-Fachberichte 180, Springer-Verlag Berlin Heidelberg New York, 1988, 97–103Google Scholar
  13. Schnörr, C. (1989). Zur Schätzung von Geschwindigkeitsvektorfeldern in Bildfolgen mit einer richtungsabhängigen Glattheitsforderung, 11. DAGM Symposium, Hamburg, 2.–4.10. 1989, H. Burkhardt, K.H. Höhne, B. Neumann (Hrsg.), Mustererkennung 1989, Informatik-Fachberichte 219, Springer-Verlag Berlin Heidelberg New York 1989, 294–301Google Scholar
  14. Storjohann, K., E. Schulze, W. v. Seelen (1988). Segmentierung dreidimensionaler Szenen mittels perspektivischer Kartierung. 10. DAGM Symposium, Zürich, 27.–29. September 1988, H. Bunke, O. Kübler, P. Stucki (Hrsg.), Mustererkennung 1988 Informatik-Fachberichte 180, Springer-Verlag Berlin Heidelberg New York, 1988, 248–254Google Scholar
  15. Zimmermann, G., W. Enkelmann, G. Struck, R. Niepold, R. Kories (1986). Image Sequence Processing for the Derivation of Parameters for the Guidance of Mobile Robots. Proc. Int. Conf. on Intelligent Autonomous Systems, Amsterdam, Dec. 8–10, 1986, Elsevier Science Publisher B.V., Amsterdam, 1986, 654–658Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Wilfried Enkelmann
    • 1
  1. 1.Fraunhofer-Institut für Informations- und Datenverarbeitung (IITB)Karlsruhe 1

Personalised recommendations