Introduction to Evolutionary Machine Learning Techniques

  • Seyedali MirjaliliEmail author
  • Hossam Faris
  • Ibrahim Aljarah
Part of the Algorithms for Intelligent Systems book series (AIS)


This section first provides an overview of the machine learning field in artificial intelligence (AI). The most well-regarded classes of methods in AI are discussed to show where AI optimization algorithms and machine learning techniques fit in. Different types of learning are briefly covered as well including supervised, unsupervised, and reinforcement techniques. The last part of this chapter includes discussions on evolutionary machine learning, which is the focus of this book.


Machine learning Artificial Intelligence Neural network Support vector machine Feature selection Supervised learning Unsupervised learning Evolutionary algorithms Python Optimization Reinforcement learning Classification Regression Clustering Dataset 


  1. 1.
    Selman B, Gomes CP (2006) Hill‐climbing Search, Encyclopedia of cognitive scienceGoogle Scholar
  2. 2.
    Van Laarhoven PJ, Aarts EH (1987) Simulated annealing. In: Simulated annealing: theory and applications. Springer, Heidelberg, pp 7–15Google Scholar
  3. 3.
    Holland JH (1992) Genetic algorithms. Sci Am 267:66–73CrossRefGoogle Scholar
  4. 4.
    Dorigo M, Di Caro G (1999) Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), pp 1470–1477Google Scholar
  5. 5.
    Wang L (2005) Support vector machines: theory and applications, vol 177: Springer Science & Business MediaGoogle Scholar
  6. 6.
    Breiman L (2001) Random forests. Mach Learn 45:5–32CrossRefGoogle Scholar
  7. 7.
    Zhang GP (2000) Neural networks for classification: a survey. IEEE Trans Syst Man Cybern Part C (Appl Rev) 30:451–462MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ding C, He X (2004) K-means clustering via principal component analysis. In: Proceedings of the twenty-first international conference on Machine learning, p 29Google Scholar
  9. 9.
    Ultsch A (1993) Self-organizing neural networks for visualisation and classification. In: Information and classification. Springer, Heidelberg, pp 307–313CrossRefGoogle Scholar
  10. 10.
    Watkins CJ, Dayan P (1992) Q-learning. Mach Learn 8:279–292zbMATHGoogle Scholar
  11. 11.
    Sorokin I, Seleznev A, Pavlov M, Fedorov A, Ignateva A (2015) Deep attention recurrent Q-network. arXiv preprint arXiv:1512.01693
  12. 12.
    Barth-Maron G, Hoffman MW, Budden D, Dabney W, Horgan D, Muldal A et al (2018) Distributed distributional deterministic policy gradients. arXiv preprint arXiv:1804.08617
  13. 13.
    Hirose Y, Yamashita K, Hijiya S (1991) Back-propagation algorithm which varies the number of hidden units. Neural Netw 4:61–66CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Seyedali Mirjalili
    • 1
    • 2
    Email author
  • Hossam Faris
    • 3
  • Ibrahim Aljarah
    • 3
  1. 1.Torrens University AustraliaBrisbaneAustralia
  2. 2.Griffith UniversityBrisbaneAustralia
  3. 3.King Abdullah II School for Information TechnologyThe University of JordanAmmanJordan

Personalised recommendations