History and Future of Soft and Hard Magnetic Materials

  • Satoshi SugimotoEmail author
Part of the Engineering Materials book series (ENG.MAT.)


Magnetic materials are essential in modern daily life as they are used in numerous areas, such as electronics, industrial equipment, and automobiles, as energy conversion materials that drive devices such as generators, which convert kinetic to electrical energy, and motors, which convert electrical to kinetic energy. This chapter introduces the technological history and representative examples of magnetic materials. Further details can be found in Refs. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].


Magnetic anisotropy Magnetostriction Permeability Maximum energy product Coercivity 


  1. 1.
    Kaneko, H., Homma, M.: Materials Engineering Series 8: Magnetic Materials. The Japan Institute of Metals and Materials (1972)Google Scholar
  2. 2.
    Homma, M., Higuchi, A.: Magnetic Materials Reader. Kogyo Chosakai Publishing (1998)Google Scholar
  3. 3.
    Technical Committee on Magnetics, IEEJ: Magnetic Engineering Basics and Applications. Corona Publishing (1999)Google Scholar
  4. 4.
    Expert Committee on Functional Research into Nanoscale Magnetic Materials, IEEJ: Nanostructural Magnetic Materials: Physical Properties, Function, and Design. Kyoritsu Shuppan (2010)Google Scholar
  5. 5.
    Fukuda, M.: Well-known magnetic materials, I introduction, 1. History of magnetic materials. Spec. Steel 63(5), 2–6 (2014)Google Scholar
  6. 6.
    Ikeuchi, S.: High permeability magnetic materials. Vac. Ind. 4(3), 80–84 (1957)Google Scholar
  7. 7.
    Masumoto, T.: Flow in studies of amorphous metal materials. Mater. Jpn. 37(5), 339–346 (1998)CrossRefGoogle Scholar
  8. 8.
    Sagawa, M., Hamano, M., Hirabayashi, M. (eds.): Permanent Magnets: Materials Science and Applications. Chapter 2 (M. Hamano, Editor), Chapter 3 (S. Sugimoto and H. Kato, Joint Editors), Chapter 5 (S. Sugimoto, Editor). Agne Gijutsu Center (2007)Google Scholar
  9. 9.
    Homma, M., Sugimoto, S.: Fundamentals of permanent magnets I. J. Magn. Soc. Jpn. 25(10), 1529–1534 (2001). Homma, M., Sugimoto, S.: Fundamentals of permanent magnets II. J. Magn. Soc. Jpn. 25(11), 1580–1588 (2001). Homma, M., Sugimoto, S.: Fundamentals of permanent magnets III. J. Magn. Soc. Jpn. 25(12), 1625–1640 (2001).Google Scholar
  10. 10.
    Sugimoto, S.: Recent progress in the research of permanent magnets. Mater. Jpn. 56(3), 181–185 (2017)CrossRefGoogle Scholar
  11. 11.
    Sugimoto, S.: Current status and recent topics of rare-earth permanent magnets. J. Phys. D Appl. Phys. 44(6), 064001 (2011)CrossRefGoogle Scholar
  12. 12.
    Bozorth, R.M.: Feromagnetism. Wiley-IEEE Press (1993)Google Scholar
  13. 13.
    Barret, W.F., Brown, W., Hadfield, R.A.J.: Electrical conductivity and magnetic permeability of various alloys of Fe. Sci. Trans. Roy. Dublin Soc. 7, 67–126 (1900)Google Scholar
  14. 14.
    Arnold, H.D., Elmen, G.W.: Permalloy, an alloy of remarkable magnetic properties. J. Frank. Inst. 195(5), 621–632 (1923)CrossRefGoogle Scholar
  15. 15.
    Elmen, G.W.: Magnetic alloys of iron, nickel, and cobalt. Electr. Eng. 54, 1292–1299 (1935)CrossRefGoogle Scholar
  16. 16.
    Elmen, G.W.: Magnetic material and appliance. US patent no. 1739752 (1929)Google Scholar
  17. 17.
    Honda, K., Kaya, S.: On magnetization of single crystals of iron. Sci. Rep. Tohoku Univ. 15, 721 (1926)Google Scholar
  18. 18.
    Goss, N.P.: Electrical sheet and method and apparatus for its manufacture and test. US patent 1965559 (1934)Google Scholar
  19. 19.
    Kato, Y., Takei, T.: Japanese patent no. 98844 (1932)Google Scholar
  20. 20.
    Kato, Y., Takei, T.: Japanese patent no. 110822 (1932)Google Scholar
  21. 21.
    Kato, Y., Takei, T.: Permanent oxide magnet and its characteristics. J. IEEJ 53(3), 408–412 (1933)Google Scholar
  22. 22.
    Snoek, J.L.: New Development in Ferromagnetic Materials. Elsevier (1947)Google Scholar
  23. 23.
    Masumoto, H., Yamamoto, T.: On a new alloy “Sendust” and its magnetic and electric properties. J. Jpn. Inst. Met. Mater. 1(3), 127–135 (1937)CrossRefGoogle Scholar
  24. 24.
    Boothby, O.L., Bozorth, R.M.: A new magnetic material of high permeability. J. Appl. Phys. 18(2), 173–176 (1947)CrossRefGoogle Scholar
  25. 25.
    Fujimori, H., Masumoto, T., Obi, Y., Kikuchi, M.: On the magnetization process in an iron-phosphorus-carbon amorphous ferromagnet. Jpn. J. Appl. Phys. 13(11), 1889–1890 (1974)CrossRefGoogle Scholar
  26. 26.
    Egami, T., Flanders, P.J., Graham Jr., C.D.: Low-field magnetic properties of ferromagnetic amorphous alloys. Appl. Phys. Lett. 26(3), 128–130 (1975)CrossRefGoogle Scholar
  27. 27.
    Kikuchi, M., Fujimori, H., Obi, Y., Masumoto, T.: New amorphous ferromagnets with low coercive force. Jpn. J. Appl. Phys. 14(7), 1077–1078 (1975)CrossRefGoogle Scholar
  28. 28.
    Masumoto, T., Kimura, H.: Crystallization process of iron-based amorphous alloy (Fe–P–C) quenched from liquid. J. Jpn. Inst. Met. Mater. 39(3), 273–280 (1975)CrossRefGoogle Scholar
  29. 29.
    Yoshizawa, Y., Oguma, S., Yamauchi, K.: New Fe-based soft magnetic alloys composed of ultrafine grain structure. J. Appl. Phys. 64(15), 6044–6046 (1988)CrossRefGoogle Scholar
  30. 30.
    Products Catalog, Hitachi Metals, Ltd.: “FINEMET” Nanocrystalline Soft Magnetic Material and Website:
  31. 31.
    Makino, A., Men, H., Kubota, T., Yubuta, K., Inoue, A.: FeSiBPCu nanocrystalline soft magnetic alloys with high Bs of 1.9 Tesla produced by crystallizing hetero-amorphous phase. Mater. Trans. 50(1), 204–209 (2009)CrossRefGoogle Scholar
  32. 32.
    Karamon, H., Masumoto, T., Makino, Y.: Magnetic and electrical properties of Fe-B-N amorphous films. J. Appl. Phys. 57(1), 3527–3532 (1985)CrossRefGoogle Scholar
  33. 33.
    Onuma, S., Mitani, S., Fujimori, H., Masumoto, T.: Soft magnetic properties at high frequencies of Co–Al–O films with granular structure. J. Magn. Soc. Jpn. 20(2), 489–492 (1996)CrossRefGoogle Scholar
  34. 34.
    Takada, Y., Abe, M., Masuda, S., Inagaki, J.: Commercial scale production of Fe-6.5 wt. % Si sheet and its magnetic properties. J. Appl. Phys. 64(10), 5367–5369 (1988)CrossRefGoogle Scholar
  35. 35.
    Okami, Y., Abe, M., Yamaji, T., Takada, Y., Ninomiya, H.: Continuous siliconizing technology of 6.5% silicon steel sheet. J. ISIJ 80(10), 777–782 (1994)Google Scholar
  36. 36.
    Hiratani, T., Oda, Y., Namikawa, M., Kasai, S., Ninomiya, H.: Development of Si gradient steel sheet with high saturation magnetic flux density and low iron loss at high frequency. Mater. Jpn. 53(3), 110–112 (2014)CrossRefGoogle Scholar
  37. 37.
    Koiwa, M.: Metallurgy promenade: pursuing serendipity. Agne Gijutsu Center (2004)Google Scholar
  38. 38.
    Honda, K., Saito, S.: On K. S. magnet steel. Phys. Rev. 16(6), 495–501 (1920)CrossRefGoogle Scholar
  39. 39.
    Mishima, T., Makino, N.: Studies on anisotropic ML permanent magnet (I) (on the chemical composition and the additional elements). J. ISIJ 42(11), 1063–1066 (1956)Google Scholar
  40. 40.
    Society of Non-Traditional Technology (ed.): Magnetic materials for a new age. Kogyo Chosakai Publishing (1981)Google Scholar
  41. 41.
    Ida, S., Sakurai, Y., Iwasaki, S., Nagashima, T., Iwama, Y., Watanabe, S., Kobayashi, H. (ed.): Course in magnetic engineering: hard magnetic materials. Maruzen (1976)Google Scholar
  42. 42.
    Honda, K., Masumoto, H., Shirakawa, Y.: On new K.S. permanent magnet. Sci. Rep. Tohoku Univ. 23, 365 (1934)Google Scholar
  43. 43.
    Jonas, B., Emden, H.J.M.V.: New kinds of steel of high magnetic power. Philips Tech. Rev. 6, 8–11 (1941)Google Scholar
  44. 44.
    Koch, A.J.J., Hokkeling, P., Steeg, M.G.V.D., de Vos, K.J.: New material for permanent magnets on a base of Mn and Al. J. Appl. Phys. 31(5), S75–S77 (1960)CrossRefGoogle Scholar
  45. 45.
    Kaneko, H., Homma, M., Nakmamura, K.: New ductile permanent magnet of Fe–Cr–Co system. AIP Conf. Proc. Magn. Magn. Mater. 5, 1088–1092 (1971)Google Scholar
  46. 46.
    Hoffer, G., Strnat, K.J.: Magnetocrystalline anisotropy of YCo5, and Y2Co17. IEEE Trans. Magn. MAG-2(3), 487–489 (1966)CrossRefGoogle Scholar
  47. 47.
    Buschow, K.H.J., Naastepad, P.A., Westendorp, F.F.: Preparation of SmCo5 permanent magnets. J. Appl. Phys. 40(10), 4029–4032 (1969)CrossRefGoogle Scholar
  48. 48.
    Tawara, Y., Ohashi, T.: Rare Earth Permanent Magnets. Morikita Publishing (1999)Google Scholar
  49. 49.
    Tawara, Y., Senno, H.: Cerium, cobalt and copper alloy as a permanent magnet material. Jpn. J. Appl. Phys. 7, 966–967 (1968)CrossRefGoogle Scholar
  50. 50.
    Nesbitt, E.A., Willens, R.H., Sherwood, R.C., Buehler, E., Wernick, J.H.: New permanent magnet materials. Appl. Phys. Lett. 12(11), 361–362 (1968)CrossRefGoogle Scholar
  51. 51.
    Sagawa, M., Fujimura, S., Togawa, N., Yamamoto, H., Matsuura, Y.: New material for permanent magnets on a base of Nd and Fe (invited). J. Appl. Phys. 55(6), 2083–2087 (1984)CrossRefGoogle Scholar
  52. 52.
    Croat, J.J., Herbst, J.F., Lee, R.W., Pinkerton, F.E.: Pr–Fe and Nd–Fe-based materials: a new class of high-performance permanent magnets (invited). J. Appl. Phys. 55(6), 2078–2082 (1984)CrossRefGoogle Scholar
  53. 53.
    Ohashi, K., Yokoyama, T., Osugi, R., Tawara, Y.: The magnetic and structural properties of R-Ti–Fe ternary compounds. IEEE Trans. Magn. MAG-23(5), 3101–3103 (1987)CrossRefGoogle Scholar
  54. 54.
    Coey, J.M.D., Sun, H.: Improved magnetic properties by treatment of iron-based rare earth intermetallic compounds in ammonia. J. Magn. Magn. Mater. 87(3), L251–L254 (1990)CrossRefGoogle Scholar
  55. 55.
    Iriyama, T., Kobayashi, K., Imaoka, N., Fukuda, T., Kato, H., Nakagawa, Y.: Effect of nitrogen content on magnetic properties of Sm2Fe17Nx (O < x < 6). IEEE Trans. Magn. 28(5), 2326–2331 (1992)CrossRefGoogle Scholar
  56. 56.
    Taguchi, H.: New magnetic materials: development of higher magnetism and new applications: trend towards higher performance of ferrite magnets. Eng. Mater. 46(7), 53–57 (1998)Google Scholar
  57. 57.
    Ogata, Y., Kubota, Y., Takami, T., Tokunaga, M.: Improvements of magnetic properties of Sr ferrite magnets by substitutions of La and Co. IEEE Trans. Magn. 35(5), 3334–3336 (1999)CrossRefGoogle Scholar
  58. 58.
    Kobayashi, Y., Hosokawa, S., Oda, E., Toyota, S.: Magnetic properties and composition of Ca–La–Co M-type ferrites. J. Jpn. Soc. Powder Powder Metall. 55(7), 541–546 (2008)CrossRefGoogle Scholar
  59. 59.
    Herbst, J.F., Croat, J.J., Pinkerton, F.E., Yelon, W.B.: Relationships between crystal structure and magnetic properties in Nd2Fe14B. Phys. Rev. B 29(7), 4176–4178 (1984)CrossRefGoogle Scholar
  60. 60.
    Hirose, Y., Hasegawa, H., Sasaki, S.: Microstructure of strip cast alloys for high performance NdFeB magnets. In: Proceedings of 15th Workshop on Rare-Earth Magnets & Their Applications, pp. 77–86. Dresden (1998)Google Scholar
  61. 61.
    Harris, I.R., McGuiness, P.J.: Hydrogen: its use in the processing of NdFeB-type magnets and in the characterization of NdFeB-type alloys and magnets. In: Proceedings of 11th International Workshop on Rare Earth Magnets and Their Applications, pp. 29–48. Pittsuburgh, USA (1990)Google Scholar
  62. 62.
    Minowa, T., Yoshikawa, M., Honshima, M.: Improvement of the corrosion resistance on Nd–Fe–B magnet with nickel plating. IEEE Trans. Magn. 25(5), 3776–3778 (1989)CrossRefGoogle Scholar
  63. 63.
    Harimoto, D., Matsuura, Y.: Development of high performance Nd–Fe–B sintered magnets. Hitachi Met. Tech. Rev. 23(3), 69–72 (2007)Google Scholar
  64. 64.
    Une, Y., Sagawa, M.: Enhancement of coercivity of Nd–Fe–B sintered magnets by grain size reduction. J. Jpn. Inst. Met. Mater. 76(1), 12–16 (2012)CrossRefGoogle Scholar
  65. 65.
    Nakamura, M., Matsuura, M., Tezuka, N., Sugimoto, S., Une, Y., Kubo, H., Sagawa, M.: Preparation of ultrafine jet-milled powders for Nd–Fe–B sintered magnets using hydrogenation–disproportionation–desorption–recombination and hydrogen decrepitation processes. Appl. Phys. Lett. 103(2), 022404-1–022404-4 (2013)CrossRefGoogle Scholar
  66. 66.
    Nakamura, H., Hirota, K., Shimao, M., Minowa, T., Honshima, M.: Magnetic properties of extremely small Nd–Fe–B sintered magnets. IEEE Trans. Magn. 41(10), 3844–3846 (2005)CrossRefGoogle Scholar
  67. 67.
    Lee, R.W.: Hot-pressed neodymium-iron-boron magnets. Appl. Phys. Lett. 46(8), 790–791 (1985)CrossRefGoogle Scholar
  68. 68.
  69. 69.
    Takeshita, T., Nakayama, R.: Magnetic properties and microstructures of the Nd–Fe–B magnet powders produced by the hydrogen treatment-(III). In: Proceedings of the 11th International Workshop on RE Magnet and Their Applications, pp. 49–71. Pittsburgh (1990)Google Scholar
  70. 70.
    Sugimoto, S., Nakamura, H., Kato, K., Book, D., Kagotani, T., Okada, M., Homma, M.: Effect of the disproportionation and recombination stages of the HDDR process on the inducement of anisotropy in Nd–Fe–B magnets. J. Alloys Compd. 293–295, 862–867 (1999)CrossRefGoogle Scholar
  71. 71.
    Mishima, C., Hamada, N., Mitaraia, H., Honkura, Y.: Dependence of the hydrogen pressure on the magnetic properties of NdFeB anisotropic magnet powders produced by the HDDR method. J. Magn. Soc. Jpn. 24(4–2), 407–410 (2000)CrossRefGoogle Scholar
  72. 72.
    Hirayama, Y., Takahashi, Y.K., Hirosawa, S., Hono, K.: Intrinsic hard magnetic properties of Sm(Fe1−xCox)12 compound with the ThMn12 structure. Scr. Mater. 138, 62–65 (2017)CrossRefGoogle Scholar
  73. 73.
    Shinaji, Keita, Mase, Tsuyoshi, Isogai, Keita, Matsuura, Masashi, Tezuka, Nobuki, Sugimoto, Satoshi: Influence of heat treatment on the microstructure and magnetic properties of Mn–Sn–Co–N alloys. Mater. Trans. 54(10), 2007–2010 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Graduate School of EngineeringTohoku UniversitySendaiJapan

Personalised recommendations