Advertisement

Alkaline Protease: A Tool to Manage Solid Waste and Its Utility in Detergent Industry

  • Vipul Kumar Yadav
  • Veer Singh
  • Vishal MishraEmail author
Chapter

Abstract

Management of solid waste is an issue of contemporary interest worldwide. Nowadays most of the solid wastes are disposed on the land, and various anthropogenic sources like leather industry, poultry industry (feather), and other food processing industries generate a lot of biodegradable proteinaceous waste. Microorganisms have the ability to produce alkaline protease like bacteria, fungi, algae, plant and animal. This review suggests that various microorganisms are involved in the degradation of household and industrial waste by producing alkaline protease and degradation by this process not only solves the problem of waste management but also generates a source of animal feed as it yields proteinaceous by-product after degradation. Microbial sources of alkaline proteases are preferred over plant and animal sources since they have almost all characteristics which are prerequisite for biotechnological applications, like their high activity at alkaline pH (pH 10), thermostability and broad substrate specificity. Alkaline proteases are extracellular enzyme of metabolic process. This review mainly focuses on the utility of alkaline protease in management of solid waste and in detergent formulation. This review also focuses on the method to improve the capability of microorganism to increase the yield of alkaline protease.

Keywords

Alkaline protease Biodegradation Feather and leather waste Detergent 

Notes

Acknowledgment

The authors of this manuscript would like to thank the Council of Scientific & Industrial Research (CSIR), New Delhi, India, for financial support and the School of Biochemical Engineering IIT (BHU), Varanasi, for providing their technical support.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Aftab MN, Hameed A, Ikram-ul-Haq SCR (2006) Biodegradation of leather waste by enzymatic treatment. Chin J Process Eng 6:1–3Google Scholar
  2. Ahamad J, Ansari TA (2013) Alkaline protease production using proteinaceous tannery solid. J Pet Environ Biotechnol 4:136–139Google Scholar
  3. Ahmed SA, Al-domany RA, El-Shayeb NMA, Radwan HH, Saleh SA (2008) Optimization, immobilization of extracellular alkaline protease and characterization of its enzymatic properties. Res J Agric Biol Sci 4:434–446Google Scholar
  4. Al-Abdalall MH, Al-Khaldi EM (2016) Recovery of silver from used X-ray film using alkaline protease from Bacillus subtilis sub sp. Subtilis. Afr J Biotechnol 15:1413–1416CrossRefGoogle Scholar
  5. Alessandro R, Silvia O, Adriano B (2003) Dehairing activity of extracellular proteases produced by keratinolytic bacteria. J Chem Technol Biotechnol 78:855–859CrossRefGoogle Scholar
  6. Alexander KTW, Corning DR, Cory NJ (1991) Environmental and safety issues clean technology and environmental auditing. J Soc Leather Technol Chem 76:17–23Google Scholar
  7. Anandan D, Marmer WN, Dudley RL (2007) Isolation, characterization and optimization of culture parameters for production of an alkaline protease isolated from Aspergillus tamari. J Ind Microbiol Biotechnol 34:339–347PubMedCrossRefGoogle Scholar
  8. Anwar A, Saleemuddin M (1998) Alkaline protease: a review. Bioresour Technol 64:175–183CrossRefGoogle Scholar
  9. Arai M, Murao S (1977) Purification and some properties of two alkaline proteases from Penicillium liliacinum no. 2093. Agric Biol Chem 41:2293–2294Google Scholar
  10. Aunstrup K (1980) Proteinases. In: Rose AH (ed) Economic microbiology: microbial enzymes and bioconversions, vol 5. Academic, New York, pp 50–114Google Scholar
  11. Aunstrup K, Outtrup H, Andersen O, Damnmann C (1972) Proteases from alkalophilic Bacillus species. In: Terui G (ed) Fermentation technology today. Society of Fermentation Technology of Japan, Osaka, pp 299–305Google Scholar
  12. Banerjee R, Bhattacharyya BC (1992) Extracellular alkaline protease of a newly isolated Rhizopus oryzae. Biotechnol Lett 14:301–304CrossRefGoogle Scholar
  13. Barthomeuf C, Pourrat H, Pourrat A (1992) Collagenolytic activity of a new semi-alkaline protease from Aspergillus niger. J Ferment Bioeng 73:233–236CrossRefGoogle Scholar
  14. Beg QK, Saxena RK, Gupta R (2002) De-repression and subsequent induction of protease synthesis by Bacillus mojavensis under fed-batch operations. Process Biochem 37:1103–1109CrossRefGoogle Scholar
  15. Belder DE, Bonants PJM, Fitters PFL, Waalwijk C (1994) New alkaline serine protease of Paecilomyces lilacinus. European Patent Appl EP 0623672Google Scholar
  16. Bettel C, Klupsch S, Papendorf G, Hastrup S, Branner S, Wilson KS (1992) Crystal structure of the alkaline protease Savinase from Bacillus lentus at 1.4 angstrom resolution. J Mol Biol 223:427–445CrossRefGoogle Scholar
  17. Bhosale SH, Rao MV, Deshpande VV, Srinivasan MC (1995) Thermostability of high activity alkaline protease from Conidiobolus coronatus (NCL 86.8.20). Enz Microb Technol 17:136–139CrossRefGoogle Scholar
  18. Bhunia B, Basak B, Dey A (2012) A review on production of serine alkaline protease by Bacillus spp. J Biochem Technol 3:448–457Google Scholar
  19. Boyer EW, Byng GS (1996) Bacillus proteolyticus species which produce an alkaline protease. US Patent. 5518917Google Scholar
  20. Bryan PN, Rollence ML, Pantoliano MW, Wood J, Finzel BC, Gilliland GL, Howard AJ, Poulous TL (1986) Proteases of enhanced stability: characterization of a thermostable variant of subtilisin. Proteins 1:326–334PubMedCrossRefPubMedCentralGoogle Scholar
  21. Cabezaa LF, Taylora MM, DiMaioa GL, Browna EM, Marmera WN, Carrio R, Celmab PJ, Cotc J (1998) Processing of leather waste: pilot scale studies on chrome shavings. Isolation of potentially valuable protein products and chromium. Waste Manag 18:21–218CrossRefGoogle Scholar
  22. Cao L, Tan H, Liu Y, Xue X, Zhou S (2008) Characterization of a new ker-atinolytic Trichoderma atroviride strain F6 that completely degrades native chicken feather. Lett Appl Microbiol 46:389–394PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chakraborty R, Srinivasan M (1993) Production of a thermostable alkaline protease by a new Pseudomonas sp. By solid substrate fermentation. J Microbiol Biotechnol 8:7–16Google Scholar
  24. Chandrasekaran S, Dhar SC (1986) Utilization of a multiple proteinase concentrate to improve the nutritive value of chicken feather meal. J Leather Res 4:23–30Google Scholar
  25. Chao YP, Wen CS, Wang JY (2004) A facile and efficient method to achieve LacZ overproduction by the expression vector carrying the thermoregulated promoter and plasmid copy number. Biotechnol Prog 20:420–225PubMedCrossRefPubMedCentralGoogle Scholar
  26. Cortezi M, Cilli EM, Contiero J (2008) Bacillus amyloliquefaciens: a new keratinolytic feather-degrading bacteria. Curr Trends Biotechnol Pharm 2:170–177Google Scholar
  27. Dalev PG (1994) Utilisation of waste feathers from poultry slaughter for production of a protein concentrate. Bioresour Technol 48:265–267CrossRefGoogle Scholar
  28. Danno G (1970) Crystallization and some properties of alkaline proteinase from Aspergillus sulphureus. Agric Biol Chem 34:264–273CrossRefGoogle Scholar
  29. Danno G, Yoshimura S (1967) Studies on an alkaline proteinase of Aspergillus sydowi. Part I. purification and some properties of the proteinase. Agric Biol Chem 31:1151–1158Google Scholar
  30. Dhar SC, Sreenivasulu S (1984) Studies on the use of dehairing enzyme for its suitability in the preparation of improved animal feed. Leather Sci 31:261–267Google Scholar
  31. Do Nascimento WCA, Martins MLL (2006) Studies on the stability of protease from Bacillus sp. and its compatibility with commercial detergent. Braz J Microbiol 37:307–311CrossRefGoogle Scholar
  32. Dozie INS, Okeke CN, Unaeze NC (1994) A thermostable, alkaline-active, keratinolytic proteinase from Chrysosporiumkeratinophilum. Word J Microb Biotechnol 10:563–567CrossRefGoogle Scholar
  33. El-Beih FM, Abu-Shady MR, Gamal RF, Abd El-Rahim MKI (1991) Factors affecting the production of extracellular alkaline proteinase by two local isolates of B. amyloliquefaciens. Ann Agric Sci 36:363–376Google Scholar
  34. Ellaiah P, Srinivasulu B, Adinarayana K (2002) A review on microbial alkaline proteases. J Sci Ind Res 61:690–704Google Scholar
  35. Eschenburg S, Genov N, Peters K, Fittkau S, Stoeva S, Wilson KS, Betzel C (1988) Crystal structure of subtilisin DY, a random mutant of subtilisin Carlsberg. Eur J Biochem 257:309–318CrossRefGoogle Scholar
  36. Flores-Fernández CN, Cárdenas-Fernández M, Dobrijevic D, Jurlewicz K, Zavaleta AI, Ward JM, Lye GJ (2018) Novel Extremophilic proteases from Pseudomonas aeruginosa M211 and their application in the hydrolysis of dried Distiller’s grain with Solubles. Biotechnol Prog.  https://doi.org/10.1002/btpr.2728 PubMedCrossRefPubMedCentralGoogle Scholar
  37. Fukumori F, Kudo T, Narahashi Y, Horikoshi K (1986) Molecular cloning and nucleotide sequence of the alkaline cellulose gene from the alkalophilic Bacillus sp. strain 1139. J Gen Microbiol 132:2329–2335PubMedGoogle Scholar
  38. Furhan J, Sharma S (2014) Microbial alkaline proteases: findings and applications. Int J Inv Pharm Sci 2:823–834Google Scholar
  39. Gajju H, Bhalla TC, Agarwal HO (1996) Utilization of thermostable alkaline protease from Bacillus coagulans PB-77 for silver recovery from used x-ray films. In: Proceedings of the 37th annual conference Association of Microbial India, Chennai, India, (Abstr no. IM-4), p 79Google Scholar
  40. Gessesse A, Hatti-Kaul R, Gashe B, Mattiasson BA (2003) Novel alkaline proteases from alkaliphilic bacteria grown on chicken feather. Enzym Microb Technol 32:519–524CrossRefGoogle Scholar
  41. Giongo JL, Lucas FS, Casarin F, Heeb P, Brandelli A (2007) Keratinolytic proteases of Bacillus species isolated from the Amazon basin showing remarkable de-hairing activity. World J Microbiol Biotechnol 23:375–382CrossRefGoogle Scholar
  42. Glazer AG, Nikaido H (1995) Microbial biotechnology: fundamental of applied microbiology. Freeman and Company, New YorkGoogle Scholar
  43. Godfrey T, West S (1996) Introduction to industrial enzymology. In: Godfrey T, West S (eds) Industrial enzymology, 2nd edn. Macmillan Press, London, pp 1–8Google Scholar
  44. Guleria S, Walia A, Chauhan A, Shirkot CK (2016) Purification and characterization of detergent stable alkaline protease from Bacillus amyloliquefaciens SP1 isolated from apple rhizosphere. J Basic Microbiol 56:138–152PubMedCrossRefPubMedCentralGoogle Scholar
  45. Gupta R, Beg K, Lorenz P (2002) Bacterial alkaline protease: molecular approaches and industrial application. Appl Micro Biotechnol 59:15–32CrossRefGoogle Scholar
  46. Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high- level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130PubMedPubMedCentralCrossRefGoogle Scholar
  47. Habbeche A, Saoudi B, Jaouadi B, Haberra S, Kerouaz B, Boudelaa M (2014) Purification and biochemical characterization of a detergent-stable keratinase from a newly thermophilic actinomycete Actinomadura keratinilytica strain Cpt29 isolated from poultry compost. J Biosci Bioeng 117:413–421PubMedCrossRefPubMedCentralGoogle Scholar
  48. Haddar A, Hmidet N, Ghorbel BO, Zouari NF, Kamoun SA, Nasri M (2011) Alkaline proteases produced by Bacillus licheniformis RP1 grown on shrimp wastes: application in chitin extraction, chicken feather-degradation and as a dehairing agent. Biotechnol Bioprocess Eng 16:669–678CrossRefGoogle Scholar
  49. Hakamada Y, Kobayashi T, Hitomi J, Kawai S, Ito S (1994) Molecular cloning and nucleotide sequencing of the gene for an alkaline protease from the alkalophilic Bacillus sp. KSM-K16. J Ferment Bioeng 78:105–108CrossRefGoogle Scholar
  50. Hamamoto T, Honda H, Kudo T, Horikoshi K (1987) Nucleotide sequence of the xylanase A gene of alkalophilic Bacillus sp. strain C-125. Agric Biol Chem 51:953–955Google Scholar
  51. Hameed A, Keshavarz T, Evans CS (1999) Effect of dissolved oxygen tension and pH on the production of extracellular protease from a new isolate of Bacillus subtilis K2, for use in leather processing. J Chem Technol Biotechnol 74:5–8CrossRefGoogle Scholar
  52. Harrar BS, Woods EF (1963) Soluble derivatives of feather keratin I. isolation, fractionation and amino acid composition. Biochem J 92:8–18Google Scholar
  53. Hayashi K, Fukushima D, Mogi K (1967) Isolation of alkaline proteinase from Aspergillus sojae in homogeneous form. Agric Biol Chem 31:1237–1241CrossRefGoogle Scholar
  54. Heinaru E, Truu J, Stottmeister U, Heinaru A (2000) Three types of phenol and p-cresol catabolism in phenol- and p-cresol-degrading bacteria isolated from river water continuously polluted with phenolic compounds. FEMS Microbiol Ecol 31:195–205PubMedCrossRefGoogle Scholar
  55. Holmquist M, Martinelle M, Clausen IG, Patkar S, Svendsen A, Hult K (1994) Trp89 in the lid of Humicola lanuginosa lipase is important for efficient hydrolysis of tributyrin. Lipids 29:599–603PubMedCrossRefGoogle Scholar
  56. Horikoshi K, Akiba T (1982) Alkalophilic microorganisms: a new microbial world. Japan Scientific Societies Press/Springer, Tokyo/BerlinGoogle Scholar
  57. Hotha S, Banik RM (1997) Production of alkaline protease by Bacillus thuringiensis H14 in aqueous two-phase systems. J Chem Technol Biotechnol 69:5–10CrossRefGoogle Scholar
  58. Huang Q, Yong P, Xin L, Haifeng W, Yizheng Z (2003) Purification and characterization of an extracellular alkaline serine protease with dehairing function from Bacillus pumilus. Curr Microbiol 46:169–173PubMedCrossRefGoogle Scholar
  59. Hutterer KM, Zhang Z, Michaels ML, Belouski E, Hong RW, Shah B et al (2012) Targeted codon optimization improves translational fidelity for an Fc fusion protein. Biotechnol Bioeng 109:2770–2777PubMedCrossRefGoogle Scholar
  60. Inventory of GRAS Notices: Summary of all GRAS Notices (2008-10-22) US FDA/CFSAN. Archived from the original on 11 October 2008. Retrieved 2008-10-31Google Scholar
  61. Itskovich EL, Znamenskaya LV, Balaban NP, Ershova TA, Leshchinskaya IB (1995) Biosynthesis of alkaline proteinase by Bacillus intermedius. Microbiology 64:530–536Google Scholar
  62. Jacobs M, Eliasson M, Uhlén M, Flock JI (1985) Cloning, sequencing and expression of subtilisin Carlsberg from Bacillus licheniformis. Nucleic Acids Res 13:8913–8926PubMedPubMedCentralCrossRefGoogle Scholar
  63. Jacobson JW, Glick JL, Madello KL (1985) Composition for cleaning drains clogged with deposits containing hairs. US Patent 4-540-506Google Scholar
  64. Jang JS, Kang DO, Chun MJ, Byun SM (1992) Molecular cloning of a subtilisin J from Bacillus stearothermophilus and its expression in Bacillus subtilis. Biochem Biophys Res Comm 184:277–282PubMedCrossRefPubMedCentralGoogle Scholar
  65. Jaouadi B, Ellouz-Chaabouni S, Rhimi M, Bejar S (2008) Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency. Biochimie 90:1291–1305PubMedCrossRefGoogle Scholar
  66. Jaouadi B, Abdelmalek B, Jaouadib NZ, Bejar S (2011) The bioengineering and industrial applications of bacterial alkaline proteases: the case of SAPB and KERAB. In: Carpi A (ed) Progress in molecular and environmental bioengineering – from analysis and modeling to technology applications. isbn: 978-953-307-268-275Google Scholar
  67. Johnvesly B, Naik GR (2001) Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. J99 in a chemically defined medium. Process Biochem 37:139–144CrossRefGoogle Scholar
  68. Kalisz HM (1988) Microbial proteinases. Adv Biochem Eng Biotechnol 36:1–65PubMedGoogle Scholar
  69. Kanehisa K (2000) Woven or knit fabrics manufactured using yarn dyed raw silk. US Patent 6,080,689Google Scholar
  70. Kaneko R, Koyama N, Tsai YC, Juang RY, Yoda K, Yamasaki M (1989) Molecular cloning of the structural gene for alkaline elastase YaB, a new subtilisin produced by an alkalophilic Bacillus strain. J Bacteriol 171:5232–5236PubMedPubMedCentralCrossRefGoogle Scholar
  71. Karn SK, Kumar A (2015) Hydrolytic enzyme protease in sludge: recovery and its application. Biotechnol Bioprocess Eng 20:652–661CrossRefGoogle Scholar
  72. Kobayashi T, Hakamada Y, Adachi S, Hitomi J, Yoshimatsu T, Koike K, Kawai S, Ito S (1995) Purification and properties ofan alkaline protease from alkalophilic Bacillus sp. KSM-K16. Appl Microbiol Biotechnol 43:473–478CrossRefGoogle Scholar
  73. Koide Y, Nakamura A, Uozumi T, Beppu T (1986) Cloning and sequencing of the major intracellular serine protease gene of Bacillus subtilis. J Bacteriol 167:110–116PubMedPubMedCentralCrossRefGoogle Scholar
  74. Krulwich TA, Guffanti AA (1983) Physiology of acidophilic and alkalophilic bacteria. Adv Microb Physiol 24:173–214PubMedCrossRefGoogle Scholar
  75. Krulwich TA, Guffanti AA, Seto-Young D (1990) pH homeostasis and bioenergetic work in alkalophiles. FEMS Microbiol Rev 75:271–278CrossRefGoogle Scholar
  76. Kumar CG, Takagi H (1999) Microbial alkaline proteases: from a bioindustrial view point. Biotechnol Adv 17:561–594PubMedCrossRefGoogle Scholar
  77. Kumar CG, Malik RK, Tiwari MP (1998) Novel enzyme-based detergents: an Indian perspective. Curr Sci 75:1312–1318Google Scholar
  78. Kumar D, Chand D, Sankhian UD, Bhalla TC (2002) Application of Bacillus sp. APR-4 protease in silver recovery from used X-ray films. Bull Biol Sci 1:39–41Google Scholar
  79. Lakshmi BKM, Hemalatha KPJ (2016) Production of alkaline protease from Bacillus licheniformis through statistical optimization of growth media by response surface methodology. Ferment Technol 5:130–336CrossRefGoogle Scholar
  80. Landau NS, Egorov NS, Gornova B, Krasovskaya SB, Virnik AD (1992) Immobilization of Bacillus firmus cells in cellulose triacetate fibres and films and their use in proteinase biosynthesis. Appl Biochem Microbiol 28:84–88Google Scholar
  81. Larcher G, Bouchara JP, Annaix V, Symoens F, Chabasse D, Tronchin G (1992) Purification and characterization of a fibrinogenolytic serine proteinase from Aspergillus fumigatus culture filtrate. FEBS Lett 308:65–69PubMedCrossRefGoogle Scholar
  82. Larcher G, Cimon B, Symoens F, Tronchin G, Chabasse D, Bouchara JP (1996) A 33 kDa serine proteinase from Scedosporium apiospermum. Biochem J 315:119–126PubMedPubMedCentralCrossRefGoogle Scholar
  83. Lesnik EA, Sampath R, Levene HB, Henderson TJ, McNeil JA, Ecker DJ (2001) Prediction of rho-independent transcriptional terminators in Escherichia coli. Nucleic Acids Res 29:3583–3594PubMedPubMedCentralCrossRefGoogle Scholar
  84. Liu L, Li Y, Zhang J, Zou W, Zhou Z, Liu J, Li X, Wang L, Chen J (2011) Complete genome sequence of the industrial strain Bacillus megaterium WSH-002. J Bacterial 193:6389–6390CrossRefGoogle Scholar
  85. Luisetti M, Piccioni PO, Dyne K, Donnini M, Bulgheroni A, Pasturenzi L, Donnetta AM, Peona V (1991) Some properties of the alkaline proteinase from Aspergillus melleus. Int J Tissue React 13:187–192PubMedGoogle Scholar
  86. Mabrouk MEM (2008) Feather degradation by a new keratinolytic Streptomyces sp. MS-2. World J Microbiol Biotechnol 24:2331–2338CrossRefGoogle Scholar
  87. Macedo AJ, da Silva WOBD, Gava R, Driemeier D, Henriques JAP, Termignoni C (2005) Novel keratinase from Bacillus subtilis S14 exhibiting remarkable dehairing capabilities. Appl Environ Microbiol 71:594–596PubMedPubMedCentralCrossRefGoogle Scholar
  88. Majumder R, Banik SP, Ramrakhiani L, Khowala S (2015) Bioremediation by alkaline protease (AkP) from edible mushroom Termitomyces clypeatus: optimization approach based on statistical design and characterization for diverse applications. Chem Technol Biotechnol 90:1886–1896CrossRefGoogle Scholar
  89. Makrides SC (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60:512–538PubMedPubMedCentralGoogle Scholar
  90. Malathi S, Chakraborty R (1991) Production of alkaline protease by a new Aspergillus flavus isolate under solidsubstrate fermentation conditions for use as a depilation agent. Appl Environ Microbiol 57:712–716PubMedPubMedCentralGoogle Scholar
  91. Masui A, Yasuda M, Fujiwara N, Ishikawa H (2004) Enzymatic hydrolysis of gelatin layers on used lith film using thermostable alkaline protease for recovery of silver and PET film. Biotechnol Prog 20:1267–1269PubMedCrossRefGoogle Scholar
  92. Matsubara H, Feder J (1971) The enzyme, vol 3. Academic, New YorkGoogle Scholar
  93. Mazotto AM, Coelho RRR, Cedrola SML, Lima MFD, Couri S, Souza EPD, Vermelho AB (2011) Keratinase production by three Bacillus spp. using feather meal and whole feather as substrate in a submerged fermentation. Enzym Res.  https://doi.org/10.4061/2011/523780 CrossRefGoogle Scholar
  94. Menandro NA (2010) Waste chicken feather as reinforcement in cement-bonded composites. Philipp J Sci 139:161–166Google Scholar
  95. Mikami Y, Miyashita K, Arai T (1986) Alkalophilic actinomycetes. Actinomycetes 19:76–191Google Scholar
  96. Monod M, Togni G, Rahalison L, Frenk E (1991) Isolation and characterisation of an extracellular alkaline protease of Aspergillus fumigatus. J Med Microbiol 35:23–28PubMedCrossRefGoogle Scholar
  97. Moon SH, Parulekar SJ (1991) A parametric study of protease production in batch and fed- batch cultures of Bacillus firmus. Biotechnol Bioeng 37:467–483PubMedCrossRefGoogle Scholar
  98. Najafi MF (2005) Potential application of protease isolated from Pseudomonas aeruginosa PD100. Electron J Biotechol 2:717–3458Google Scholar
  99. Nakadai T, Nasuno S, Iguchi N (1973) Purification and properties of alkaline proteinase from Aspergillus oryzae. Agric Biol Chem 37:2685–2694CrossRefGoogle Scholar
  100. Nasuno S, Ohara T (1971) Hyperproduction of proteinase and some hydrolytic enzymes by mutants of Aspergillus sojae. Agric Biol Chem 35:829–835CrossRefGoogle Scholar
  101. Newbury SF, Smith NH, Robinson EC, Hiles ID, Higgins CF (1987) Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell 48:297–310PubMedCrossRefPubMedCentralGoogle Scholar
  102. Outtrup H, Boyce C (1990) Microbial proteinases and biotechnology. In: Microbial enzymes and biotechnology, vol. 227, p 254CrossRefGoogle Scholar
  103. Papadopoulos MC, El Boushy AR, Roodbeen AE (1985) The effect of varying autoclaving conditions and added sodium hydroxide on amino acid content and nitrogen characteristics of feather meal. J Sci Food Agric 36:1219–1226CrossRefGoogle Scholar
  104. Papadopoulos MC, El Boushy AR, Roodbeen AE, Ketelaars EH (1986) Effects of processing time and moisture content on amino acid composition and nitrogen characterstics of feather meal. Anim Feed Sci Technol 14:279–290CrossRefGoogle Scholar
  105. Park GT, Son HJ (2009) Keratinolytic activity of Bacillus megaterium F7-1, a feather degrading mesophilic bacterium. Microbiol Res 164:478–485PubMedCrossRefPubMedCentralGoogle Scholar
  106. Pedersen KB, Christiansen M, Lindegaard P (1992) Novel proteases. PCT Patent Appl. 9218622Google Scholar
  107. Phadatare SU, Srinivasan MC, Deshpande VV (1993) High activity alkaline protease from Conidiobolus coronatus (NCL 86.8.20): enzyme production and compatibility with commercial detergents. Enzym Microb Technol 15:72–76CrossRefGoogle Scholar
  108. Pillai P, Archana G (2008) Hide depilation and feather disintegration studies with keratinolytic serine protease from a novel Bacillus subtilis isolate. Appl Microbiol Biotechnol 78:643–650PubMedCrossRefPubMedCentralGoogle Scholar
  109. Poole AJ, Church JS, Huson MG (2009) Environmentally sustainable fibers from regenerated protein. Biomacromolecules 10:1–8PubMedCrossRefGoogle Scholar
  110. Prakasham RS, Rao SC, Rao RS, Sarma PN (2005a) Alkaline protease production by an isolated Bacillus circulans under solid state fermentation using agro industrial waste: process parameters optimization. Biotechnol Prog 21:1380–1388PubMedCrossRefGoogle Scholar
  111. Prakasham RS, Rao SC, Rao SR, Rajesham S, Sarma PN (2005b) Optimization of alkaline protease production by Bacillus sp. using Taguchi methodology. Appl Biochem Biotechnol 120:133–144PubMedCrossRefGoogle Scholar
  112. Prasanthi N, Bhargavi S, Machiraju PVS (2016) Chicken feather waste-a threat to the environment. Int J Innov Res Sci Eng Technol 5:9Google Scholar
  113. Puri S (2001) An alkaline protease from a Bacillus sp.: production and potential applications in detergent formulation and degumming of silk. MSc thesis, University of Delhi, New DelhiGoogle Scholar
  114. Puri S, Beg QK, Gupta R (2002) Optimization of alkaline protease production from Bacillus sp. by response surface methodology. Curr Microbiol 44:286–290PubMedCrossRefGoogle Scholar
  115. Rahaman RS, Chee JY, Cabral JMS, Hatton TA (1988) Recovery of an extracellular alkaline protease from whole fermentation broth using reversed micelles. Biotechnol Prog 4:218–224CrossRefGoogle Scholar
  116. Rai SK, Mukherjee AK (2009) Ecological significance and some biotechnological application of an organic -solvent stable alkaline serine protease from Bacillus subtilis strain DM-04. Bioresour Technol 100:2642–2645PubMedCrossRefGoogle Scholar
  117. Rai SK, Mukherjee AK (2011) Optimization of production of an oxidant and detergent-stable alkaline β-keratinase from Brevibacillus sp strain AS-S10-II: application of enzyme in laundry detergent formulations and in leather industry. Biochem Eng J 54:47–56CrossRefGoogle Scholar
  118. Sakai F, Takemoto A, Watanabe S, Aoyama K, Ohkubo T, Yanahira S, Igarashi H, Kozaki S, Hiramatsu K, Ito T (2008) Multiplex PCRs for assignment of Staphylocoagulase types and subtypes of type VI Staphylocoagulase. J Microbiol Methods 75:312–317PubMedCrossRefGoogle Scholar
  119. Santos RMDB, Firmino AAP, de Sa CM, Felix CR (1996) Keratinolytic activity of Aspergillus fumigatus Fresenius. Curr Microbiol 33:364–370PubMedCrossRefGoogle Scholar
  120. Sharma B, Khangarot P, Ahmed S (1994) Alkaline protease from Bacillus alcalophilus. In: Proceedings of Micon International, 94, 9–12 November 1994, Mysore, India, (Abstract) 88–89Google Scholar
  121. Son HJ, Park HC, Kim HS, Lee CY (2008) Nutritional regulation of keratinolytic activity in Bacillus pumilis. Biotechnol Lett 30:461–465PubMedCrossRefGoogle Scholar
  122. Stahl ML, Ferrari E (1984) Replacement of the Bacillus subtilis subtilisin structural gene with an in vitro-derived deletion mutation. J Bacteriol 158:411–418PubMedPubMedCentralGoogle Scholar
  123. Steiner RJ, Kellems RO, Church DC (1983) Feather and hair meals for ruminats. Part IV. Effect of chemical treatments of feather and processing time on digestibility. J Anim Sci 57:495–502CrossRefGoogle Scholar
  124. Takagi H, Kondou M, Hisatsuka T, Nakamori S, Tsai YC, Yamasaki M (1992) Effects of an alkaline elastase from an alkalophilic Bacillus strain on the tenderization of beef meat. J Agric Food Chem 40:2364–2368CrossRefGoogle Scholar
  125. Takami H, Kobayashi T, Kobayashi M, Yamamoto M, Nakamura S, Aono R, Horikoshi K (1992a) Molecular cloning, nucleotide sequence,and expression ofthe structural gene for alkaline serineprotease from alkaliphilic Bacillus sp. 221. Biosci Biotechnol Biochem 56:1455–1460PubMedCrossRefPubMedCentralGoogle Scholar
  126. Takami H, Nakamura S, Aono R, Horikoshi K (1992b) Degradation of human hair by a thermostable alkaline protease from alkalophilic Bacillus sp. no. AH-101. Biosci Biotechnol Biochem 56:1667–1669CrossRefGoogle Scholar
  127. Takekawa S, Uozumi N, Tsukagoshi N, Udaka S (1991) Proteases involved in generation of beta- and alpha-amylases from a large amylase precursor in Bacillus polymyxa. J Bacteriol 173:6820–6825PubMedPubMedCentralCrossRefGoogle Scholar
  128. Takii Y, Kuriyama N, Suzuki Y (1990) Alkaline serine protease produced from citric acid by Bacillus alcalophilus subsp. halodurans KP1239. Appl Microbiol Biotechnol 34:57–62PubMedCrossRefGoogle Scholar
  129. Thankaswamy SR, Sundaramoorthy S, Palanivel S, Ramudu KN (2018) Improved microbial degradation of animal hair waste from leather industry using Brevibacterium luteolum (MTCC 5982). J Clean Prod 189:701–708CrossRefGoogle Scholar
  130. Tobe S, Takami T, Ikeda S, Horikoshi K (1976) Production and some enzymatic properties of alkaline proteinase of Candida lipolytica. Agric Biol Chem 40:1087–1092Google Scholar
  131. Trepod CM, Mott JE (2002) A spontaneous runaway vector for production-scale expression of bovine somatotropin from Escherichia coli. Appl Microbiol Biotechnol 58:84–88PubMedCrossRefGoogle Scholar
  132. Tsai YC, Yamasaki M, Yamamoto-Suzuki Y, Tamura G (1983) A new alkaline elastase of an alkalophilic Bacillus. Biochem Int 7:577–583PubMedGoogle Scholar
  133. Tsai YC, Lin YT, Li YF, Yamasaki M, Tamura G (1986) Characterization of an alkaline elastase from alkalophilic Bacillus Ya-B. Biochim Biophys Acta 883:439–447CrossRefGoogle Scholar
  134. Tsuru D, Kira H, Yamamoto T, Fukumoto J (1966) Studies on bacterial protease. Part XVI. Purification, crystallization and some properties of alkaline protease of Bacillus subtilis var. amylosacchariticus. Agric Biol Chem 30:1261–1268Google Scholar
  135. US Environmental Protection Agency (1991) Proposed regulation of land application of sludge from pulp and paper mills using chlorine and chlorine derivative bleaching processes. Environ Prot Agency Fed Reg 56(91): 40 CFR. Part 744, OPTS- 62100; FRL 3873Google Scholar
  136. Van der Laan JC, Gerristse G, Mulleners LJSM, Van der Hoek RAC, Quax WJ (1991) Cloning, characterization, and multiple chromosomal integration of a Bacillus alkaline protease gene. Appl Environ Microbiol 57:901–909PubMedPubMedCentralGoogle Scholar
  137. Van der Laan JM, Teplyakov AV, Kelders H, Kalk KH, Misset O, Mulleners LJ, Dijkstra BW (1992) Crystal structure of the high-alkaline serine protease B 92 from Bacillus alcalophilus. Protein Eng 5:405–411PubMedCrossRefGoogle Scholar
  138. Varela H, Ferrari MD, Belobradjic L et al (1996) Effect of medium composition on the production by a new Bacillus subtilis isolate of protease with promising unhairing activity. World J Microbiol Biotechnol 12:643–645PubMedCrossRefGoogle Scholar
  139. Vasantha N, Thompson LD, Rhodes C, Banner C, Nagle J, Filpula D (1984) Genes for alkaline protease and neutral protease from Bacillus amyloliquefaciens contain a large open reading frame between the regions coding for signal sequence and mature protein. J Bacteriol 159:811–819PubMedPubMedCentralGoogle Scholar
  140. Vedder A (1934) Bacillus alcalophilus n. sp.; benevens enkele ervaringen met sterk alcalische voedingsbodems. Anton Leeuw J Microbiol Serol 1:143–147Google Scholar
  141. Vijayalakshmi S, Venkatkumar S, Thankamani V (2011) Screening of alkalophilic thermophilic protease isolated from Bacillus RV.B2.90 for industrial applications. Res Biotechnol 2:32–41Google Scholar
  142. Wang ZQ, Wang YS, Shi H, Su ZG (2012) Expression and production of recombinant cis- epoxysuccinate hydrolase in Escherichia coli under the control of temperature dependent promoter. J Biotechnol 162:232–366PubMedCrossRefPubMedCentralGoogle Scholar
  143. Ward WH, Binkley CH, Snell SN (1995) Amino acid composition of normal wools, wool fractions, mohair, feather, and feather fractions. Feather Text Res J 25:314–325CrossRefGoogle Scholar
  144. Wells JA, Ferrari E, Henner DJ, Estell DA, Chen EY (1983) Cloning, sequencing, and secretion of Bacillus amyloliquefaciens subtilisin in Bacillus subtilis. Nucleic Acids Res 11:7911–7925PubMedPubMedCentralCrossRefGoogle Scholar
  145. Xiubao Q, Hong D, Ying Y, Yu Y (1990) Studies on alkaline proteinase from alkalophilic Bacillus pumilus. I. Some properties and applications. Acta Microbiol Sin 30:445–449Google Scholar
  146. Yamagata Y, Ichishima E (1995) A new alkaline serine protease from alkalophilic Bacillus sp.: cloning , sequencing, and characterization of an intracellular protease. Curr Microbiol 30:357–366PubMedCrossRefPubMedCentralGoogle Scholar
  147. Yamagata Y, Sato T, Hanzawa S, Ichishima E (1995a) The structure of subtilisin ALP I from alkalophilic Bacillus sp. NKS-21. Curr Microbiol 30:201–209PubMedCrossRefGoogle Scholar
  148. Yamagata Y, Isshiki K, Ichishima E (1995b) Subtilisin Sendai from alkalophilic Bacillus sp.: molecular and enzymatic properties of the enzyme and molecular cloning and characterization of the gene, aprS. Enzym Microb Technol 17:653–663CrossRefGoogle Scholar
  149. Yang HQ, Liu L, Wang MX, Li JH, Wang NS, Du GC et al (2012) Structure-based engineering of methionine residues in the catalytic cores of alkaline amylase from Alkalimonas amylolytica for improved oxidative stability. Appl Environ Microbiol 78:751–926Google Scholar
  150. Yoshimoto T, Oyama H, Honda T, Tone H, Takeshita T, Kamiyama T, Tsuru D (1988) Cloning and expression of subtilisin amylosacchariticus gene. J Biochem 103:1060–1065PubMedCrossRefGoogle Scholar
  151. Zambare VP, Nilegaonkar SS, Kanekar PP (2007) Production of an alkaline protease by Bacillus cereus MCM B-326 and its application as a dehairing agent. World J Microbiol Biotechnol 23:1569–1574CrossRefGoogle Scholar
  152. Zamost BL, Brantley QI, Elm DD, Beck CM (1990) Production and characterization of a thermostable protease produced by an asporogenous mutant of Bacillus stearothermophilus. J Ind Microbiol 5:303–312CrossRefGoogle Scholar
  153. Zouari NF, Haddar A, Hmidet N, Frikha F, Nasri M (2010) Application of statistical experimental design for optimization of keratinases production by Bacillus pumilus A1 grown on chicken feather and some biochemical properties. Process Biochem 45:617–626CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Biochemical EngineeringIIT (BHU)VaranasiIndia

Personalised recommendations