Advertisement

Analysis of a Discrete-Time Fractional Order SIR Epidemic Model for Childhood Diseases

  • Mahmoud A. M. AbdelazizEmail author
  • Ahmad Izani Ismail
  • Farah A. Abdullah
  • Mohd Hafiz Mohd
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 295)

Abstract

In this paper, a discrete-time fractional order SIR epidemic model for a childhood disease with constant vaccination program is investigated. The local asymptotic stability and bifurcation of the equilibrium points are analyzed using basic reproduction number. Flip and Neimark-Sacker (N-S) bifurcations are investigated for endemic equilibrium point and numerical simulations are carried out to illustrate the dynamical behaviors of the model. Chaos phenomenon is observed through numerical simulation inside the flip and N-S bifurcation regions. Results of the numerical simulations support the theoretical analysis.

Keywords

Discrete-time SIR epidemic model with fractional-order Childhood diseases Vaccination rate Basic reproduction number Flip bifurcation Neimark-Sacker bifurcation Chaos 

Notes

Acknowledgements

The authors would like to thank the editor and the referees for their helpful comments and suggestions.

References

  1. 1.
    Haensch, S., Bianucci, R., Signoli, M., Rajerison, M., Schultz, M., Kacki, S., Vermunt, M., Weston, D.A., Hurst, D., Achtman, M., Carniel, E., Bramanti, B.: Distinct clones of Yersinia pestis caused the black death. PLoS Pathog 6(10), e1001134 (2010)CrossRefGoogle Scholar
  2. 2.
    Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., Abraham, J., Adair, T., Aggarwal, R., Ahn, S.Y., et al.: Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 380(9859), 2095–128 (2012)CrossRefGoogle Scholar
  3. 3.
    Huppert, A., Katrie, G.: Mathematical modelling and prediction in infectious disease epidemiology. Clin. Microbiol. Infect. 19, 999–1005 (2013)CrossRefGoogle Scholar
  4. 4.
    Brauer, F.: Mathematical epidemiology: past, present, and future. Infect. Dis. Model. 2, 113–127 (2017)Google Scholar
  5. 5.
    Fojo, A.T., Kendall, E.A., Kasaie, P., Shrestha, S., Louis, T.A., Dowdy, D.W.: Mathematical modeling of “Chronic” infectious diseases: unpacking the black box. In: Open Forum Infectious Diseases, vol. 4, Issue 4, p. ofx172, 1 October 2017Google Scholar
  6. 6.
    Keeling, M.J., Rohani, P.: Modeling Infectious Diseases in Humans and Animals, 1st edn. Princeton University Press (2008)Google Scholar
  7. 7.
    May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261(5560), 459–467 (1976)CrossRefGoogle Scholar
  8. 8.
    Makinde, O.D.: Adomian decomposition approach to a SIR epidemic model with constant vaccination strategy. Appl. Math. Comput. 184, 842–848 (2007)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Su, R., He, D.: Using CONTENT 1.5 to analyze an SIR model for childhood infectious diseases. Commun. Nonlinear Sci. Numer. Simul. 13, 1743–1747 (2008)CrossRefGoogle Scholar
  10. 10.
    Moghadas, S.M., Gumel, A.B.: A mathematical study of a model for childhood diseases with non-permanent immunity. J. Comput. Appl. Math. 157, 347–363 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cui, Q., Xu, J., Zhang, Q., Wang, K.: An NSFD scheme for SIR epidemic models of childhood diseases with constant vaccination strategy. Adv. Differ. Equ. 2014, 172 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1), 29–48 (2002)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Area, I., Batarfi, H., Losada, J., Nieto, J.J., Shammakh, W., Torres, A.: On a fractional order Ebola epidemic model. Adv. Differ. Equ. 2015, 278 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    özalp, N., Demirci, E.: A fractional order SEIR model with vertical transmission. Math. Comput. Modeling 54, 1–6 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Haq, F., Shahzad, M., Muhammad, S., Abdul Wahab, H., Rahman, G.: Numerical analysis of fractional order epidemic model of childhood diseases. Discr. Dyn. Nat. Soc. (2017). Article ID 4057089, 7 pagesGoogle Scholar
  16. 16.
    Arafa, A.A.M., Rida, S.Z., Khalil, M.: Solutions of fractional order model of childhood diseases with constant vaccination strategy. Math. Sci. Lett. 1, 17–23 (2012)CrossRefGoogle Scholar
  17. 17.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204. Elsevier (2006)Google Scholar
  18. 18.
    Diethelm, K.: The Analysis of Fractional Differential Equations. Springer (2004)Google Scholar
  19. 19.
    Caputo, M.: Linear models of dissipation whose Q is almost frequency independent II. Geophys. J. R. Astron. Soc. 13, 529–539 (1967)CrossRefGoogle Scholar
  20. 20.
    Liu, S., Ruan, S., Zhang, X.: Nonlinear dynamics of avian influenza epidemic models. Math. Biosci. 283, 118–135 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Abdelaziz, M.A.M., Ismail, A.I., Abdullah, F.A., Mohd, M.H.: Bifurcations and chaos in a discrete SI epidemic model with fractional order. Adv. Differ. Equ. 1, 44 (2018). SpringerGoogle Scholar
  22. 22.
    Hu, Z., Teng, Z., Zhang, L.: Stability and bifurcation analysis of a discrete predator-prey model with nonmonotonic functional response. Nonlinear Anal. Real World Appl. 12, 2356–2377 (2011)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Hu, Z., Teng, Z., Jia, C., Zhang, C., Zhang, L.: Dynamical analysis and chaos control of a discrete SIS epidemic model. Adv. Differ. Equ. 2014, 58 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Jang, S.R.-J.: Backward bifurcation in a discrete SIS model with vaccination. J. Biol. Syst. 16(4), 479–494 (2008)MathSciNetCrossRefGoogle Scholar
  25. 25.
    El-Sayed, A.M.A., Salman, S.M.: On a discretization process of fractional order Riccati’s differential equation. J. Fract. Calc. Appl. Anal. 4(2), 251–259 (2013)Google Scholar
  26. 26.
    El-Sayed, A.M.A., Salman, S.M.: Fractional-order Chua’s system: discretization, bifurcation and chaos. Adv. Differ. Equ. Springer (2013). 13 pagesGoogle Scholar
  27. 27.
    Elsadany, A.A., Matouk, A.E.: Dynamical behaviors of fractional-order Lotka-Voltera predator-prey model and its discretization. Appl. Math. Comput. 49, 269–283 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Jana, D.: Chaotic dynamics of a discrete predator-prey system with prey refuge. Appl. Math. Comput. 224, 848–865 (2013)MathSciNetzbMATHGoogle Scholar
  29. 29.
    He, Z., Lai, X.: Bifurcation and chaotic behavior of a discrete-time predator-prey system. Nonlinear Anal. Real World Appl. 12, 403–417 (2011)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Cao, H., Yue, Z., Zhou, Y.: The stability and bifurcation analysis of a discrete Holling-Tanner model. Adv. Differ. Equ. 2013, 330 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Mahmoud A. M. Abdelaziz
    • 1
    Email author
  • Ahmad Izani Ismail
    • 1
  • Farah A. Abdullah
    • 1
  • Mohd Hafiz Mohd
    • 1
  1. 1.School of Mathematical Sciences, Universiti Sains MalaysiaPenangMalaysia

Personalised recommendations