Advertisement

IRC-SET 2018 pp 349-361 | Cite as

Making 2D Nanolayers Visible by Optical Imaging

  • Xiaohe ZhangEmail author
  • Yang Jing
  • Hiroyo Kawai
  • Kuan Eng Johnson Goh
Conference paper

Abstract

Recent developments have proved optical imaging to be a promising method to identify and locate 2D materials efficiently and non-invasively. By putting a 2D material on a substrate, the nanolayer will add to an optical path and create a contrast with the case when the nanolayer is absent, which can be used to identify the 2D material and its number of layers. To make the optical imaging process in the laboratories more convenient, this report uses Fresnel Law as a model to simulate the optical imaging results of various 2D materials (graphene, MoS2, MoSe2) on top of different thickness of SiO2 and Si wafer. The results provide details of the optimal conditions (the optimal light wavelength and optimal thickness of SiO2) to identify and locate the 2D nanolayer, which can be used directly in laboratories. The model used in this report was benchmarked by simulating the system of graphene on top of SiO2 and Si to ensure its accuracy and comparing with existing literature. The model was then used to simulate the optical contrasts of 1–5 layers of MoS2 and MoSe2, the latter of which has not been reported in previous literature. In particular, we highlight the sensitivity of the used model on the accuracy of the refractive indices used. In conclusion, we show through computational modelling that optical contrast can in principle allow effective determination of layer numbers in few layered 2D materials.

Keywords

2D materials Optical imaging Substrate Fresnel law 

References

  1. 1.
    Aspnes, D. E., & Studna, A. A. (1983). Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Physical Review B, 27(2), 985.Google Scholar
  2. 2.
    Ayari, A., Cobas, E., Ogundadegbe, O., & Fuhrer, M. S. (2007). Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. Journal of Applied Physics, 101(1), 014507.CrossRefGoogle Scholar
  3. 3.
    Beal, A. R., & Hughes, H. P. (1979). Kramers-Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2. Journal of Physics C: Solid State Physics, 12(5), 881.CrossRefGoogle Scholar
  4. 4.
    Benameur, M. M., Radisavljevic, B., Heron, J. S., Sahoo, S., Berger, H., & Kis, A. (2011). Visibility of dichalcogenide nanolayers. Nanotechnology, 22(12), 125706.CrossRefGoogle Scholar
  5. 5.
    Blake, P., Hill, E. W., Castro Neto, A. H., Novoselov, K. S., Jiang, D., Yang, R., et al. (2007). Making graphene visible. Applied Physics Letters, 91(6), 063124.CrossRefGoogle Scholar
  6. 6.
    Castellanos-Gomez, A., Agraït, N., & Rubio-Bollinger, G. (2010). Optical identification of atomically thin dichalcogenide crystals. Applied Physics Letters, 96(21), 213116.CrossRefGoogle Scholar
  7. 7.
    Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191.CrossRefGoogle Scholar
  8. 8.
    Mas-Balleste, R., Gomez-Navarro, C., Gomez-Herrero, J., & Zamora, F. (2011). 2D materials: To graphene and beyond. Nanoscale, 3(1), 20–30.CrossRefGoogle Scholar
  9. 9.
    Moehl, T., Kunst, M., Wuensch, F., & Tributsch, H. (2007). Consistency of photoelectrochemistry and photoelectrochemical microwave reflection demonstrated with p-and n-type layered semiconductors like MoS2. Journal of Electroanalytical Chemistry, 609(1), 31–41.CrossRefGoogle Scholar
  10. 10.
    Nave, C. R. (2017). Spectral colors. Retrieved from http://hyperphysics.phy-astr.gsu.edu/hbase/vision/specol.html.
  11. 11.
    Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., et al. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669.Google Scholar
  12. 12.
    Palik, E. D. (Ed.). (1998). Handbook of optical constants of solids (Vol. 2). Academic press.Google Scholar
  13. 13.
    Podzorov, V., Gershenson, M. E., Kloc, C., Zeis, R., & Bucher, E. (2004). High-mobility field-effect transistors based on transition metal dichalcogenides. Applied Physics Letters, 84(17), 3301–3303.CrossRefGoogle Scholar
  14. 14.
    Tan, C. Z. (1998). Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy. Journal of Non-crystalline Solids, 223(1–2), 158–163.CrossRefGoogle Scholar
  15. 15.
    Zhang, H., Ma, Y., Wan, Y., Rong, X., Xie, Z., Wang, W., et al. (2015). Measuring the refractive index of highly crystalline monolayer MoS2 with high confidence. Scientific Reports, 5.Google Scholar
  16. 16.
    Zhang, Y., Tan, Y. W., Stormer, H. L., & Kim, P. (2005). Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 438(7065), 201–204.Google Scholar
  17. 17.
    Zong, X., Yan, H., Wu, G., Ma, G., Wen, F., Wang, L., et al. (2008). Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. Journal of the American Chemical Society, 130(23), 7176–7177.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xiaohe Zhang
    • 1
    Email author
  • Yang Jing
    • 2
  • Hiroyo Kawai
    • 2
  • Kuan Eng Johnson Goh
    • 2
  1. 1.Victoria Junior CollegeSingaporeSingapore
  2. 2.Institute of Materials Research and Engineering, A*STARSingaporeSingapore

Personalised recommendations