Advertisement

Genomic Applications and Insights in Unravelling Cancer Signalling Pathways

  • Megha Lal
  • Deepanjan Paul
  • Subhashree Nayak
  • Arijit MukhopadhyayEmail author
Chapter

Abstract

The human genome project and subsequent deluge of various high-throughput data in all aspects of molecular biology has not only augmented our knowledge at a breakneck speed but also shifted thinking paradigms about understanding and management of human health and disease. Whole genome sequencing is quickly becoming the first step of disease management particularly in the case of cancer. In this chapter, we have discussed recent advancement in the knowledge in cancer biology through genomic approaches – with a focus on signalling pathways.

Keywords

Genomics CNVs Chromothripsis Hi-C miRNA WGS Precision Medicine Cancer Single nucleotide variations Epigenomics Candidate genes Transcriptomics Cancer therapy 

References

  1. Achinger-Kawecka J, Clark SJ (2017) Disruption of the 3D cancer genome blueprint. Epigenomics 9(1):47–55.  https://doi.org/10.2217/epi-2016-0111CrossRefPubMedPubMedCentralGoogle Scholar
  2. Achinger-Kawecka J, Taberlay PC, Clark SJ (2016) Alterations in three-dimensional organization of the cancer genome and epigenome. Cold Spring Harb Symp Quant Biol 81:41–51.  https://doi.org/10.1101/sqb.2016.81.031013CrossRefPubMedPubMedCentralGoogle Scholar
  3. Adey A, Morrison HG, Asan XX, Kitzman JO, Turner EH et al (2010) Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biol 11(12):R119.  https://doi.org/10.1186/gb-2010-11-12-r119CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ahn SH, Henderson KA, Keeney S, Allis CD (2005) H2B (Ser10) phosphorylation is induced during apoptosis and meiosis in S. cerevisiae. Cell Cycle 4(6):780–783.  https://doi.org/10.4161/cc.4.6.1745CrossRefPubMedPubMedCentralGoogle Scholar
  5. Alon S, Mor E, Vigneault F, Church GM, Locatelli F, Galeano F et al (2012) Systematic identification of edited microRNAs in the human brain. Genome Res 22(8):1533–1540.  https://doi.org/10.1101/gr.131573.111CrossRefPubMedPubMedCentralGoogle Scholar
  6. Alwine JC, Kemp DJ, Stark GR (1977) Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci U S A 74(12):5350–5354PubMedPubMedCentralCrossRefGoogle Scholar
  7. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27(15):2128–2136.  https://doi.org/10.1038/sj.onc.1210856CrossRefPubMedPubMedCentralGoogle Scholar
  8. Athanasiadis A, Rich A, Maas S (2004) Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol 2(12):e391.  https://doi.org/10.1371/journal.pbio.0020391CrossRefPubMedPubMedCentralGoogle Scholar
  9. Babu D, Fullwood MJ (2015) 3D genome organization in health and disease: emerging opportunities in cancer translational medicine. Nucleus 6(5):382–393.  https://doi.org/10.1080/19491034.2015.1106676CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395.  https://doi.org/10.1038/cr.2011.22CrossRefPubMedPubMedCentralGoogle Scholar
  11. Barlesi F, Giaccone G, Gallegos-Ruiz MI, Loundou A, Span SW, Lefesvre P et al (2007) Global histone modifications predict prognosis of resected non small-cell lung cancer. J Clin Oncol 25(28):4358–4364.  https://doi.org/10.1200/JCO.2007.11.2599CrossRefPubMedGoogle Scholar
  12. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297CrossRefGoogle Scholar
  13. Barutcu AR, Hong D, Lajoie BR, McCord RP, van Wijnen AJ, Lian JB et al (2016) RUNX1 contributes to higher-order chromatin organization and gene regulation in breast cancer cells. Biochim Biophys Acta 1859(11):1389–1397.  https://doi.org/10.1016/j.bbagrm.2016.08.003CrossRefPubMedPubMedCentralGoogle Scholar
  14. Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer 11(10):726–734.  https://doi.org/10.1038/nrc3130CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bechara EG, Sebestyen E, Bernardis I, Eyras E, Valcarcel J (2013) RBM5, 6, and 10 differentially regulate NUMB alternative splicing to control cancer cell proliferation. Mol Cell 52(5):720–733.  https://doi.org/10.1016/j.molcel.2013.11.010CrossRefPubMedGoogle Scholar
  16. Benne R, Van den Burg J, Brakenhoff JP, Sloof P, Van Boom JH, Tromp MC (1986) Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46(6):819–826PubMedCrossRefGoogle Scholar
  17. Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY et al (2011) The genomic complexity of primary human prostate cancer. Nature 470(7333):214–220.  https://doi.org/10.1038/nature09744CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2):315–326.  https://doi.org/10.1016/j.cell.2006.02.041CrossRefPubMedGoogle Scholar
  19. Bertucci F, Finetti P, Rougemont J, Charafe-Jauffret E, Cervera N, Tarpin C et al (2005) Gene expression profiling identifies molecular subtypes of inflammatory breast cancer. Cancer Res 65(6):2170–2178.  https://doi.org/10.1158/0008-5472.CAN-04-4115CrossRefPubMedGoogle Scholar
  20. Bestor TH (1988) Cloning of a mammalian DNA methyltransferase. Gene 74(1):9–12PubMedCrossRefGoogle Scholar
  21. Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321(6067):209–213.  https://doi.org/10.1038/321209a0CrossRefPubMedGoogle Scholar
  22. Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K, Fauth C et al (2005) Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 3(5):e157.  https://doi.org/10.1371/journal.pbio.0030157CrossRefPubMedPubMedCentralGoogle Scholar
  23. Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z et al (2008) High-resolution mapping and characterization of open chromatin across the genome. Cell 132(2):311–322.  https://doi.org/10.1016/j.cell.2007.12.014CrossRefPubMedPubMedCentralGoogle Scholar
  24. Briggs SD, Xiao T, Sun ZW, Caldwell JA, Shabanowitz J, Hunt DF et al (2002) Gene silencing: trans-histone regulatory pathway in chromatin. Nature 418(6897):498.  https://doi.org/10.1038/nature00970CrossRefPubMedGoogle Scholar
  25. Brownell JE, Allis CD (1995) An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei. Proc Natl Acad Sci U S A 92(14):6364–6368PubMedPubMedCentralCrossRefGoogle Scholar
  26. Buck MJ, Raaijmakers LM, Ramakrishnan S, Wang D, Valiyaparambil S, Liu S et al (2014) Alterations in chromatin accessibility and DNA methylation in clear cell renal cell carcinoma. Oncogene 33(41):4961–4965.  https://doi.org/10.1038/onc.2013.455CrossRefPubMedGoogle Scholar
  27. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10(12):1213–1218.  https://doi.org/10.1038/nmeth.2688CrossRefPubMedPubMedCentralGoogle Scholar
  28. Cacheux W, Dangles-Marie V, Rouleau E, Lazartigues J, Girard E, Briaux A et al (2018) Exome sequencing reveals aberrant signalling pathways as hallmark of treatment-naive anal squamous cell carcinoma. Oncotarget 9(1):464–476.  https://doi.org/10.18632/oncotarget.23066CrossRefPubMedGoogle Scholar
  29. Cai X, Evrony GD, Lehmann HS, Elhosary PC, Mehta BK, Poduri A, Walsh CA (2015) Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain. Cell Rep 10(4):645.  https://doi.org/10.1016/j.celrep.2015.01.028CrossRefPubMedGoogle Scholar
  30. Cancer Genome Atlas Research, N (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499(7456):43–49.  https://doi.org/10.1038/nature12222CrossRefGoogle Scholar
  31. Carmi S, Borukhov I, Levanon EY (2011) Identification of widespread ultra-edited human RNAs. PLoS Genet 7(10):e1002317.  https://doi.org/10.1371/journal.pgen.1002317CrossRefPubMedPubMedCentralGoogle Scholar
  32. Cesarini V, Silvestris DA, Tassinari V, Tomaselli S, Alon S, Eisenberg E et al (2018) ADAR2/miR-589-3p axis controls glioblastoma cell migration/invasion. Nucleic Acids Res 46(4):2045–2059.  https://doi.org/10.1093/nar/gkx1257CrossRefPubMedGoogle Scholar
  33. Chakravarthi BV, Nepal S, Varambally S (2016) Genomic and epigenomic alterations in cancer. Am J Pathol 186(7):1724–1735.  https://doi.org/10.1016/j.ajpath.2016.02.023CrossRefPubMedPubMedCentralGoogle Scholar
  34. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65(14):6029–6033.  https://doi.org/10.1158/0008-5472.CAN-05-0137CrossRefPubMedGoogle Scholar
  35. Chandran UR, Luthra S, Santana-Santos L, Mao P, Kim SH, Minata M et al (2015) Gene expression profiling distinguishes proneural glioma stem cells from mesenchymal glioma stem cells. Genom Data 5:333–336.  https://doi.org/10.1016/j.gdata.2015.07.007CrossRefPubMedPubMedCentralGoogle Scholar
  36. Chang B, Chen Y, Zhao Y, Bruick RK (2007) JMJD6 is a histone arginine demethylase. Science 318(5849):444–447.  https://doi.org/10.1126/science.1145801CrossRefPubMedGoogle Scholar
  37. Chen R, Mias GI, Li-Pook-Than J, Jiang L, Lam HY, Chen R et al (2012) Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148(6):1293–1307.  https://doi.org/10.1016/j.cell.2012.02.009CrossRefPubMedPubMedCentralGoogle Scholar
  38. Chen L, Li Y, Lin CH, Chan TH, Chow RK, Song Y et al (2013) Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nat Med 19(2):209–216.  https://doi.org/10.1038/nm.3043CrossRefPubMedPubMedCentralGoogle Scholar
  39. Chervona Y, Costa M (2012) Histone modifications and cancer: biomarkers of prognosis? Am J Cancer Res 2(5):589–597PubMedPubMedCentralGoogle Scholar
  40. Chomet PS (1991) Cytosine methylation in gene-silencing mechanisms. Curr Opin Cell Biol 3(3):438–443PubMedCrossRefGoogle Scholar
  41. Choudhury Y, Tay FC, Lam DH, Sandanaraj E, Tang C, Ang BT, Wang S (2012) Attenuated adenosine-to-inosine editing of microRNA-376a∗ promotes invasiveness of glioblastoma cells. J Clin Invest 122(11):4059–4076.  https://doi.org/10.1172/JCI62925CrossRefPubMedPubMedCentralGoogle Scholar
  42. Chrun ES, Modolo F, Daniel FI (2017) Histone modifications: a review about the presence of this epigenetic phenomenon in carcinogenesis. Pathol Res Pract 213(11):1329–1339.  https://doi.org/10.1016/j.prp.2017.06.013CrossRefPubMedGoogle Scholar
  43. Climente-Gonzalez H, Porta-Pardo E, Godzik A, Eyras E (2017) The functional impact of alternative splicing in cancer. Cell Rep 20(9):2215–2226.  https://doi.org/10.1016/j.celrep.2017.08.012CrossRefPubMedGoogle Scholar
  44. Collet-Cassart D, Van den Abbeele E, Poncelet S (1989) A quantitative C-reactive protein assay using latex agglutination in microtiter plates. J Immunol Methods 125(1–2):137–141PubMedCrossRefGoogle Scholar
  45. Comino-Mendez I, Gracia-Aznarez FJ, Schiavi F, Landa I, Leandro-Garcia LJ, Leton R et al (2011) Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat Genet 43(7):663–667.  https://doi.org/10.1038/ng.861CrossRefPubMedGoogle Scholar
  46. Consortium, E. P (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74.  https://doi.org/10.1038/nature11247CrossRefGoogle Scholar
  47. Costello JF, Plass C (2001) Methylation matters. J Med Genet 38(5):285–303PubMedPubMedCentralCrossRefGoogle Scholar
  48. Cousins DJ, Islam SA, Sanderson MR, Proykova YG, Crane-Robinson C, Staynov DZ (2004) Redefinition of the cleavage sites of DNase I on the nucleosome core particle. J Mol Biol 335(5):1199–1211PubMedCrossRefGoogle Scholar
  49. Cowper-Sal lari R, Zhang X, Wright JB, Bailey SD, Cole MD, Eeckhoute J et al (2012) Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression. Nat Genet 44(11):1191–1198.  https://doi.org/10.1038/ng.2416CrossRefPubMedPubMedCentralGoogle Scholar
  50. Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2(4):292–301.  https://doi.org/10.1038/35066075CrossRefPubMedGoogle Scholar
  51. Cremer T, Cremer C, Baumann H, Luedtke EK, Sperling K, Teuber V, Zorn C (1982) Rabl’s model of the interphase chromosome arrangement tested in Chinese hamster cells by premature chromosome condensation and laser-UV-microbeam experiments. Hum Genet 60(1):46–56PubMedCrossRefGoogle Scholar
  52. Cremer T, Cremer M, Dietzel S, Muller S, Solovei I, Fakan S (2006) Chromosome territories–a functional nuclear landscape. Curr Opin Cell Biol 18(3):307–316.  https://doi.org/10.1016/j.ceb.2006.04.007CrossRefPubMedGoogle Scholar
  53. Cuddeback SM, Yamaguchi H, Komatsu K, Miyashita T, Yamada M, Wu C et al (2001) Molecular cloning and characterization of Bif-1. A novel Src homology 3 domain-containing protein that associates with Bax. J Biol Chem 276(23):20559–20565.  https://doi.org/10.1074/jbc.M101527200CrossRefPubMedGoogle Scholar
  54. Dang TP, Gazdar AF, Virmani AK, Sepetavec T, Hande KR, Minna JD et al (2000) Chromosome 19 translocation, overexpression of Notch3, and human lung cancer. J Natl Cancer Inst 92(16):1355–1357PubMedCrossRefGoogle Scholar
  55. Dardenne E, Pierredon S, Driouch K, Gratadou L, Lacroix-Triki M, Espinoza MP et al (2012) Splicing switch of an epigenetic regulator by RNA helicases promotes tumor-cell invasiveness. Nat Struct Mol Biol 19(11):1139–1146.  https://doi.org/10.1038/nsmb.2390CrossRefPubMedPubMedCentralGoogle Scholar
  56. Dawar S, Shahrin NH, Sladojevic N, D'Andrea RJ, Dorstyn L, Hiwase DK, Kumar S (2016) Impaired haematopoietic stem cell differentiation and enhanced skewing towards myeloid progenitors in aged caspase-2-deficient mice. Cell Death Dis 7(12):e2509.  https://doi.org/10.1038/cddis.2016.406CrossRefPubMedPubMedCentralGoogle Scholar
  57. Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27.  https://doi.org/10.1016/j.cell.2012.06.013CrossRefPubMedPubMedCentralGoogle Scholar
  58. Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295(5558):1306–1311.  https://doi.org/10.1126/science.1067799CrossRefPubMedPubMedCentralGoogle Scholar
  59. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K et al (2001) Delineation of prognostic biomarkers in prostate cancer. Nature 412(6849):822–826.  https://doi.org/10.1038/35090585CrossRefPubMedPubMedCentralGoogle Scholar
  60. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376–380.  https://doi.org/10.1038/nature11082CrossRefPubMedPubMedCentralGoogle Scholar
  61. Doerfler W, Hoeveler A, Weisshaar B, Dobrzanski P, Knebel D, Langner KD et al (1989) Promoter inactivation or inhibition by sequence-specific methylation and mechanisms of reactivation. Cell Biophys 15(1–2):21–27PubMedCrossRefGoogle Scholar
  62. Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA et al (2006) Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 16(10):1299–1309.  https://doi.org/10.1101/gr.5571506CrossRefPubMedPubMedCentralGoogle Scholar
  63. Dreazen O, Klisak I, Jones G, Ho WG, Sparkes RS, Gale RP (1987) Multiple molecular abnormalities in Ph1 chromosome positive acute lymphoblastic leukaemia. Br J Haematol 67(3):319–324PubMedCrossRefGoogle Scholar
  64. Dryden NH, Broome LR, Dudbridge F, Johnson N, Orr N, Schoenfelder S et al (2014) Unbiased analysis of potential targets of breast cancer susceptibility loci by Capture Hi-C. Genome Res 24(11):1854–1868.  https://doi.org/10.1101/gr.175034.114CrossRefPubMedPubMedCentralGoogle Scholar
  65. Dufva O, Kankainen M, Kelkka T, Sekiguchi N, Awad SA, Eldfors S et al (2018) Aggressive natural killer-cell leukemia mutational landscape and drug profiling highlight JAK-STAT signaling as therapeutic target. Nat Commun 9(1):1567.  https://doi.org/10.1038/s41467-018-03987-2CrossRefPubMedPubMedCentralGoogle Scholar
  66. Eberwine J, Sul JY, Bartfai T, Kim J (2014) The promise of single-cell sequencing. Nat Methods 11(1):25–27PubMedCrossRefPubMedCentralGoogle Scholar
  67. Edwards JR, Yarychkivska O, Boulard M, Bestor TH (2017) DNA methylation and DNA methyltransferases. Epigenetics Chromatin 10:23.  https://doi.org/10.1186/s13072-017-0130-8CrossRefPubMedPubMedCentralGoogle Scholar
  68. Elemento O, Rubin MA, Rickman DS (2012) Oncogenic transcription factors as master regulators of chromatin topology: a new role for ERG in prostate cancer. Cell Cycle 11(18):3380–3383.  https://doi.org/10.4161/cc.21401CrossRefPubMedPubMedCentralGoogle Scholar
  69. Ellinger J, Kahl P, von der Gathen J, Heukamp LC, Gutgemann I, Walter B et al (2012) Global histone H3K27 methylation levels are different in localized and metastatic prostate cancer. Cancer Investig 30(2):92–97.  https://doi.org/10.3109/07357907.2011.636117CrossRefGoogle Scholar
  70. Erinjeri NJ, Nicolson NG, Deyholos C, Korah R, Carling T (2018) Whole-exome sequencing identifies two discrete druggable signaling pathways in follicular thyroid cancer. J Am Coll Surg 226(6):950–959. e955.  https://doi.org/10.1016/j.jamcollsurg.2018.01.059CrossRefPubMedPubMedCentralGoogle Scholar
  71. Esteller M (2002) CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 21(35):5427–5440.  https://doi.org/10.1038/sj.onc.1205600CrossRefPubMedPubMedCentralGoogle Scholar
  72. Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4(2):143–153.  https://doi.org/10.1038/nrc1279CrossRefPubMedPubMedCentralGoogle Scholar
  73. Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301(5895):89–92PubMedCrossRefPubMedCentralGoogle Scholar
  74. Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7(1):21–33.  https://doi.org/10.1038/nrg1748CrossRefPubMedPubMedCentralGoogle Scholar
  75. Fornari F, Gramantieri L, Giovannini C, Veronese A, Ferracin M, Sabbioni S et al (2009) MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res 69(14):5761–5767.  https://doi.org/10.1158/0008-5472.CAN-08-4797CrossRefPubMedPubMedCentralGoogle Scholar
  76. Forootan SS, Butler JM, Gardener D, Baird AE, Dodson A, Darby A et al (2016) Transcriptome sequencing of human breast cancer reveals aberrant intronic transcription in amplicons and dysregulation of alternative splicing with major therapeutic implications. Int J Oncol 48(1):130–144.  https://doi.org/10.3892/ijo.2015.3222CrossRefPubMedPubMedCentralGoogle Scholar
  77. Freeman JL, Perry GH, Feuk L, Redon R, McCarroll SA, Altshuler DM et al (2006) Copy number variation: new insights in genome diversity. Genome Res 16(8):949–961.  https://doi.org/10.1101/gr.3677206CrossRefPubMedPubMedCentralGoogle Scholar
  78. Fudenberg G, Getz G, Meyerson M, Mirny LA (2011) High order chromatin architecture shapes the landscape of chromosomal alterations in cancer. Nat Biotechnol 29(12):1109–1113.  https://doi.org/10.1038/nbt.2049CrossRefPubMedPubMedCentralGoogle Scholar
  79. Fujita M, Matsubara N, Matsuda I, Maejima K, Oosawa A, Yamano T et al (2018) Genomic landscape of colitis-associated cancer indicates the impact of chronic inflammation and its stratification by mutations in the Wnt signaling. Oncotarget 9(1):969–981.  https://doi.org/10.18632/oncotarget.22867CrossRefPubMedPubMedCentralGoogle Scholar
  80. Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB et al (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462(7269):58–64.  https://doi.org/10.1038/nature08497CrossRefPubMedPubMedCentralGoogle Scholar
  81. Fullwood MJ, Han Y, Wei CL, Ruan X, Ruan Y (2010) Chromatin interaction analysis using paired-end tag sequencing. Curr Protoc Mol Biol,. Chapter 21 Unit 21(15):21–25.  https://doi.org/10.1002/0471142727.mb2115s89CrossRefGoogle Scholar
  82. Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS, Krichevsky AM (2008) MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 28(17):5369–5380.  https://doi.org/10.1128/MCB.00479-08CrossRefPubMedPubMedCentralGoogle Scholar
  83. Galamb O, Kalmar A, Peterfia B, Csabai I, Bodor A, Ribli D et al (2016) Aberrant DNA methylation of WNT pathway genes in the development and progression of CIMP-negative colorectal cancer. Epigenetics 11(8):588–602.  https://doi.org/10.1080/15592294.2016.1190894CrossRefPubMedPubMedCentralGoogle Scholar
  84. Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC, Gehrke CW, Ehrlich M (1983) The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 11(19):6883–6894PubMedPubMedCentralCrossRefGoogle Scholar
  85. Gan Y, Li Y, Long Z, Lee AR, Xie N, Lovnicki JM et al (2018) Roles of alternative RNA splicing of the Bif-1 gene by SRRM4 during the development of treatment-induced neuroendocrine prostate cancer. EBioMedicine 31:267–275.  https://doi.org/10.1016/j.ebiom.2018.05.002CrossRefPubMedPubMedCentralGoogle Scholar
  86. Gary JD, Clarke S (1998) RNA and protein interactions modulated by protein arginine methylation. Prog Nucleic Acid Res Mol Biol 61:65–131PubMedCrossRefPubMedCentralGoogle Scholar
  87. Gaulton KJ, Nammo T, Pasquali L, Simon JM, Giresi PG, Fogarty MP et al (2010) A map of open chromatin in human pancreatic islets. Nat Genet 42(3):255–259.  https://doi.org/10.1038/ng.530CrossRefPubMedPubMedCentralGoogle Scholar
  88. Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD (2007) FAIRE (formaldehyde-assisted isolation of regulatory elements) isolates active regulatory elements from human chromatin. Genome Res 17(6):877–885.  https://doi.org/10.1101/gr.5533506CrossRefPubMedPubMedCentralGoogle Scholar
  89. Gonzalez A, Schachner LA, Cleary T, Scott G, Taplin D, Lambert W (1989) Pyoderma in childhood. Adv Dermatol 4:127–141. discussion 142PubMedPubMedCentralGoogle Scholar
  90. Goryshin IY, Reznikoff WS (1998) Tn5 in vitro transposition. J Biol Chem 273(13):7367–7374PubMedCrossRefPubMedCentralGoogle Scholar
  91. Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu CG et al (2007) Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res 67(13):6092–6099.  https://doi.org/10.1158/0008-5472.CAN-06-4607CrossRefPubMedPubMedCentralGoogle Scholar
  92. Gronbaek K, Hother C, Jones PA (2007) Epigenetic changes in cancer. APMIS 115(10):1039–1059.  https://doi.org/10.1111/j.1600-0463.2007.apm_636.xml.xCrossRefPubMedPubMedCentralGoogle Scholar
  93. Groschel S, Sanders MA, Hoogenboezem R, de Wit E, Bouwman BAM, Erpelinck C et al (2014) A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell 157(2):369–381.  https://doi.org/10.1016/j.cell.2014.02.019CrossRefPubMedGoogle Scholar
  94. Grun D, Wang YL, Langenberger D, Gunsalus KC, Rajewsky N (2005) microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput Biol 1(1):e13.  https://doi.org/10.1371/journal.pcbi.0010013CrossRefPubMedPubMedCentralGoogle Scholar
  95. Guo Y, Xu Q, Canzio D, Shou J, Li J, Gorkin DU et al (2015) CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162(4):900–910.  https://doi.org/10.1016/j.cell.2015.07.038CrossRefPubMedPubMedCentralGoogle Scholar
  96. Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127(4):679–695.  https://doi.org/10.1016/j.cell.2006.11.001CrossRefPubMedGoogle Scholar
  97. Hagege H, Klous P, Braem C, Splinter E, Dekker J, Cathala G et al (2007) Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat Protoc 2(7):1722–1733.  https://doi.org/10.1038/nprot.2007.243CrossRefPubMedGoogle Scholar
  98. Hake SB, Allis CD (2006) Histone H3 variants and their potential role in indexing mammalian genomes: the “H3 barcode hypothesis”. Proc Natl Acad Sci U S A 103(17):6428–6435.  https://doi.org/10.1073/pnas.0600803103CrossRefPubMedPubMedCentralGoogle Scholar
  99. Han SW, Kim HP, Shin JY, Jeong EG, Lee WC, Kim KY et al (2014) RNA editing in RHOQ promotes invasion potential in colorectal cancer. J Exp Med 211(4):613–621.  https://doi.org/10.1084/jem.20132209CrossRefPubMedPubMedCentralGoogle Scholar
  100. Han L, Diao L, Yu S, Xu X, Li J, Zhang R et al (2015) The genomic landscape and clinical relevance of A-to-I RNA editing in human cancers. Cancer Cell 28(4):515–528.  https://doi.org/10.1016/j.ccell.2015.08.013CrossRefPubMedPubMedCentralGoogle Scholar
  101. Hansen AS, Pustova I, Cattoglio C, Tjian R, Darzacq X (2017) CTCF and cohesin regulate chromatin loop stability with distinct dynamics. elife 6.  https://doi.org/10.7554/eLife.25776
  102. Hardt O, Wild S, Oerlecke I, Hofmann K, Luo S, Wiencek Y et al (2012) Highly sensitive profiling of CD44+/CD24- breast cancer stem cells by combining global mRNA amplification and next generation sequencing: evidence for a hyperactive PI3K pathway. Cancer Lett 325(2):165–174.  https://doi.org/10.1016/j.canlet.2012.06.010CrossRefPubMedGoogle Scholar
  103. He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q et al (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333(6047):1303–1307.  https://doi.org/10.1126/science.1210944CrossRefPubMedPubMedCentralGoogle Scholar
  104. He HH, Meyer CA, Hu SS, Chen MW, Zang C, Liu Y et al (2014) Refined DNase-seq protocol and data analysis reveals intrinsic bias in transcription factor footprint identification. Nat Methods 11(1):73–78.  https://doi.org/10.1038/nmeth.2762CrossRefPubMedGoogle Scholar
  105. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD et al (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39(3):311–318.  https://doi.org/10.1038/ng1966CrossRefPubMedGoogle Scholar
  106. Henikoff S, Ahmad K (2005) Assembly of variant histones into chromatin. Annu Rev Cell Dev Biol 21:133–153.  https://doi.org/10.1146/annurev.cellbio.21.012704.133518CrossRefPubMedGoogle Scholar
  107. Hesketh R (2013) Introduction to cancer biology. Cambridge University Press, Cambridge, New YorkGoogle Scholar
  108. Hesselberth JR, Chen X, Zhang Z, Sabo PJ, Sandstrom R, Reynolds AP et al (2009) Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Nat Methods 6(4):283–289.  https://doi.org/10.1038/nmeth.1313CrossRefPubMedPubMedCentralGoogle Scholar
  109. Higashimori A, Dong Y, Zhang Y, Kang W, Nakatsu G, Ng SSM et al (2018) Forkhead box F2 suppresses gastric cancer through a novel FOXF2-IRF2BPL-beta-catenin signaling axis. Cancer Res 78(7):1643–1656.  https://doi.org/10.1158/0008-5472.CAN-17-2403CrossRefPubMedGoogle Scholar
  110. Higuchi M, Single FN, Kohler M, Sommer B, Sprengel R, Seeburg PH (1993) RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell 75(7):1361–1370PubMedCrossRefGoogle Scholar
  111. Higuchi M, Maas S, Single FN, Hartner J, Rozov A, Burnashev N et al (2000) Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406(6791):78–81.  https://doi.org/10.1038/35017558CrossRefPubMedGoogle Scholar
  112. Hoang PH, Dobbins SE, Cornish AJ, Chubb D, Law PJ, Kaiser M, Houlston RS (2018) Whole-genome sequencing of multiple myeloma reveals oncogenic pathways are targeted somatically through multiple mechanisms. Leukemia.  https://doi.org/10.1038/s41375-018-0103-3PubMedPubMedCentralCrossRefGoogle Scholar
  113. Hu H, Wang M, Wang H, Liu Z, Guan X, Yang R et al (2018) MEGF6 promotes the epithelial-to-mesenchymal transition via the TGFbeta/SMAD signaling pathway in colorectal cancer metastasis. Cell Physiol Biochem 46(5):1895–1906.  https://doi.org/10.1159/000489374CrossRefPubMedGoogle Scholar
  114. Hua S, Kallen CB, Dhar R, Baquero MT, Mason CE, Russell BA et al (2008) Genomic analysis of estrogen cascade reveals histone variant H2A.Z associated with breast cancer progression. Mol Syst Biol 4:188.  https://doi.org/10.1038/msb.2008.25CrossRefPubMedPubMedCentralGoogle Scholar
  115. Hughes JR, Roberts N, McGowan S, Hay D, Giannoulatou E, Lynch M et al (2014) Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat Genet 46(2):205–212.  https://doi.org/10.1038/ng.2871CrossRefPubMedGoogle Scholar
  116. Hurtado A, Holmes KA, Ross-Innes CS, Schmidt D, Carroll JS (2011) FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet 43(1):27–33.  https://doi.org/10.1038/ng.730CrossRefPubMedGoogle Scholar
  117. International HapMap, C (2005) A haplotype map of the human genome. Nature 437(7063):1299–1320.  https://doi.org/10.1038/nature04226CrossRefGoogle Scholar
  118. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333(6047):1300–1303.  https://doi.org/10.1126/science.1210597CrossRefPubMedPubMedCentralGoogle Scholar
  119. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254.  https://doi.org/10.1038/ng1089CrossRefPubMedGoogle Scholar
  120. Jia R, Chai P, Zhang H, Fan X (2017) Novel insights into chromosomal conformations in cancer. Mol Cancer 16(1):173.  https://doi.org/10.1186/s12943-017-0741-5CrossRefPubMedPubMedCentralGoogle Scholar
  121. John Clotaire DZ, Zhang B, Wei N, Gao R, Zhao F, Wang Y et al (2016) MiR-26b inhibits autophagy by targeting ULK2 in prostate cancer cells. Biochem Biophys Res Commun 472(1):194–200.  https://doi.org/10.1016/j.bbrc.2016.02.093CrossRefPubMedGoogle Scholar
  122. John S, Sabo PJ, Thurman RE, Sung MH, Biddie SC, Johnson TA et al (2011) Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat Genet 43(3):264–268.  https://doi.org/10.1038/ng.759CrossRefPubMedPubMedCentralGoogle Scholar
  123. Johnsen JI, Segerstrom L, Orrego A, Elfman L, Henriksson M, Kagedal B et al (2008) Inhibitors of mammalian target of rapamycin downregulate MYCN protein expression and inhibit neuroblastoma growth in vitro and in vivo. Oncogene 27(20):2910–2922.  https://doi.org/10.1038/sj.onc.1210938CrossRefPubMedGoogle Scholar
  124. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120(5):635–647.  https://doi.org/10.1016/j.cell.2005.01.014CrossRefPubMedGoogle Scholar
  125. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3(6):415–428.  https://doi.org/10.1038/nrg816CrossRefPubMedGoogle Scholar
  126. Jones PA, Liang G (2009) Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 10(11):805–811.  https://doi.org/10.1038/nrg2651CrossRefPubMedPubMedCentralGoogle Scholar
  127. Kang L, Liu X, Gong Z, Zheng H, Wang J, Li Y et al (2015) Genome-wide identification of RNA editing in hepatocellular carcinoma. Genomics 105(2):76–82.  https://doi.org/10.1016/j.ygeno.2014.11.005CrossRefPubMedGoogle Scholar
  128. Kapoor A, Goldberg MS, Cumberland LK, Ratnakumar K, Segura MF, Emanuel PO et al (2010) The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature 468(7327):1105–1109.  https://doi.org/10.1038/nature09590CrossRefPubMedPubMedCentralGoogle Scholar
  129. Kawahara Y, Zinshteyn B, Chendrimada TP, Shiekhattar R, Nishikura K (2007a) RNA editing of the microRNA-151 precursor blocks cleavage by the Dicer-TRBP complex. EMBO Rep 8(8):763–769.  https://doi.org/10.1038/sj.embor.7401011CrossRefPubMedPubMedCentralGoogle Scholar
  130. Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, Hatzigeorgiou AG, Nishikura K (2007b) Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315(5815):1137–1140.  https://doi.org/10.1126/science.1138050CrossRefPubMedPubMedCentralGoogle Scholar
  131. Kim VN, Nam JW (2006) Genomics of microRNA. Trends Genet 22(3):165–173.  https://doi.org/10.1016/j.tig.2006.01.003CrossRefPubMedGoogle Scholar
  132. Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA et al (2003) EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci U S A 100(20):11606–11611.  https://doi.org/10.1073/pnas.1933744100CrossRefPubMedPubMedCentralGoogle Scholar
  133. Klezovitch O, Chevillet J, Mirosevich J, Roberts RL, Matusik RJ, Vasioukhin V (2004) Hepsin promotes prostate cancer progression and metastasis. Cancer Cell 6(2):185–195.  https://doi.org/10.1016/j.ccr.2004.07.008CrossRefPubMedGoogle Scholar
  134. Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184(4139):868–871PubMedCrossRefGoogle Scholar
  135. Kosak ST, Groudine M (2004) Form follows function: the genomic organization of cellular differentiation. Genes Dev 18(12):1371–1384.  https://doi.org/10.1101/gad.1209304CrossRefPubMedGoogle Scholar
  136. Kouzarides T (2007a) Chromatin modifications and their function. Cell 128(4):693–705.  https://doi.org/10.1016/j.cell.2007.02.005CrossRefPubMedGoogle Scholar
  137. Kouzarides T (2007b) SnapShot: histone-modifying enzymes. Cell 128(4):802.  https://doi.org/10.1016/j.cell.2007.02.018CrossRefPubMedGoogle Scholar
  138. Laddha SV, Nayak S, Paul D, Reddy R, Sharma C, Jha P et al (2013) Genome-wide analysis reveals downregulation of miR-379/miR-656 cluster in human cancers. Biol Direct 8:10.  https://doi.org/10.1186/1745-6150-8-10CrossRefPubMedPubMedCentralGoogle Scholar
  139. Laganiere J, Deblois G, Lefebvre C, Bataille AR, Robert F, Giguere V (2005) From the Cover: location analysis of estrogen receptor alpha target promoters reveals that FOXA1 defines a domain of the estrogen response. Proc Natl Acad Sci U S A 102(33):11651–11656.  https://doi.org/10.1073/pnas.0505575102CrossRefPubMedPubMedCentralGoogle Scholar
  140. Larson RA, Kondo K, Vardiman JW, Butler AE, Golomb HM, Rowley JD (1984) Evidence for a 15;17 translocation in every patient with acute promyelocytic leukemia. Am J Med 76(5):827–841PubMedCrossRefGoogle Scholar
  141. LaTulippe E, Satagopan J, Smith A, Scher H, Scardino P, Reuter V, Gerald WL (2002) Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res 62(15):4499–4506PubMedGoogle Scholar
  142. Lee AR, Che N, Lovnicki JM, Dong X (2018) Development of neuroendocrine prostate cancers by the Ser/Arg repetitive matrix 4-mediated RNA splicing network. Front Oncol 8:93.  https://doi.org/10.3389/fonc.2018.00093CrossRefPubMedPubMedCentralGoogle Scholar
  143. Li J, Huang H, Sun L, Yang M, Pan C, Chen W et al (2009) MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clin Cancer Res 15(12):3998–4008.  https://doi.org/10.1158/1078-0432.CCR-08-3053CrossRefPubMedGoogle Scholar
  144. Li G, Fullwood MJ, Xu H, Mulawadi FH, Velkov S, Vega V et al (2010) ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol 11(2):R22.  https://doi.org/10.1186/gb-2010-11-2-r22CrossRefPubMedPubMedCentralGoogle Scholar
  145. Li M, Wang IX, Li Y, Bruzel A, Richards AL, Toung JM, Cheung VG (2011) Widespread RNA and DNA sequence differences in the human transcriptome. Science 333(6038):53–58.  https://doi.org/10.1126/science.1207018CrossRefPubMedPubMedCentralGoogle Scholar
  146. Li Y, Donmez N, Sahinalp C, Xie N, Wang Y, Xue H et al (2017) SRRM4 drives neuroendocrine transdifferentiation of prostate adenocarcinoma under androgen receptor pathway inhibition. Eur Urol 71(1):68–78.  https://doi.org/10.1016/j.eururo.2016.04.028CrossRefPubMedGoogle Scholar
  147. Liang Y, Diehn M, Watson N, Bollen AW, Aldape KD, Nicholas MK et al (2005) Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. Proc Natl Acad Sci U S A 102(16):5814–5819.  https://doi.org/10.1073/pnas.0402870102CrossRefPubMedPubMedCentralGoogle Scholar
  148. Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293.  https://doi.org/10.1126/science.1181369CrossRefPubMedPubMedCentralGoogle Scholar
  149. Lister R, O'Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133(3):523–536.  https://doi.org/10.1016/j.cell.2008.03.029CrossRefPubMedPubMedCentralGoogle Scholar
  150. Litchfield K, Levy M, Orlando G, Loveday C, Law PJ, Migliorini G et al (2017) Identification of 19 new risk loci and potential regulatory mechanisms influencing susceptibility to testicular germ cell tumor. Nat Genet 49(7):1133–1140.  https://doi.org/10.1038/ng.3896CrossRefPubMedPubMedCentralGoogle Scholar
  151. Loidl P (1994) Histone acetylation: facts and questions. Chromosoma 103(7):441–449CrossRefGoogle Scholar
  152. Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH, Li Y (2008) MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27(31):4373–4379.  https://doi.org/10.1038/onc.2008.72CrossRefPubMedGoogle Scholar
  153. Luger K, Richmond TJ (1998) The histone tails of the nucleosome. Curr Opin Genet Dev 8(2):140–146PubMedCrossRefGoogle Scholar
  154. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389(6648):251–260.  https://doi.org/10.1038/38444CrossRefPubMedGoogle Scholar
  155. Luo J, Duggan DJ, Chen Y, Sauvageot J, Ewing CM, Bittner ML et al (2001) Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling. Cancer Res 61(12):4683–4688PubMedGoogle Scholar
  156. Luo H, Fang S, Sun L, Liu Z, Zhao Y (2017) Comprehensive characterization of the RNA editomes in cancer development and progression. Front Genet 8:230.  https://doi.org/10.3389/fgene.2017.00230CrossRefPubMedGoogle Scholar
  157. Lupien M, Eeckhoute J, Meyer CA, Wang Q, Zhang Y, Li W et al (2008) FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 132(6):958–970.  https://doi.org/10.1016/j.cell.2008.01.018CrossRefPubMedPubMedCentralGoogle Scholar
  158. Ma G, Liu H, Hua Q, Wang M, Du M, Lin Y et al (2017) KCNMA1 cooperating with PTK2 is a novel tumor suppressor in gastric cancer and is associated with disease outcome. Mol Cancer 16(1):46.  https://doi.org/10.1186/s12943-017-0613-zCrossRefPubMedPubMedCentralGoogle Scholar
  159. Maas S, Patt S, Schrey M, Rich A (2001) Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. Proc Natl Acad Sci U S A 98(25):14687–14692.  https://doi.org/10.1073/pnas.251531398CrossRefPubMedPubMedCentralGoogle Scholar
  160. Maas S, Kawahara Y, Tamburro KM, Nishikura K (2006) A-to-I RNA editing and human disease. RNA Biol 3(1):1–9PubMedPubMedCentralCrossRefGoogle Scholar
  161. Magee JA, Araki T, Patil S, Ehrig T, True L, Humphrey PA et al (2001) Expression profiling reveals hepsin overexpression in prostate cancer. Cancer Res 61(15):5692–5696PubMedGoogle Scholar
  162. Malta TM, de Souza CF, Sabedot TS, Silva TC, Mosella MS, Kalkanis SN et al (2018) Glioma CpG island methylator phenotype (G-CIMP): biological and clinical implications. Neuro-Oncology 20(5):608–620.  https://doi.org/10.1093/neuonc/nox183CrossRefPubMedGoogle Scholar
  163. Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1(3):194–202.  https://doi.org/10.1038/35106079CrossRefPubMedPubMedCentralGoogle Scholar
  164. Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J (2011) Epigenetic mechanisms in Alzheimer’s disease. Neurobiol Aging 32(7):1161–1180.  https://doi.org/10.1016/j.neurobiolaging.2010.08.017CrossRefPubMedPubMedCentralGoogle Scholar
  165. McGill MA, McGlade CJ (2003) Mammalian numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain. J Biol Chem 278(25):23196–23203.  https://doi.org/10.1074/jbc.M302827200CrossRefPubMedPubMedCentralGoogle Scholar
  166. Miao D, Margolis CA, Gao W, Voss MH, Li W, Martini DJ et al (2018) Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359(6377):801–806.  https://doi.org/10.1126/science.aan5951CrossRefPubMedPubMedCentralGoogle Scholar
  167. Misquitta-Ali CM, Cheng E, O'Hanlon D, Liu N, McGlade CJ, Tsao MS, Blencowe BJ (2011) Global profiling and molecular characterization of alternative splicing events misregulated in lung cancer. Mol Cell Biol 31(1):138–150.  https://doi.org/10.1128/MCB.00709-10CrossRefPubMedPubMedCentralGoogle Scholar
  168. Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell 128(4):787–800.  https://doi.org/10.1016/j.cell.2007.01.028CrossRefPubMedPubMedCentralGoogle Scholar
  169. Modregger J, Schmidt AA, Ritter B, Huttner WB, Plomann M (2003) Characterization of Endophilin B1b, a brain-specific membrane-associated lysophosphatidic acid acyl transferase with properties distinct from endophilin A1. J Biol Chem 278(6):4160–4167.  https://doi.org/10.1074/jbc.M208568200CrossRefPubMedPubMedCentralGoogle Scholar
  170. Morey L, Brenner C, Fazi F, Villa R, Gutierrez A, Buschbeck M et al (2008) MBD3, a component of the NuRD complex, facilitates chromatin alteration and deposition of epigenetic marks. Mol Cell Biol 28(19):5912–5923.  https://doi.org/10.1128/MCB.00467-08CrossRefPubMedPubMedCentralGoogle Scholar
  171. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628.  https://doi.org/10.1038/nmeth.1226CrossRefPubMedPubMedCentralGoogle Scholar
  172. Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320(5881):1344–1349.  https://doi.org/10.1126/science.1158441CrossRefPubMedPubMedCentralGoogle Scholar
  173. Nayak S, Aich M, Kumar A, Sengupta S, Bajad P, Dhapola P et al (2018) Novel internal regulators and candidate miRNAs within miR-379/miR-656 miRNA cluster can alter cellular phenotype of human glioblastoma. Sci Rep 8(1):7673.  https://doi.org/10.1038/s41598-018-26000-8CrossRefPubMedPubMedCentralGoogle Scholar
  174. Nishikura K (2010) Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem 79:321–349.  https://doi.org/10.1146/annurev-biochem-060208-105251CrossRefPubMedPubMedCentralGoogle Scholar
  175. Niwa H (2007) How is pluripotency determined and maintained? Development 134(4):635–646.  https://doi.org/10.1242/dev.02787CrossRefPubMedPubMedCentralGoogle Scholar
  176. Noll M (1974) Internal structure of the chromatin subunit. Nucleic Acids Res 1(11):1573–1578PubMedPubMedCentralCrossRefGoogle Scholar
  177. Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N et al (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485(7398):381–385.  https://doi.org/10.1038/nature11049CrossRefPubMedPubMedCentralGoogle Scholar
  178. Norris EJ, Jones WD, Surleac MD, Petrescu AJ, Destephanis D, Zhang Q et al (2018) Clonal lineage of high grade serous ovarian cancer in a patient with neurofibromatosis type 1. Gynecol Oncol Rep 23:41–44.  https://doi.org/10.1016/j.gore.2018.01.005CrossRefPubMedPubMedCentralGoogle Scholar
  179. Norton VG, Imai BS, Yau P, Bradbury EM (1989) Histone acetylation reduces nucleosome core particle linking number change. Cell 57(3):449–457PubMedCrossRefPubMedCentralGoogle Scholar
  180. Novikov L, Park JW, Chen H, Klerman H, Jalloh AS, Gamble MJ (2011) QKI-mediated alternative splicing of the histone variant MacroH2A1 regulates cancer cell proliferation. Mol Cell Biol 31(20):4244–4255.  https://doi.org/10.1128/MCB.05244-11CrossRefPubMedPubMedCentralGoogle Scholar
  181. Nowak SJ, Corces VG (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20(4):214–220.  https://doi.org/10.1016/j.tig.2004.02.007CrossRefPubMedPubMedCentralGoogle Scholar
  182. Okita Y, Kimura M, Xie R, Chen C, Shen LT, Kojima Y et al (2017) The transcription factor MAFK induces EMT and malignant progression of triple-negative breast cancer cells through its target GPNMB. Sci Signal 10(474).  https://doi.org/10.1126/scisignal.aak9397PubMedCrossRefPubMedCentralGoogle Scholar
  183. Olive V, Jiang I, He L (2010) mir-17-92, a cluster of miRNAs in the midst of the cancer network. Int J Biochem Cell Biol 42(8):1348–1354.  https://doi.org/10.1016/j.biocel.2010.03.004CrossRefPubMedPubMedCentralGoogle Scholar
  184. Oltean S, Bates DO (2014) Hallmarks of alternative splicing in cancer. Oncogene 33(46):5311–5318.  https://doi.org/10.1038/onc.2013.533CrossRefPubMedPubMedCentralGoogle Scholar
  185. Ong CT, Corces VG (2014) CTCF: an architectural protein bridging genome topology and function. Nat Rev Genet 15(4):234–246.  https://doi.org/10.1038/nrg3663CrossRefPubMedPubMedCentralGoogle Scholar
  186. Pan J, Hu H, Zhou Z, Sun L, Peng L, Yu L et al (2010) Tumor-suppressive mir-663 gene induces mitotic catastrophe growth arrest in human gastric cancer cells. Oncol Rep 24(1):105–112PubMedGoogle Scholar
  187. Parker BC, Zhang W (2013) Fusion genes in solid tumors: an emerging target for cancer diagnosis and treatment. Chin J Cancer 32(11):594–603.  https://doi.org/10.5732/cjc.013.10178CrossRefPubMedPubMedCentralGoogle Scholar
  188. Paul D, Sinha AN, Ray A, Lal M, Nayak S, Sharma A et al (2017) A-to-I editing in human miRNAs is enriched in seed sequence, influenced by sequence contexts and significantly hypoedited in glioblastoma multiforme. Sci Rep 7(1):2466.  https://doi.org/10.1038/s41598-017-02397-6CrossRefPubMedPubMedCentralGoogle Scholar
  189. Paz N, Levanon EY, Amariglio N, Heimberger AB, Ram Z, Constantini S et al (2007) Altered adenosine-to-inosine RNA editing in human cancer. Genome Res 17(11):1586–1595.  https://doi.org/10.1101/gr.6493107CrossRefPubMedPubMedCentralGoogle Scholar
  190. Paz-Yaacov N, Bazak L, Buchumenski I, Porath HT, Danan-Gotthold M, Knisbacher BA et al (2015) Elevated RNA editing activity is a major contributor to transcriptomic diversity in tumors. Cell Rep 13(2):267–276.  https://doi.org/10.1016/j.celrep.2015.08.080CrossRefPubMedGoogle Scholar
  191. Pedersen MT, Helin K (2010) Histone demethylases in development and disease. Trends Cell Biol 20(11):662–671.  https://doi.org/10.1016/j.tcb.2010.08.011CrossRefPubMedGoogle Scholar
  192. Peng Y, Dai Y, Hitchcock C, Yang X, Kassis ES, Liu L et al (2013) Insulin growth factor signaling is regulated by microRNA-486, an underexpressed microRNA in lung cancer. Proc Natl Acad Sci U S A 110(37):15043–15048.  https://doi.org/10.1073/pnas.1307107110CrossRefPubMedPubMedCentralGoogle Scholar
  193. Pietersen AM, Horlings HM, Hauptmann M, Langerod A, Ajouaou A, Cornelissen-Steijger P et al (2008) EZH2 and BMI1 inversely correlate with prognosis and TP53 mutation in breast cancer. Breast Cancer Res 10(6):R109.  https://doi.org/10.1186/bcr2214CrossRefPubMedPubMedCentralGoogle Scholar
  194. Pihan GA (2013) Centrosome dysfunction contributes to chromosome instability, chromoanagenesis, and genome reprograming in cancer. Front Oncol 3:277.  https://doi.org/10.3389/fonc.2013.00277CrossRefPubMedPubMedCentralGoogle Scholar
  195. Quina AS, Buschbeck M, Di Croce L (2006) Chromatin structure and epigenetics. Biochem Pharmacol 72(11):1563–1569.  https://doi.org/10.1016/j.bcp.2006.06.016CrossRefPubMedGoogle Scholar
  196. Radman-Livaja M, Rando OJ (2010) Nucleosome positioning: how is it established, and why does it matter? Dev Biol 339(2):258–266.  https://doi.org/10.1016/j.ydbio.2009.06.012CrossRefPubMedGoogle Scholar
  197. Reisman D, Glaros S, Thompson EA (2009) The SWI/SNF complex and cancer. Oncogene 28(14):1653–1668.  https://doi.org/10.1038/onc.2009.4CrossRefPubMedGoogle Scholar
  198. Richmond TJ, Davey CA (2003) The structure of DNA in the nucleosome core. Nature 423(6936):145–150.  https://doi.org/10.1038/nature01595CrossRefPubMedGoogle Scholar
  199. Rickman DS, Soong TD, Moss B, Mosquera JM, Dlabal J, Terry S et al (2012) Oncogene-mediated alterations in chromatin conformation. Proc Natl Acad Sci U S A 109(23):9083–9088.  https://doi.org/10.1073/pnas.1112570109CrossRefPubMedPubMedCentralGoogle Scholar
  200. Roix JJ, McQueen PG, Munson PJ, Parada LA, Misteli T (2003) Spatial proximity of translocation-prone gene loci in human lymphomas. Nat Genet 34(3):287–291.  https://doi.org/10.1038/ng1177CrossRefPubMedGoogle Scholar
  201. Roush S, Slack FJ (2008) The let-7 family of microRNAs. Trends Cell Biol 18(10):505–516.  https://doi.org/10.1016/j.tcb.2008.07.007CrossRefPubMedGoogle Scholar
  202. Rowley JD (1973) Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243(5405):290–293PubMedCrossRefGoogle Scholar
  203. Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC et al (2018) Oncogenic signaling pathways in the cancer genome Atlas. Cell 173(2):321–337. e310.  https://doi.org/10.1016/j.cell.2018.03.035CrossRefPubMedPubMedCentralGoogle Scholar
  204. Sanmartin E, Yanez Y, Fornes-Ferrer V, Zugaza JL, Canete A, Castel V, Font de Mora J (2017) TIAM1 variants improve clinical outcome in neuroblastoma. Oncotarget 8(28):45286–45297.  https://doi.org/10.18632/oncotarget.16787CrossRefPubMedPubMedCentralGoogle Scholar
  205. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470PubMedCrossRefGoogle Scholar
  206. Schramm A, Koster J, Marschall T, Martin M, Schwermer M, Fielitz K et al (2013) Next-generation RNA sequencing reveals differential expression of MYCN target genes and suggests the mTOR pathway as a promising therapy target in MYCN-amplified neuroblastoma. Int J Cancer 132(3):E106–E115.  https://doi.org/10.1002/ijc.27787CrossRefPubMedGoogle Scholar
  207. Schuster-Bockler B, Lehner B (2012) Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature 488(7412):504–507.  https://doi.org/10.1038/nature11273CrossRefPubMedGoogle Scholar
  208. Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482(7384):226–231.  https://doi.org/10.1038/nature10833CrossRefPubMedGoogle Scholar
  209. Seeburg PH, Hartner J (2003) Regulation of ion channel/neurotransmitter receptor function by RNA editing. Curr Opin Neurobiol 13(3):279–283PubMedCrossRefGoogle Scholar
  210. Seligson DB, Horvath S, McBrian MA, Mah V, Yu H, Tze S et al (2009) Global levels of histone modifications predict prognosis in different cancers. Am J Pathol 174(5):1619–1628.  https://doi.org/10.2353/ajpath.2009.080874CrossRefPubMedPubMedCentralGoogle Scholar
  211. Seshagiri S, Stawiski EW, Durinck S, Modrusan Z, Storm EE, Conboy CB et al (2012) Recurrent R-spondin fusions in colon cancer. Nature 488(7413):660–664.  https://doi.org/10.1038/nature11282CrossRefPubMedPubMedCentralGoogle Scholar
  212. Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31(1):27–36.  https://doi.org/10.1093/carcin/bgp220CrossRefPubMedGoogle Scholar
  213. Sharma A, Ansari AH, Kumari R, Pandey R, Rehman R, Mehani B et al (2016) Human brain harbors single nucleotide somatic variations in functionally relevant genes possibly mediated by oxidative stress. F1000Res 5:2520.  https://doi.org/10.12688/f1000research.9495.3CrossRefPubMedGoogle Scholar
  214. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA et al (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7):941–953.  https://doi.org/10.1016/j.cell.2004.12.012CrossRefGoogle Scholar
  215. Shi YX, Wang Y, Li X, Zhang W, Zhou HH, Yin JY, Liu ZQ (2017) Genome-wide DNA methylation profiling reveals novel epigenetic signatures in squamous cell lung cancer. BMC Genomics 18(1):901.  https://doi.org/10.1186/s12864-017-4223-3CrossRefPubMedPubMedCentralGoogle Scholar
  216. Simonis M, de Laat W (2008) FISH-eyed and genome-wide views on the spatial organisation of gene expression. Biochim Biophys Acta 1783(11):2052–2060.  https://doi.org/10.1016/j.bbamcr.2008.07.020CrossRefPubMedGoogle Scholar
  217. Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E et al (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38(11):1348–1354.  https://doi.org/10.1038/ng1896CrossRefPubMedGoogle Scholar
  218. Sims RJ 3rd, Nishioka K, Reinberg D (2003) Histone lysine methylation: a signature for chromatin function. Trends Genet 19(11):629–639.  https://doi.org/10.1016/j.tig.2003.09.007CrossRefPubMedGoogle Scholar
  219. Smith AP, Hoek K, Becker D (2005) Whole-genome expression profiling of the melanoma progression pathway reveals marked molecular differences between nevi/melanoma in situ and advanced-stage melanomas. Cancer Biol Ther 4(9):1018–1029PubMedCrossRefGoogle Scholar
  220. Song L, Zhang Z, Grasfeder LL, Boyle AP, Giresi PG, Lee BK et al (2011) Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res 21(10):1757–1767.  https://doi.org/10.1101/gr.121541.111CrossRefPubMedPubMedCentralGoogle Scholar
  221. Song JS, Kim YS, Kim DK, Park SI, Jang SJ (2012) Global histone modification pattern associated with recurrence and disease-free survival in non-small cell lung cancer patients. Pathol Int 62(3):182–190.  https://doi.org/10.1111/j.1440-1827.2011.02776.xCrossRefPubMedGoogle Scholar
  222. Song C, Zhang L, Wang J, Huang Z, Li X, Wu M et al (2016) High expression of microRNA-183/182/96 cluster as a prognostic biomarker for breast cancer. Sci Rep 6:24502.  https://doi.org/10.1038/srep24502CrossRefPubMedPubMedCentralGoogle Scholar
  223. Splinter E, de Wit E, Nora EP, Klous P, van de Werken HJ, Zhu Y et al (2011) The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev 25(13):1371–1383.  https://doi.org/10.1101/gad.633311CrossRefPubMedPubMedCentralGoogle Scholar
  224. Sporn JC, Jung B (2012) Differential regulation and predictive potential of MacroH2A1 isoforms in colon cancer. Am J Pathol 180(6):2516–2526.  https://doi.org/10.1016/j.ajpath.2012.02.027CrossRefPubMedPubMedCentralGoogle Scholar
  225. Sporn JC, Kustatscher G, Hothorn T, Collado M, Serrano M, Muley T et al (2009) Histone macroH2A isoforms predict the risk of lung cancer recurrence. Oncogene 28(38):3423–3428.  https://doi.org/10.1038/onc.2009.26CrossRefPubMedGoogle Scholar
  226. Stirzaker C, Taberlay PC, Statham AL, Clark SJ (2014) Mining cancer methylomes: prospects and challenges. Trends Genet 30(2):75–84.  https://doi.org/10.1016/j.tig.2013.11.004CrossRefPubMedGoogle Scholar
  227. Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458(7239):719–724.  https://doi.org/10.1038/nature07943CrossRefPubMedPubMedCentralGoogle Scholar
  228. Sung MH, Guertin MJ, Baek S, Hager GL (2014) DNase footprint signatures are dictated by factor dynamics and DNA sequence. Mol Cell 56(2):275–285.  https://doi.org/10.1016/j.molcel.2014.08.016CrossRefPubMedPubMedCentralGoogle Scholar
  229. Svotelis A, Gevry N, Gaudreau L (2009) Regulation of gene expression and cellular proliferation by histone H2A.Z. Biochem Cell Biol 87(1):179–188.  https://doi.org/10.1139/O08-138CrossRefPubMedGoogle Scholar
  230. Svotelis A, Gevry N, Grondin G, Gaudreau L (2010) H2A.Z overexpression promotes cellular proliferation of breast cancer cells. Cell Cycle 9(2):364–370.  https://doi.org/10.4161/cc.9.2.10465CrossRefPubMedGoogle Scholar
  231. Szenker E, Ray-Gallet D, Almouzni G (2011) The double face of the histone variant H3.3. Cell Res 21(3):421–434.  https://doi.org/10.1038/cr.2011.14CrossRefPubMedPubMedCentralGoogle Scholar
  232. Szyf M (2016) The elusive role of 5′-hydroxymethylcytosine. Epigenomics 8(11):1539–1551.  https://doi.org/10.2217/epi-2016-0076CrossRefPubMedGoogle Scholar
  233. Taberlay PC, Achinger-Kawecka J, Lun AT, Buske FA, Sabir K, Gould CM et al (2016) Three-dimensional disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alterations. Genome Res 26(6):719–731.  https://doi.org/10.1101/gr.201517.115CrossRefPubMedPubMedCentralGoogle Scholar
  234. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324(5929):930–935.  https://doi.org/10.1126/science.1170116CrossRefPubMedPubMedCentralGoogle Scholar
  235. Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y et al (2007) Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9(10):1142–1151.  https://doi.org/10.1038/ncb1634CrossRefPubMedPubMedCentralGoogle Scholar
  236. Takashima Y, Sasaki Y, Hayano A, Homma J, Fukai J, Iwadate Y et al (2018) Target amplicon exome-sequencing identifies promising diagnosis and prognostic markers involved in RTK-RAS and PI3K-AKT signaling as central oncopathways in primary central nervous system lymphoma. Oncotarget 9(44):27471–27486.  https://doi.org/10.18632/oncotarget.25463CrossRefPubMedPubMedCentralGoogle Scholar
  237. Thomas A, Mahantshetty U, Kannan S, Deodhar K, Shrivastava SK, Kumar-Sinha C, Mulherkar R (2013) Expression profiling of cervical cancers in Indian women at different stages to identify gene signatures during progression of the disease. Cancer Med 2(6):836–848.  https://doi.org/10.1002/cam4.152CrossRefPubMedPubMedCentralGoogle Scholar
  238. Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E et al (2012) The accessible chromatin landscape of the human genome. Nature 489(7414):75–82.  https://doi.org/10.1038/nature11232CrossRefPubMedPubMedCentralGoogle Scholar
  239. Tirado-Magallanes R, Rebbani K, Lim R, Pradhan S, Benoukraf T (2017) Whole genome DNA methylation: beyond genes silencing. Oncotarget 8(3):5629–5637.  https://doi.org/10.18632/oncotarget.13562CrossRefPubMedGoogle Scholar
  240. Tiwari VK, McGarvey KM, Licchesi JD, Ohm JE, Herman JG, Schubeler D, Baylin SB (2008) PcG proteins, DNA methylation, and gene repression by chromatin looping. PLoS Biol 6(12):2911–2927.  https://doi.org/10.1371/journal.pbio.0060306CrossRefPubMedGoogle Scholar
  241. Toledo RA, Garralda E, Mitsi M, Pons T, Monsech J, Vega E et al (2018) Exome sequencing of plasma DNA portrays the mutation landscape of colorectal cancer and discovers mutated VEGFR2 receptors as modulators of antiangiogenic therapies. Clin Cancer Res 24(15):3550–3559.  https://doi.org/10.1158/1078-0432.CCR-18-0103CrossRefPubMedGoogle Scholar
  242. Tomaselli S, Galeano F, Alon S, Raho S, Galardi S, Polito VA et al (2015) Modulation of microRNA editing, expression and processing by ADAR2 deaminase in glioblastoma. Genome Biol 16:5.  https://doi.org/10.1186/s13059-014-0575-zCrossRefPubMedPubMedCentralGoogle Scholar
  243. Tripathi M, Nandana S, Yamashita H, Ganesan R, Kirchhofer D, Quaranta V (2008) Laminin-332 is a substrate for hepsin, a protease associated with prostate cancer progression. J Biol Chem 283(45):30576–30584.  https://doi.org/10.1074/jbc.M802312200CrossRefPubMedPubMedCentralGoogle Scholar
  244. Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439(7078):811–816.  https://doi.org/10.1038/nature04433CrossRefPubMedGoogle Scholar
  245. Turc-Carel C, Dal Cin P, Limon J, Rao U, Li FP, Corson JM et al (1987) Involvement of chromosome X in primary cytogenetic change in human neoplasia: nonrandom translocation in synovial sarcoma. Proc Natl Acad Sci U S A 84(7):1981–1985PubMedPubMedCentralCrossRefGoogle Scholar
  246. van Berkum NL, Lieberman-Aiden E, Williams L, Imakaev M, Gnirke A, Mirny LA et al (2010) Hi-C: a method to study the three-dimensional architecture of genomes. J Vis Exp 39.  https://doi.org/10.3791/1869
  247. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG et al (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419(6907):624–629.  https://doi.org/10.1038/nature01075CrossRefPubMedGoogle Scholar
  248. Verger A, Crossley M (2004) Chromatin modifiers in transcription and DNA repair. Cell Mol Life Sci 61(17):2154–2162.  https://doi.org/10.1007/s00018-004-4176-yCrossRefPubMedGoogle Scholar
  249. Vidal E, Sayols S, Moran S, Guillaumet-Adkins A, Schroeder MP, Royo R et al (2017) A DNA methylation map of human cancer at single base-pair resolution. Oncogene 36(40):5648–5657.  https://doi.org/10.1038/onc.2017.176CrossRefPubMedPubMedCentralGoogle Scholar
  250. Vietri Rudan M, Barrington C, Henderson S, Ernst C, Odom DT, Tanay A, Hadjur S (2015) Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep 10(8):1297–1309.  https://doi.org/10.1016/j.celrep.2015.02.004CrossRefPubMedPubMedCentralGoogle Scholar
  251. Waldman T, Kinzler KW, Vogelstein B (1995) p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 55(22):5187–5190PubMedGoogle Scholar
  252. Wang DB, Uo T, Kinoshita C, Sopher BL, Lee RJ, Murphy SP et al (2014) Bax interacting factor-1 promotes survival and mitochondrial elongation in neurons. J Neurosci 34(7):2674–2683.  https://doi.org/10.1523/JNEUROSCI.4074-13.2014CrossRefPubMedPubMedCentralGoogle Scholar
  253. Wang Y, Xu X, Yu S, Jeong KJ, Zhou Z, Han L et al (2017) Systematic characterization of A-to-I RNA editing hotspots in microRNAs across human cancers. Genome Res 27(7):1112–1125.  https://doi.org/10.1101/gr.219741.116CrossRefPubMedPubMedCentralGoogle Scholar
  254. Wei J, van der Wekken AJ, Saber A, Terpstra MM, Schuuring E, Timens W et al (2018) Mutations in EMT-related genes in ALK positive crizotinib resistant non-small cell lung cancers. Cancers (Basel) 10(1).  https://doi.org/10.3390/cancers10010010PubMedCentralCrossRefPubMedGoogle Scholar
  255. Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA et al (2006) CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 38(7):787–793.  https://doi.org/10.1038/ng1834CrossRefPubMedGoogle Scholar
  256. Westhoff B, Colaluca IN, D'Ario G, Donzelli M, Tosoni D, Volorio S et al (2009) Alterations of the Notch pathway in lung cancer. Proc Natl Acad Sci U S A 106(52):22293–22298.  https://doi.org/10.1073/pnas.0907781106CrossRefPubMedPubMedCentralGoogle Scholar
  257. Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z et al (2006) Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125(3):467–481.  https://doi.org/10.1016/j.cell.2006.03.028CrossRefPubMedGoogle Scholar
  258. Winter DR, Song L, Mukherjee S, Furey TS, Crawford GE (2013) DNase-seq predicts regions of rotational nucleosome stability across diverse human cell types. Genome Res 23(7):1118–1129.  https://doi.org/10.1101/gr.150482.112CrossRefPubMedPubMedCentralGoogle Scholar
  259. Witcher M, Emerson BM (2009) Epigenetic silencing of the p16(INK4a) tumor suppressor is associated with loss of CTCF binding and a chromatin boundary. Mol Cell 34(3):271–284.  https://doi.org/10.1016/j.molcel.2009.04.001CrossRefPubMedPubMedCentralGoogle Scholar
  260. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44(3):251–253.  https://doi.org/10.1038/ng.1102CrossRefPubMedPubMedCentralGoogle Scholar
  261. Xi R, Kim TM, Park PJ (2010) Detecting structural variations in the human genome using next generation sequencing. Brief Funct Genomics 9(5–6):405–415.  https://doi.org/10.1093/bfgp/elq025CrossRefPubMedGoogle Scholar
  262. Xiong Q, Zhong Q, Zhang J, Yang M, Li C, Zheng P et al (2012) Identification of novel miR-21 target proteins in multiple myeloma cells by quantitative proteomics. J Proteome Res 11(4):2078–2090.  https://doi.org/10.1021/pr201079yCrossRefPubMedGoogle Scholar
  263. Xu J, Lin DI (2018) Oncogenic c-terminal cyclin D1 (CCND1) mutations are enriched in endometrioid endometrial adenocarcinomas. PLoS One 13(7):e0199688.  https://doi.org/10.1371/journal.pone.0199688CrossRefPubMedPubMedCentralGoogle Scholar
  264. Yan W, Zhang W, You G, Zhang J, Han L, Bao Z et al (2012) Molecular classification of gliomas based on whole genome gene expression: a systematic report of 225 samples from the Chinese Glioma Cooperative Group. Neuro-Oncology 14(12):1432–1440.  https://doi.org/10.1093/neuonc/nos263CrossRefPubMedPubMedCentralGoogle Scholar
  265. Yang W, Chendrimada TP, Wang Q, Higuchi M, Seeburg PH, Shiekhattar R, Nishikura K (2006) Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 13(1):13–21.  https://doi.org/10.1038/nsmb1041CrossRefPubMedGoogle Scholar
  266. Yang CC, Buck MJ, Chen MH, Chen YF, Lan HC, Chen JJ et al (2013) Discovering chromatin motifs using FAIRE sequencing and the human diploid genome. BMC Genomics 14:310.  https://doi.org/10.1186/1471-2164-14-310CrossRefPubMedPubMedCentralGoogle Scholar
  267. Yi C, Wang Q, Wang L, Huang Y, Li L, Liu L et al (2012) MiR-663, a microRNA targeting p21(WAF1/CIP1), promotes the proliferation and tumorigenesis of nasopharyngeal carcinoma. Oncogene 31(41):4421–4433.  https://doi.org/10.1038/onc.2011.629CrossRefPubMedGoogle Scholar
  268. Yoon JK, Lee JS (2012) Cellular signaling and biological functions of R-spondins. Cell Signal 24(2):369–377.  https://doi.org/10.1016/j.cellsig.2011.09.023CrossRefPubMedGoogle Scholar
  269. Yu J, Wang F, Yang GH, Wang FL, Ma YN, Du ZW, Zhang JW (2006) Human microRNA clusters: genomic organization and expression profile in leukemia cell lines. Biochem Biophys Res Commun 349(1):59–68.  https://doi.org/10.1016/j.bbrc.2006.07.207CrossRefPubMedGoogle Scholar
  270. Zeitz MJ, Ay F, Heidmann JD, Lerner PL, Noble WS, Steelman BN, Hoffman AR (2013) Genomic interaction profiles in breast cancer reveal altered chromatin architecture. PLoS One 8(9):e73974.  https://doi.org/10.1371/journal.pone.0073974CrossRefPubMedPubMedCentralGoogle Scholar
  271. Zhang Y (2003) Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev 17(22):2733–2740.  https://doi.org/10.1101/gad.1156403CrossRefPubMedGoogle Scholar
  272. Zhang Z, Pugh BF (2011) High-resolution genome-wide mapping of the primary structure of chromatin. Cell 144(2):175–186.  https://doi.org/10.1016/j.cell.2011.01.003CrossRefPubMedPubMedCentralGoogle Scholar
  273. Zhang BG, Li JF, Yu BQ, Zhu ZG, Liu BY, Yan M (2012) microRNA-21 promotes tumor proliferation and invasion in gastric cancer by targeting PTEN. Oncol Rep 27(4):1019–1026.  https://doi.org/10.3892/or.2012.1645CrossRefPubMedPubMedCentralGoogle Scholar
  274. Zhao Z, Tavoosidana G, Sjolinder M, Gondor A, Mariano P, Wang S et al (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 38(11):1341–1347.  https://doi.org/10.1038/ng1891CrossRefPubMedPubMedCentralGoogle Scholar
  275. Zhao JJ, Chu ZB, Hu Y, Lin J, Wang Z, Jiang M et al (2015) Targeting the miR-221-222/PUMA/BAK/BAX pathway abrogates dexamethasone resistance in multiple myeloma. Cancer Res 75(20):4384–4397.  https://doi.org/10.1158/0008-5472.CAN-15-0457CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Megha Lal
    • 1
    • 2
  • Deepanjan Paul
    • 1
    • 2
  • Subhashree Nayak
    • 3
  • Arijit Mukhopadhyay
    • 2
    • 4
    Email author
  1. 1.CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
  2. 2.Academy of Scientific and Innovative ResearchNew DelhiIndia
  3. 3.Laboratory of Skin BiologyNational Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of HealthBethesdaUSA
  4. 4.Translational Medicine Unit, Biomedical Research Centre, School of Environment and Life SciencesUniversity of SalfordManchesterUK

Personalised recommendations