Nanotechnology: The Future for Cancer Treatment

  • Yogita Patil-SenEmail author
  • Ashwin Narain
  • Simran Asawa
  • Tanvi Tavarna


Nanotechnology, which is defined as the science behind the structures within the size range of 1–100 nm, potentially holds the key to treat several chronic diseases such as cardiovascular diseases, respiratory diseases and cancer. Nanoscale structures can provide promising tools for various applications in nanomedicine including those in drug delivery of therapeutics and imaging. Present-day cancer treatments suffer from severe side effects and lack specificity, thus affecting healthy cells. Nanoparticles, however, can preferentially accumulate only at the tumour site or can be targeted to cancer cells by surface functionalization using ligands. A major advantage of nanoparticles lies in the scope of surface modification and encapsulation of poorly soluble anticancer drug. This translates into higher therapeutic efficacy and lower toxicity for nanoparticle therapeutics. Thus, nanoparticles offer myriad potential in medical science. This chapter highlights various types of nanoparticles and targeting moieties that have potential to serve as drug carriers that can selectively target tumour cells.


Nanoparticles Targeted cancer therapy Drug delivery Targeting ligands Moieties Therapeutic 



Y Patil-Sen would like to thank the Daphne Jackson Trust for the fellowship which provided an opportunity for her to return to research after a career break. The fellowship is jointly funded by the Royal Society of Chemistry and the University of Central Lancashire, UK.


  1. Acharya S, Dilnawaz F, Sahoo SK (2009) Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials 30:5737–5750PubMedCrossRefGoogle Scholar
  2. Ajima K, Murakami T, Mizoguchi Y, Tsuchida K, Ichihashi T, Iijima S, Yudasaka M (2008) Enhancement of in vivo anticancer effects of cisplatin by incorporation inside single-wall carbon nanohorns. ACS Nano 2:2057–2064PubMedCrossRefGoogle Scholar
  3. Alibolandi M, Rezvani R, Farzad SA, Taghdisi SM, Abnous K, Ramezani M (2017) Tetrac-conjugated polymersomes for integrin-targeted delivery of camptothecin to colon adenocarcinoma in vitro and in vivo. Int J Pharm 532:581–594PubMedCrossRefGoogle Scholar
  4. Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2:750PubMedCrossRefGoogle Scholar
  5. Ansari MO, Ahmad MF, Parveen N, Ahmad S, Jameel S, Shadab GGHA (2017) Iron oxide nanoparticles-synthesis, surface modification, applications and toxicity: a review. Mater Focus 6:269–279CrossRefGoogle Scholar
  6. Antonelli A, Sfara C, Manuali E, Bruce IJ, Magnani M (2011) Encapsulation of superparamagnetic nanoparticles into red blood cells as new carriers of MRI contrast agents. Nanomedicine 6:211–223PubMedCrossRefGoogle Scholar
  7. Awada A, Bondarenko IN, Bonneterre J, Nowara E, Ferrero JM, Bakshi AV, Wilke C, Piccart M (2014) A randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC). Ann Oncol 25:824–831PubMedCrossRefGoogle Scholar
  8. Bae Y, Jang WD, Nishiyama N, Fukushima S, Kataoka K (2005) Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol BioSyst 1:242–250PubMedCrossRefGoogle Scholar
  9. Baker JR Jr (2009) Dendrimer-based nanoparticles for cancer therapy. Hematology Am Soc Hematol Educ Program 2009:708–719CrossRefGoogle Scholar
  10. Bamrungsap S, Chen T, Shukoor MI, Chen Z, Sefah K, Chen Y, Tan W (2012) Pattern recognition of Cancer cells using aptamer-conjugated magnetic nanoparticles. ACS Nano 6:3974–3981PubMedPubMedCentralCrossRefGoogle Scholar
  11. Barenholz Y (2012) Doxil® — the first FDA-approved nano-drug: lessons learned. J Control Release 160:117–134PubMedCrossRefGoogle Scholar
  12. Batist G, Gelmon KA, Chi KN, Miller WH, Chia SKL, Mayer LD, Swenson CE, Janoff AS, Louie AC (2009) Safety, pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors. Clin Cancer Res 15:692–700PubMedCrossRefGoogle Scholar
  13. Bazak R, Houri M, EL Achy S, Kamel S, Refaat T (2015) Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 141:769–784PubMedCrossRefGoogle Scholar
  14. Bertrand N, Leroux J-C (2012) The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Control Release 161:152–163PubMedCrossRefGoogle Scholar
  15. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25PubMedCrossRefGoogle Scholar
  16. Bi Y, Hao F, Yan G, Teng L, Lee RJ, Xie J (2016) Actively targeted nanoparticles for drug delivery to tumor. Curr Drug Metab 17:763–782PubMedCrossRefGoogle Scholar
  17. Bianco A, Kostarelos K, Prato M (2011) Making carbon nanotubes biocompatible and biodegradable. Chem Commun (Camb) 47:10182–10188CrossRefGoogle Scholar
  18. Bibi S, Lattmann E, Mohammed AR, Perrie Y (2012) Trigger release liposome systems: local and remote controlled delivery? J Microencapsul 29:262–276PubMedCrossRefGoogle Scholar
  19. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 33:2373–2387PubMedCrossRefGoogle Scholar
  20. Borghaei H, Smith MR, Campbell KS (2009) Immunotherapy of cancer. Eur J Pharmacol 625:41–54PubMedPubMedCentralCrossRefGoogle Scholar
  21. Brannon-Peppas L, Blanchette JO (2012) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 64:206–212CrossRefGoogle Scholar
  22. Brown PD, Patel PR (2015) Nanomedicine: a pharma perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7:125–130PubMedCrossRefGoogle Scholar
  23. Bu H, He X, Zhang Z, Yin Q, Yu H, Li Y (2014) A TPGS-incorporating nanoemulsion of paclitaxel circumvents drug resistance in breast cancer. Int J Pharm 471:206–213PubMedCrossRefGoogle Scholar
  24. Burnett JC, Rossi JJ, Tiemann K (2011) Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol J 6:1130–1146PubMedPubMedCentralCrossRefGoogle Scholar
  25. Carter P (2001) Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 1:118PubMedCrossRefGoogle Scholar
  26. Chang PY, Peng SF, Lee CY, Lu CC, Tsai SC, Shieh TM, Wu TS, Tu MG, Chen MY, Yang JS (2013) Curcumin-loaded nanoparticles induce apoptotic cell death through regulation of the function of MDR1 and reactive oxygen species in cisplatin-resistant CAR human oral cancer cells. Int J Oncol 43:1141–1150PubMedCrossRefGoogle Scholar
  27. Chen H, Gao J, Lu Y, Kou G, Zhang H, Fan L, Sun Z, Guo Y, Zhong Y (2008) Preparation and characterization of PE38KDEL-loaded anti-HER2 nanoparticles for targeted cancer therapy. J Control Release 128:209–216PubMedCrossRefGoogle Scholar
  28. Chen S, Fan J-X, Qiu W-X, Liu L-H, Cheng H, Liu F, Yan G-P, Zhang X-Z (2017) Self-assembly drug delivery system based on programmable dendritic peptide applied in multidrug resistance tumor therapy. Macromol Rapid Commun 38:1700490CrossRefGoogle Scholar
  29. Cho K, Wang X, Nie S, Chen Z, Shin DM (2008) Therapeutic nanoparticles for drug delivery in Cancer. Clin Cancer Res 14:1310–1316PubMedCrossRefGoogle Scholar
  30. Cho HJ, Yoon HY, Koo H, Ko SH, Shim JS, Lee JH, Kim K, Kwon IC, Kim DD (2011) Self-assembled nanoparticles based on hyaluronic acid-ceramide (HA-CE) and Pluronic(R) for tumor-targeted delivery of docetaxel. Biomaterials 32:7181–7190PubMedCrossRefGoogle Scholar
  31. Choi KY, Chung H, Min KH, Yoon HY, Kim K, Park JH, Kwon IC, Jeong SY (2010) Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials 31:106–114PubMedCrossRefGoogle Scholar
  32. Choi KY, Min KH, Yoon HY, Kim K, Park JH, Kwon IC, Choi K, Jeong SY (2011a) PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo. Biomaterials 32:1880–1889PubMedCrossRefGoogle Scholar
  33. Choi KY, Yoon HY, Kim JH, Bae SM, Park RW, Kang YM, Kim IS, Kwon IC, Choi K, Jeong SY, Kim K, Park JH (2011b) Smart nanocarrier based on PEGylated hyaluronic acid for cancer therapy. ACS Nano 5:8591–8599PubMedCrossRefGoogle Scholar
  34. Choi KY, Saravanakumar G, Park JH, Park K (2012) Hyaluronic acid-based nanocarriers for intracellular targeting: interfacial interactions with proteins in cancer. Colloids Surf B Biointerfaces 99:82–94PubMedCrossRefGoogle Scholar
  35. Cirstoiu-Hapca A, Buchegger F, Bossy L, Kosinski M, Gurny R, Delie F (2009) Nanomedicines for active targeting: physico-chemical characterization of paclitaxel-loaded anti-HER2 immunonanoparticles and in vitro functional studies on target cells. Eur J Pharm Sci 38:230–237PubMedCrossRefGoogle Scholar
  36. Cirstoiu-Hapca A, Buchegger F, Lange N, Bossy L, Gurny R, Delie F (2010) Benefit of anti-HER2-coated paclitaxel-loaded immuno-nanoparticles in the treatment of disseminated ovarian cancer: therapeutic efficacy and biodistribution in mice. J Control Release 144:324–331PubMedCrossRefGoogle Scholar
  37. Cortes J, Saura C (2010) Nanoparticle albumin-bound (nab)-paclitaxel: improving efficacy and tolerability by targeted drug delivery in metastatic breast cancer. Eur J Cancer Suppl 8:1–10CrossRefGoogle Scholar
  38. Cross D, Burmester JK (2006) Gene therapy for cancer treatment: past, present and future. Clin Med Res 4:218–227PubMedPubMedCentralCrossRefGoogle Scholar
  39. Danhier F, Lecouturier N, Vroman B, Jérôme C, Marchand-Brynaert J, Feron O, Préat V (2009) Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. J Control Release 133:11–17PubMedCrossRefGoogle Scholar
  40. Datir SR, Das M, Singh RP, Jain S (2012) Hyaluronate tethered, “smart” multiwalled carbon nanotubes for tumor-targeted delivery of doxorubicin. Bioconjug Chem 23:2201–2213PubMedCrossRefGoogle Scholar
  41. Dawidczyk CM, Kim C, Park JH, Russell LM, Lee KH, Pomper MG, Searson PC (2014) State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines. J Control Release 187:133–144PubMedPubMedCentralCrossRefGoogle Scholar
  42. Delyagina E, Li W, Ma N, Steinhoff G (2011) Magnetic targeting strategies in gene delivery. Nanomedicine 6:1593–1604PubMedCrossRefGoogle Scholar
  43. Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ (2008) Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA–PEG nanoparticles. Proc Natl Acad Sci 105:17356PubMedCrossRefGoogle Scholar
  44. Dijkgraaf I, Rijnders AY, Soede A, Dechesne AC, VAN Esse GW, Brouwer AJ, Corstens FHM, Boerman OC, Rijkers DTS, Liskamp RMJ (2007) Synthesis of DOTA-conjugated multivalent cyclic-RGD peptide dendrimers via 1,3-dipolar cycloaddition and their biological evaluation: implications for tumor targeting and tumor imaging purposes. Org Biomol Chem 5:935–944PubMedCrossRefGoogle Scholar
  45. Drummond DC, Noble CO, Guo Z, Hayes ME, Connolly-Ingram C, Gabriel BS, Hann B, Liu B, Park JW, Hong K, Benz CC, Marks JD, Kirpotin DB (2010) Development of a highly stable and targetable nanoliposomal formulation of topotecan. J Control Release 141:13–21PubMedCrossRefGoogle Scholar
  46. Du F-S, Huang X-N, Chen G-T, Lin S-S, Liang D, Li Z-C (2010) Aqueous solution properties of the acid-labile Thermoresponsive poly(meth)acrylamides with pendent cyclic Orthoester groups. Macromolecules 43:2474–2483CrossRefGoogle Scholar
  47. Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701PubMedCrossRefGoogle Scholar
  48. Duncan R, Izzo L (2005) Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 57:2215–2237PubMedCrossRefGoogle Scholar
  49. Estanqueiro M, Amaral MH, Conceição J, Sousa Lobo JM (2015) Nanotechnological carriers for cancer chemotherapy: the state of the art. Colloids Surf B: Biointerfaces 126:631–648PubMedCrossRefGoogle Scholar
  50. Fabbro C, Ali-Boucetta H, Ros TD, Kostarelos K, Bianco A, Prato M (2012) Targeting carbon nanotubes against cancer. Chem Commun 48:3911–3926CrossRefGoogle Scholar
  51. Fadeel B (2012) Clear and present danger? Engineered nanoparticles and the immune system. Swiss Med Wkly 142:w13609PubMedGoogle Scholar
  52. Fahs S, Rowther FB, Dennison SR, Patil-Sen Y, Warr T, Snape TJ (2014) Development of a novel, multifunctional, membrane-interactive pyridinium salt with potent anticancer activity. Bioorg Med Chem Lett 24:3430–3433PubMedCrossRefGoogle Scholar
  53. Fahs S, Patil-Sen Y, Snape TJ (2015) Foldamers as anticancer therapeutics: targeting protein–protein interactions and the cell membrane. Chembiochem 16:1840–1853PubMedCrossRefGoogle Scholar
  54. Fan Y, Zhang Q (2013) Development of liposomal formulations: from concept to clinical investigations. Asian J Pharm Sci 8:81–87CrossRefGoogle Scholar
  55. Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–151PubMedCrossRefGoogle Scholar
  56. Fang RH, Hu C-MJ, Luk BT, Gao W, Copp JA, Tai Y, O’connor DE, Zhang L (2014) Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett 14:2181–2188PubMedPubMedCentralCrossRefGoogle Scholar
  57. Farokhzad OC, Jon S, Khademhosseini A, Tran T-NT, Lavan DA, Langer R (2004a) Nanoparticle-Aptamer bioconjugates. A new approach for targeting prostate cancer cells. Cancer Res 64:7668–7672PubMedCrossRefGoogle Scholar
  58. Farokhzad OC, Jon S, Khademhosseini A, Tran TN, Lavan DA, Langer R (2004b) Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 64:7668–7672PubMedCrossRefGoogle Scholar
  59. Feldman EJ, Kolitz JE, Trang JM, Liboiron BD, Swenson CE, Chiarella MT, Mayer LD, Louie AC, Lancet JE (2012) Pharmacokinetics of CPX-351; a nano-scale liposomal fixed molar ratio formulation of cytarabine: daunorubicin, in patients with advanced leukemia. Leuk Res 36:1283–1289PubMedCrossRefGoogle Scholar
  60. Frei E (2011) Albumin binding ligands and albumin conjugate uptake by cancer cells. Diabetol Metab Syndr 3:11–11PubMedPubMedCentralCrossRefGoogle Scholar
  61. Ganoth A, Merimi KC, Peer D (2015) Overcoming multidrug resistance with nanomedicines. Expert Opin Drug Deliv 12:223–238PubMedCrossRefGoogle Scholar
  62. Gao W, Fang RH, Thamphiwatana S, Luk BT, Li J, Angsantikul P, Zhang Q, Hu CM, Zhang L (2015) Modulating antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Lett 15:1403–1409PubMedPubMedCentralCrossRefGoogle Scholar
  63. Gaunt NP, Patil-Sen Y, Baker MJ, Kulkarni CV (2015) Carbon nanotubes for stabilization of nanostructured lipid particles. Nanoscale 7:1090–1095PubMedCrossRefGoogle Scholar
  64. Gelderblom H, Verweij J, Nooter K, Sparreboom A (2001) Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 37:1590–1598PubMedCrossRefGoogle Scholar
  65. Guo J, Gao X, Su L, Xia H, Gu G, Pang Z, Jiang X, Yao L, Chen J, Chen H (2011) Aptamer-functionalized PEG–PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials 32:8010–8020PubMedCrossRefGoogle Scholar
  66. Guo L, Zhang H, Wang F, Liu P, Wang Y, Xia G, Liu R, Li X, Yin H, Jiang H, Chen B (2015) Targeted multidrug-resistance reversal in tumor based on PEG-PLL-PLGA polymer nano drug delivery system. Int J Nanomedicine 10:4535–4547PubMedPubMedCentralGoogle Scholar
  67. Guo S, Lv L, Shen Y, Hu Z, He Q, Chen X (2016) A nanoparticulate pre-chemosensitizer for efficacious chemotherapy of multidrug resistant breast cancer. Sci Rep 6:21459PubMedPubMedCentralCrossRefGoogle Scholar
  68. Gupta AK, Naregalkar RR, Vaidya VD, Gupta M (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine (Lond) 2:23–39CrossRefGoogle Scholar
  69. Hafner A, Lovric J, Lakos GP, Pepic I (2014) Nanotherapeutics in the EU: an overview on current state and future directions. Int J Nanomedicine 9:1005–1023PubMedPubMedCentralGoogle Scholar
  70. Haley B, Frenkel E (2008) Nanoparticles for drug delivery in cancer treatment. Urol Oncol Sem Orig Inves 26:57–64Google Scholar
  71. Hasan W, Chu K, Gullapalli A, Dunn SS, Enlow EM, Luft JC, Tian S, Napier ME, Pohlhaus PD, Rolland JP, Desimone JM (2012) Delivery of multiple siRNAs using lipid-coated PLGA nanoparticles for treatment of prostate Cancer. Nano Lett 12:287–292PubMedCrossRefGoogle Scholar
  72. Hedayatnasab Z, Abnisa F, Daud WMAW (2017) Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater Des 123:174–196CrossRefGoogle Scholar
  73. Hilgenbrink AR, Low PS (2005) Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci 94:2135–2146PubMedCrossRefGoogle Scholar
  74. Hilliard LR, Zhao X, Tan W (2002) Immobilization of oligonucleotides onto silica nanoparticles for DNA hybridization studies. Anal Chim Acta 470:51–56CrossRefGoogle Scholar
  75. Holgado MA, Martin-Banderas L, Alvarez-Fuentes J, Fernandez-Arevalo M, Arias JL (2012) Drug targeting to Cancer by nanoparticles surface functionalized with special biomolecules. Curr Med Chem 19:3188–3195PubMedCrossRefGoogle Scholar
  76. Hong M, Zhu S, Jiang Y, Tang G, Sun C, Fang C, Shi B, Pei Y (2010) Novel anti-tumor strategy: PEG-hydroxycamptothecin conjugate loaded transferrin-PEG-nanoparticles. J Control Release 141:22–29PubMedCrossRefGoogle Scholar
  77. Hu C-MJ, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L (2011) Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Nat Acad Sci 108:10980–10985PubMedCrossRefGoogle Scholar
  78. Hughes J, Yadava P, Mesaros R (2010) Liposomal siRNA delivery. Meth Mol Biol Clifton NJ 605:445–459CrossRefGoogle Scholar
  79. Infante JR, Keedy VL, Jones SF, Zamboni WC, Chan E, Bendell JC, Lee W, Wu H, Ikeda S, Kodaira H, Rothenberg ML, Burris HA 3rd (2012) Phase I and pharmacokinetic study of IHL-305 (PEGylated liposomal irinotecan) in patients with advanced solid tumors. Cancer Chemother Pharmacol 70:699–705PubMedCrossRefGoogle Scholar
  80. Jain A, Chasoo G, Singh SK, Saxena AK, Jain SK (2011) Transferrin-appended PEGylated nanoparticles for temozolomide delivery to brain: in vitro characterisation. J Microencapsul 28:21–28PubMedCrossRefGoogle Scholar
  81. Ji Z, Lin G, Lu Q, Meng L, Shen X, Dong L, Fu C, Zhang X (2012) Targeted therapy of SMMC-7721 liver cancer in vitro and in vivo with carbon nanotubes based drug delivery system. J Colloid Interface Sci 365:143–149PubMedCrossRefGoogle Scholar
  82. Jie G, Wang L, Yuan J, Zhang S (2011) Versatile Electrochemiluminescence assays for Cancer cells based on dendrimer/CdSe–ZnS–quantum dot nanoclusters. Anal Chem 83:3873–3880PubMedCrossRefGoogle Scholar
  83. Jin S-E, Jin H-E, Hong S-S (2014) Targeted delivery system of Nanobiomaterials in anticancer therapy: from cells to clinics. Biomed Res Int 2014:23Google Scholar
  84. Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41:2971–3010PubMedPubMedCentralCrossRefGoogle Scholar
  85. Kang H, Trondoli AC, Zhu G, Chen Y, Chang Y-J, Liu H, Huang Y-F, Zhang X, Tan W (2011) Near-infrared light-responsive Core–Shell Nanogels for targeted drug delivery. ACS Nano 5:5094–5099PubMedPubMedCentralCrossRefGoogle Scholar
  86. Khanna C, Rosenberg M, Vail DM (2015) A review of paclitaxel and novel formulations including those suitable for use in dogs. J Vet Intern Med 29:1006–1012PubMedPubMedCentralCrossRefGoogle Scholar
  87. Kojima C, Kono K, Maruyama K, Takagishi T (2000) Synthesis of Polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjug Chem 11:910–917PubMedCrossRefGoogle Scholar
  88. Kono K, Ozawa T, Yoshida T, Ozaki F, Ishizaka Y, Maruyama K, Kojima C, Harada A, Aoshima S (2010) Highly temperature-sensitive liposomes based on a thermosensitive block copolymer for tumor-specific chemotherapy. Biomaterials 31:7096–7105PubMedCrossRefGoogle Scholar
  89. Kontermann RE (2006) Immunoliposomes for cancer therapy. Curr Opin Mol Ther 8:39–45PubMedGoogle Scholar
  90. Kulkarni CV, Moinuddin Z, Patil-Sen Y, Littlefield R, Hood M (2015a) Lipid-hydrogel films for sustained drug release. Int J Pharm 479:416–421PubMedCrossRefGoogle Scholar
  91. Kulkarni M, Patil-Sen Y, Junkar I, Kulkarni CV, Lorenzetti M, Iglič A (2015b) Wettability studies of topologically distinct titanium surfaces. Colloids Surf B: Biointerfaces 129:47–53PubMedCrossRefGoogle Scholar
  92. Lai P-Y, Huang R-Y, Lin S-Y, Lin Y-H, Chang C-W (2015) Biomimetic stem cell membrane-camouflaged iron oxide nanoparticles for theranostic applications. RSC Adv 5:98222–98230CrossRefGoogle Scholar
  93. Larsen MT, Kuhlmann M, Hvam ML, Howard KA (2016) Albumin-based drug delivery: harnessing nature to cure disease. Mol Cell Therap 4:3CrossRefGoogle Scholar
  94. Lee KS, Chung HC, Im SA, Park YH, Kim CS, Kim SB, Rha SY, Lee MY, Ro J (2008) Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat 108:241–250PubMedCrossRefGoogle Scholar
  95. Liechty WB, Peppas NA (2012) Expert opinion: responsive polymer nanoparticles in cancer therapy. Eur J Pharm Biopharm 80:241–246PubMedCrossRefGoogle Scholar
  96. Liu Z, Zhang N (2012) pH-sensitive polymeric micelles for programmable drug and gene delivery. Curr Pharm Des 18:3442–3451PubMedCrossRefGoogle Scholar
  97. Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60:1650–1662PubMedCrossRefGoogle Scholar
  98. Liu J, Yang G, Zhu W, Dong Z, Yang Y, Chao Y, Liu Z (2017) Light-controlled drug release from singlet-oxygen sensitive nanoscale coordination polymers enabling cancer combination therapy. Biomaterials 146:40–48PubMedCrossRefGoogle Scholar
  99. Lu J, Zhao W, Huang Y, Liu H, Marquez R, Gibbs RB, Li J, Venkataramanan R, Xu L, Li S, Li S (2014) Targeted delivery of doxorubicin by folic acid-decorated dual functional Nanocarrier. Mol Pharm 11:4164–4178PubMedPubMedCentralCrossRefGoogle Scholar
  100. Luo Y, Cai X, Li H, Lin Y, Du D (2016) Hyaluronic acid-modified multifunctional Q-graphene for targeted killing of drug-resistant lung Cancer cells. ACS Appl Mater Interfaces 8:4048–4055PubMedCrossRefGoogle Scholar
  101. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-Oncol 103:317–324CrossRefGoogle Scholar
  102. Majid A, Patil-Sen Y, Ahmed W, Sen T (2017) Tunable self-assembled peptide structure: a novel approach to design dual-use biological agents. Mater Today Proc 4:32–40CrossRefGoogle Scholar
  103. Majoros IJ, Myc A, Thomas T, Mehta CB, Baker JR (2006) PAMAM dendrimer-based multifunctional conjugate for Cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 7:572–579PubMedCrossRefGoogle Scholar
  104. Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30:592–599PubMedCrossRefGoogle Scholar
  105. Malik N, Evagorou EG, Duncan R (1999) Dendrimer-platinate: a novel approach to cancer chemotherapy. Anti-Cancer Drugs 10:767–776PubMedCrossRefGoogle Scholar
  106. Mallick K, Strydom AM (2013) Biophilic carbon nanotubes. Colloids Surf B: Biointerfaces 105:310–318PubMedCrossRefGoogle Scholar
  107. Mason VL (2010) American Association for Cancer Research-101st annual meeting investigating new therapeutic candidates: part 2. 17–21 April, 2010, Washington, DC, USAGoogle Scholar
  108. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in Cancer chemotherapy: mechanism of Tumoritropic accumulation of proteins and the antitumor agent Smancs. Cancer Res 46:6387–6392PubMedGoogle Scholar
  109. May JP, Li S-D (2013) Hyperthermia-induced drug targeting. Expert Opin Drug Deliv 10:511–527PubMedCrossRefGoogle Scholar
  110. Medina SH, El-Sayed MEH (2009) Dendrimers as carriers for delivery of chemotherapeutic agents. Chem Rev 109:3141–3157PubMedCrossRefGoogle Scholar
  111. Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15:171–185PubMedCrossRefGoogle Scholar
  112. Na K, Bum Lee T, Park K-H, Shin E-K, Lee Y-B, Choi H-K (2003) Self-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system. Eur J Pharm Sci 18:165–173PubMedCrossRefGoogle Scholar
  113. Narain A, Asawa S, Chhabria V, Patil-Sen Y (2017) Cell membrane coated nanoparticles: next-generation therapeutics. Nanomedicine 12:2677–2692PubMedCrossRefGoogle Scholar
  114. Nitta S, Numata K (2013) Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci 14:1629PubMedPubMedCentralCrossRefGoogle Scholar
  115. Northfelt DW, Dezube BJ, Thommes JA, Miller BJ, Fischl MA, Friedman-Kien A, Kaplan LD, Mond CD, Mamelok RD, Henry DH (1998) Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: results of a randomized phase III clinical trial. J Clin Oncol 16:2445–2451PubMedCrossRefGoogle Scholar
  116. Nukolova NV, Oberoi HS, Cohen SM, Kabanov AV, Bronich TK (2011) Folate-decorated nanogels for targeted therapy of ovarian cancer. Biomaterials 32:5417–5426PubMedPubMedCentralCrossRefGoogle Scholar
  117. Park JW, Hong K, Kirpotin DB, Colbern G, Shalaby R, Baselga J, Shao Y, Nielsen UB, Marks JD, Moore D, Papahadjopoulos D, Benz CC (2002) Anti-HER2 immunoliposomes. Enhanced efficacy attributable to targeted delivery. Clin Cancer Res 8:1172–1181PubMedGoogle Scholar
  118. Parodi A, Quattrocchi N, van de Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, Brown BS, Khaled SZ, Yazdi IK, Enzo MV, Isenhart L, Ferrari M, Tasciotti E (2012) Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 8:61PubMedPubMedCentralCrossRefGoogle Scholar
  119. Patil Y, Sadhukha T, Ma L, Panyam J (2009a) Nanoparticle-mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance. J Control Release 136:21–29PubMedCrossRefGoogle Scholar
  120. Patil YB, Toti US, Khdair A, Ma L, Panyam J (2009b) Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials 30:859–866PubMedCrossRefGoogle Scholar
  121. Patil-Sen YA, Chhabria V (2018) Superparamagnetic iron oxide nanoparticles for magnetic hyperthermia applications. Taylor & Francis CRC Press, Boca RatonCrossRefGoogle Scholar
  122. Patil-Sen Y, Tiddy GJT, Brezesinski G, Dewolf C (2004) A monolayer phase behaviour study of phosphatidylinositol, phosphatidylinositol 4-monophosphate and their binary mixtures with distearoylphosphatidylethanolamine. Phys Chem Chem Phys 6:1562–1565CrossRefGoogle Scholar
  123. Patil-Sen Y, Sadeghpour A, Rappolt M, Kulkarni CV (2016) Facile preparation of internally self-assembled lipid particles stabilized by carbon nanotubes. J Visual Exp JoVE 53489Google Scholar
  124. Patnaik A, Papadopoulos KP, Tolcher AW, Beeram M, Urien S, Schaaf LJ, Tahiri S, Bekaii-Saab T, Lokiec FM, Rezai K, Buchbinder A (2013) Phase I dose-escalation study of EZN-2208 (PEG-SN38), a novel conjugate of poly(ethylene) glycol and SN38, administered weekly in patients with advanced cancer. Cancer Chemother Pharmacol 71:1499–1506PubMedCrossRefGoogle Scholar
  125. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751PubMedCrossRefGoogle Scholar
  126. Perez-Herrero E, Fernandez-Medarde A (2015) Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 93:52–79PubMedCrossRefGoogle Scholar
  127. Plummer R, Wilson RH, Calvert H, Boddy AV, Griffin M, Sludden J, Tilby MJ, Eatock M, Pearson DG, Ottley CJ, Matsumura Y, Kataoka K, Nishiya T (2011) A phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br J Cancer 104:593–598PubMedPubMedCentralCrossRefGoogle Scholar
  128. Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32:962–990CrossRefGoogle Scholar
  129. Rosenberg SA (1991) Immunotherapy and gene therapy of Cancer. Cancer Res 51:5074s–5079sPubMedGoogle Scholar
  130. Russell-Jones G, Mctavish K, Mcewan J, Rice J, Nowotnik D (2004) Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumours. J Inorg Biochem 98:1625–1633PubMedCrossRefGoogle Scholar
  131. Sah H, Thoma LA, Desu HR, Sah E, Wood GC (2013) Concepts and practices used to develop functional PLGA-based nanoparticulate systems. Int J Nanomedicine 8:747–765PubMedPubMedCentralCrossRefGoogle Scholar
  132. Sahoo SK, Ma W, Labhasetwar V (2004) Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int J Cancer 112:335–340PubMedCrossRefGoogle Scholar
  133. Schmitt-Sody M, Strieth S, Krasnici S, Sauer B, Schulze B, Teifel M, Michaelis U, Naujoks K, Dellian M (2003) Neovascular targeting therapy: paclitaxel encapsulated in cationic liposomes improves antitumoral efficacy. Clin Cancer Res 9:2335–2341PubMedGoogle Scholar
  134. Schroeder A, Honen R, Turjeman K, Gabizon A, Kost J, Barenholz Y (2009) Ultrasound triggered release of cisplatin from liposomes in murine tumors. J Control Release 137:63–68PubMedCrossRefGoogle Scholar
  135. Shi X (2013) Folic acid-modified dendrimer–DOX conjugates for targeting cancer chemotherapy. J Control Release 172:e55–e56Google Scholar
  136. Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017) Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17:20–37PubMedCrossRefGoogle Scholar
  137. Shipp G (2006) Ultrasensitive measurement of protein and nucleic acid biomarkers for earlier disease detection and more effective therapies. Biotechnol Healthc 3:35–40PubMedPubMedCentralGoogle Scholar
  138. Simões S, Moreira JN, Fonseca C, Düzgüneş N, Pedroso De Lima MC (2004) On the formulation of pH-sensitive liposomes with long circulation times. Adv Drug Deliv Rev 56:947–965PubMedCrossRefGoogle Scholar
  139. Sinha N, Yeow JTW (2005) Carbon nanotubes for biomedical applications. IEEE Trans Nanobioscience 4:180–195PubMedCrossRefGoogle Scholar
  140. Slamon D, Godolphin W, Jones L, Holt J, Wong S, Keith D, Levin W, Stuart S, Udove J, Ullrich A, Et A (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712PubMedCrossRefGoogle Scholar
  141. Slingerland M, Guchelaar HJ, Rosing H, Scheulen ME, VAN Warmerdam LJ, Beijnen JH, Gelderblom H (2013) Bioequivalence of liposome-entrapped paclitaxel easy-to-use (LEP-ETU) formulation and paclitaxel in polyethoxylated castor oil: a randomized, two-period crossover study in patients with advanced cancer. Clin Ther 35:1946–1954PubMedCrossRefGoogle Scholar
  142. Sriraman SK, Pan J, Sarisozen C, Luther E, Torchilin V (2016) Enhanced cytotoxicity of folic acid-targeted liposomes co-loaded with C6 ceramide and doxorubicin: in vitro evaluation on HeLa, A2780-ADR, and H69-AR cells. Mol Pharm 13:428–437PubMedCrossRefGoogle Scholar
  143. Steichen SD, Caldorera-Moore M, Peppas NA (2013) A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci 48:416–427PubMedCrossRefGoogle Scholar
  144. Stinchcombe TE (2007) Nanoparticle albumin-bound paclitaxel: a novel Cremphor-EL-free formulation of paclitaxel. Nanomedicine (Lond) 2:415–423CrossRefGoogle Scholar
  145. Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41:147–162PubMedCrossRefGoogle Scholar
  146. Taheri A, Dinarvand R, Atyabi F, Nouri F, Ahadi F, Ghahremani MH, Ostad SN, Borougeni AT, Mansoori P (2011a) Targeted delivery of methotrexate to tumor cells using biotin functionalized methotrexate-human serum albumin conjugated nanoparticles. J Biomed Nanotechnol 7:743–753PubMedCrossRefGoogle Scholar
  147. Taheri A, Dinarvand R, Nouri FS, Khorramizadeh MR, Borougeni AT, Mansoori P, Atyabi F (2011b) Use of biotin targeted methotrexate–human serum albumin conjugated nanoparticles to enhance methotrexate antitumor efficacy. Int J Nanomedicine 6:1863–1874PubMedGoogle Scholar
  148. Taheri A, Dinarvand R, Atyabi F, Ghahremani MH, Ostad SN (2012) Trastuzumab decorated methotrexate–human serum albumin conjugated nanoparticles for targeted delivery to HER2 positive tumor cells. Eur J Pharm Sci 47:331–340PubMedCrossRefGoogle Scholar
  149. Tambe P, Kumar P, Karpe YA, Paknikar KM, Gajbhiye V (2017) Triptorelin tethered multifunctional PAMAM-histidine-PEG Nanoconstructs enable specific targeting and efficient gene silencing in LHRH overexpressing Cancer cells. ACS Appl Mater Interfaces 9:35562–35573PubMedCrossRefGoogle Scholar
  150. Thaxton CS, Elghanian R, Thomas AD, Stoeva SI, Lee J-S, Smith ND, Schaeffer AJ, Klocker H, Horninger W, Bartsch G, Mirkin CA (2009) Nanoparticle-based bio-barcode assay redefines “undetectable” PSA and biochemical recurrence after radical prostatectomy. Proc Nat Acad Sci 106:18437–18442PubMedCrossRefGoogle Scholar
  151. Thomas TP, Patri AK, Myc A, Myaing MT, Ye JY, Norris TB, Baker JR (2004) In vitro targeting of synthesized antibody-conjugated dendrimer nanoparticles. Biomacromolecules 5:2269–2274PubMedCrossRefGoogle Scholar
  152. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160PubMedCrossRefGoogle Scholar
  153. Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16PubMedCrossRefGoogle Scholar
  154. Visser CC, Stevanovic S, Heleen Voorwinden L, Gaillard PJ, Crommelin DJ, Danhof M, De Boer AG (2004) Validation of the transferrin receptor for drug targeting to brain capillary endothelial cells in vitro. J Drug Target 12:145–150PubMedCrossRefGoogle Scholar
  155. Wang Y-XJ (2011) Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg 1:35–40PubMedPubMedCentralGoogle Scholar
  156. Wang M, Thanou M (2010) Targeting nanoparticles to cancer. Pharmacol Res 62:90–99PubMedCrossRefGoogle Scholar
  157. Wang AZ, Langer R, Farokhzad OC (2012a) Nanoparticle delivery of Cancer drugs. Annu Rev Med 63:185–198PubMedCrossRefGoogle Scholar
  158. Wang Y, Guo M, Lu Y, Ding LY, Ron WT, Liu YQ, Song FF, Yu SQ (2012b) Alpha-tocopheryl polyethylene glycol succinate-emulsified poly(lactic-co-glycolic acid) nanoparticles for reversal of multidrug resistance in vitro. Nanotechnology 23:495103PubMedCrossRefGoogle Scholar
  159. Wang L, Xu X, Zhang Y, Zhang Y, Zhu Y, Shi J, Sun Y, Huang Q (2013) Encapsulation of curcumin within poly(amidoamine) dendrimers for delivery to cancer cells. J Mater Sci Mater Med 24:2137–2144PubMedCrossRefGoogle Scholar
  160. Wang D, Ren Y, Shao Y, Yu D, Meng L (2017) Facile preparation of doxorubicin-loaded and folic acid-conjugated carbon nanotubes@poly(N-vinyl pyrrole) for targeted synergistic chemo–Photothermal Cancer treatment. Bioconjug Chem 28:2815–2822PubMedCrossRefGoogle Scholar
  161. Wei X, Gao J, Fang RH, Luk BT, Kroll AV, Dehaini D, Zhou J, Kim HW, Gao W, Lu W, Zhang L (2016) Nanoparticles camouflaged in platelet membrane coating as an antibody decoy for the treatment of immune thrombocytopenia. Biomaterials 111:116–123PubMedPubMedCentralCrossRefGoogle Scholar
  162. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J (2015) Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 200:138–157PubMedCrossRefGoogle Scholar
  163. Widera A, Norouziyan F, Shen WC (2003) Mechanisms of TfR-mediated transcytosis and sorting in epithelial cells and applications toward drug delivery. Adv Drug Deliv Rev 55:1439–1466PubMedCrossRefGoogle Scholar
  164. Wood BJ, Poon RT, Locklin JK, Dreher MR, Ng KK, Eugeni M, Seidel G, Dromi S, Neeman Z, Kolf M, Black CDV, Prabhakar R, Libutti SK (2012) Phase I study of heat-deployed liposomal doxorubicin during radiofrequency ablation for hepatic malignancies. J Vasc Int Radiol 23:248–255.e7CrossRefGoogle Scholar
  165. Wu W, Li R, Bian X, Zhu Z, Ding D, Li X, Jia Z, Jiang X, Hu Y (2009) Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity. ACS Nano 3:2740–2750PubMedCrossRefGoogle Scholar
  166. Wu M-S, Yuan D-J, Xu J-J, Chen H-Y (2013) Sensitive Electrochemiluminescence biosensor based on au-ITO hybrid bipolar electrode amplification system for cell surface protein detection. Anal Chem 85:11960–11965PubMedCrossRefGoogle Scholar
  167. Xu X, Wang L, Xu HQ, Huang XE, Qian YD, Xiang J (2013) Clinical comparison between paclitaxel liposome (Lipusu(R)) and paclitaxel for treatment of patients with metastatic gastric cancer. Asian Pac J Cancer Prev 14:2591–2594PubMedCrossRefGoogle Scholar
  168. Xu X, Ho W, Zhang X, Bertrand N, Farokhzad O (2015) Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol Med 21:223–232PubMedPubMedCentralCrossRefGoogle Scholar
  169. Yang T, Ke H, Wang Q, Tang Y, Deng Y, Yang H, Yang X, Yang P, Ling D, Chen C, Zhao Y, Wu H, Chen H (2017) Bifunctional tellurium Nanodots for photo-induced synergistic Cancer therapy. ACS Nano 11:10012–10024PubMedCrossRefGoogle Scholar
  170. Yu P, Yu H, Guo C, Cui Z, Chen X, Yin Q, Zhang P, Yang X, Cui H, Li Y (2015) Reversal of doxorubicin resistance in breast cancer by mitochondria-targeted pH-responsive micelles. Acta Biomater 14:115–124PubMedCrossRefGoogle Scholar
  171. Yu X, Zhu W, Di Y, Gu J, Guo Z, Li H, Fu D, Jin C (2017a) Triple-functional albumin-based nanoparticles for combined chemotherapy and photodynamic therapy of pancreatic cancer with lymphatic metastases. Int J Nanomedicine 12:6771–6785PubMedPubMedCentralCrossRefGoogle Scholar
  172. Yu Z, Wang M, Pan W, Wang H, Li N, Tang B (2017b) Tumor microenvironment-triggered fabrication of gold nanomachines for tumor-specific photoacoustic imaging and photothermal therapy. Chem Sci 8:4896–4903PubMedPubMedCentralCrossRefGoogle Scholar
  173. Zafar S, Negi LM, Verma AK, Kumar V, Tyagi A, Singh P, Iqbal Z, Talegaonkar S (2014) Sterically stabilized polymeric nanoparticles with a combinatorial approach for multi drug resistant cancer: in vitro and in vivo investigations. Int J Pharm 477:454–468PubMedCrossRefGoogle Scholar
  174. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharm Therap 83:761–769PubMedCrossRefGoogle Scholar
  175. Zhang X, Meng L, Lu Q, Fei Z, Dyson PJ (2009) Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials 30:6041–6047PubMedCrossRefGoogle Scholar
  176. Zhang C, Cheng X, Chen M, Sheng J, Ren J, Jiang Z, Cai J, Hu Y (2017a) Fluorescence guided photothermal/photodynamic ablation of tumours using pH-responsive chlorin e6-conjugated gold nanorods. Colloids Surf B Biointerfaces 160:345–354PubMedCrossRefGoogle Scholar
  177. Zhang H, Qu X, Chen H, Kong H, Ding R, Chen D, Zhang X, Pei H, Santos HA, Hai M, Weitz DA (2017b) Fabrication of calcium phosphate-based nanocomposites incorporating DNA origami, gold Nanorods, and anticancer drugs for biomedical applications. Adv Health Mater 6Google Scholar
  178. Zhao M, Yang M, Li X-M, Jiang P, Baranov E, Li S, Xu M, Penman S, Hoffman RM (2005) Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Nat Acad Sci U S A 102:755–760CrossRefGoogle Scholar
  179. Zhao L, Zhao W, Liu Y, Chen X, Wang Y (2017) Nano-hydroxyapatite-derived drug and gene co-delivery system for anti-angiogenesis therapy of breast Cancer. Med Sci Monit 23:4723–4732PubMedPubMedCentralCrossRefGoogle Scholar
  180. Zhong Y, Zhang J, Cheng R, Deng C, Meng F, Xie F, Zhong Z (2015) Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts. J Control Release 205:144–154PubMedCrossRefGoogle Scholar
  181. Zhu C-L, Song X-Y, Zhou W-H, Yang H-H, Wen Y-H, Wang X-R (2009) An efficient cell-targeting and intracellular controlled-release drug delivery system based on MSN-PEM-aptamer conjugates. J Mater Chem 19:7765–7770CrossRefGoogle Scholar
  182. Zou L, Wang D, Hu Y, Fu C, Li W, Dai L, Yang L, Zhang J (2017) Drug resistance reversal in ovarian cancer cells of paclitaxel and borneol combination therapy mediated by PEG-PAMAM nanoparticles. Oncotarget 8:60453–60468PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yogita Patil-Sen
    • 1
    Email author
  • Ashwin Narain
    • 2
  • Simran Asawa
    • 3
  • Tanvi Tavarna
    • 3
  1. 1.School of Pharmacy and Biomedical SciencesUniversity of Central LancashirePrestonUK
  2. 2.Department of Biochemistry and Molecular Biology, BiocenterUniversity of WürzburgWürzburgGermany
  3. 3.Department of BiotechnologyNational Institute of TechnologyWarangalIndia

Personalised recommendations