Advertisement

Dysregulated Signaling Pathways in Cancer: Approaches and Applications

  • Pranay Ramteke
  • Dipti Athavale
  • Manoj Kumar BhatEmail author
Chapter

Abstract

Cancer-related deaths account for more than 8.8 million individuals per year globally. In spite of exhaustive literature about dysregulated signaling pathways in cancer, correlating it to patient survival warrants further understanding. Therefore, it is pertinent to investigate the working principles behind cellular and molecular tools which facilitate in delineating aberrant alterations used for targeting cancer cells. In addition to existing cell biology techniques, immunoblotting, PCR, FACS, ChIP, EMSA, etc. have immensely contributed to decipher altered molecular and metabolic pathways in cancer. Collectively, these have paved a way toward discoveries and inventions on which modern-day diagnostics and therapeutics are based. This chapter summarizes important techniques in molecular biology and the differential characteristics they target, to understand the approaches used to detect, diagnose, and treat cancer.

Keywords

Dysregulated signaling pathways Immunoblotting Reverse transcription polymerase chain reaction DNA-protein interactions Cancer therapeutics 

References

  1. Adan A et al (2017) Flow cytometry: basic principles and applications. Crit Rev Biotechnol 37:163–176CrossRefGoogle Scholar
  2. Bass JJ et al (2017) An overview of technical considerations for Western blotting applications to physiological research. Scand J Med Sci Sports 27:4–25.  https://doi.org/10.1111/sms.12702CrossRefPubMedGoogle Scholar
  3. Bisswanger H (2014) Enzyme assays. Perspect Sci 1:41–55CrossRefGoogle Scholar
  4. Bustin SA (2005) Quantitative real-time RT-PCR--a perspective. J Mol Endocrinol 3:597–601CrossRefGoogle Scholar
  5. Chaube B et al (2015) AMPK maintains energy homeostasis and survival in cancer cells via regulating p38/PGC-1α-mediated mitochondrial biogenesis. Cell Death Discov 1:15063–15074CrossRefGoogle Scholar
  6. Di Lonardo A et al (2015) Cancer: we should not forget the past. J Cancer 6:29–39.  https://doi.org/10.7150/jca.10336CrossRefPubMedPubMedCentralGoogle Scholar
  7. Felipe A et al (2017) The past and future of breast cancer treatment—from the papyrus to individualised treatment approaches. Ecancermedicalscience 11: 746.  https://doi.org/10.3332/ecancer.2017.746. Published online 2017 Jun 8
  8. Ferlay J et al (2013) Cancer incidence and mortality worldwide: IARC GLOBOCAN 2012 v1.0, Cancer Base no. 11. International Agency for Research on Cancer, Lyon, FranceGoogle Scholar
  9. Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2(9):683–693.  https://doi.org/10.1038/nrc882CrossRefPubMedGoogle Scholar
  10. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674CrossRefGoogle Scholar
  11. http://www.who.int/news-room/fact-sheets/detail/cancer. Accessed 31/08/2018 (2018)Google Scholar
  12. Imran A et al (2017) Role of molecular biology in cancer treatment: a review article. Iran J Public Health 46(11):1475–1485PubMedPubMedCentralGoogle Scholar
  13. Jensen EC (2012) The basics of western blotting. Anat Rec (Hoboken) 295:369–371.  https://doi.org/10.1002/ar.22424CrossRefGoogle Scholar
  14. Kumar S et al (2006) Biomarkers in cancer screening, research and detection: present and future: a review. Biomarkers 11(5):385405.  https://doi.org/10.1080/13547500600775011CrossRefGoogle Scholar
  15. Li Y (2004) A modified quantitative EMSA and its application in the study of RNA-protein interactions. J Biochem Biophys Methods 60:85–96CrossRefGoogle Scholar
  16. Lukong KE (2017) Understanding breast cancer – the long and winding road. BBA Clin 7:64–77.  https://doi.org/10.1016/j.bbacli.2017.01.001. eCollection JunCrossRefPubMedPubMedCentralGoogle Scholar
  17. Manyhart O et al (2016) Guidelines for the selection of functional assays to evaluate the hallmarks of cancer. Biochim Biophys Acta 1866:300–319Google Scholar
  18. Nelson JD (2006) Fast chromatin immunoprecipitation assay. Nucleic Acids Res 34:1–7CrossRefGoogle Scholar
  19. Orfao A et al (1995) Flow cytometry in the diagnosis of cancer. Scand J Clin Lab Invest Suppl 221:145–152CrossRefGoogle Scholar
  20. Pittman K (1996) Reverse transcriptase-polymerase chain reaction for expression of tyrosinase to identify malignant melanoma cells in peripheral blood. Ann Oncol (3):297–301CrossRefGoogle Scholar
  21. Russell GJ et al (2009) Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 23:537–548CrossRefGoogle Scholar
  22. Scott AM et al (2012) Monoclonal antibodies in cancer therapy. Cancer Immun 12:14PubMedPubMedCentralGoogle Scholar
  23. Stern M, Herrmann R (2005) Overview of monoclonal antibodies in cancer therapy: present and promise. Crit Rev Oncol Hematol 54(1):11–29.  https://doi.org/10.1016/j.critrevonc.2004.10.011CrossRefPubMedGoogle Scholar
  24. Todd HL et al. (1884) Fisheries and fishery Industries of the United States: section I, natural history of useful aquatic animals, plates. Government Printing Office, Washington, DCGoogle Scholar
  25. Tothill et al (2015) Molecular biosensors: promising new tools for early detection of cancer. Nanobiosensors Dis Diagn:1.  https://doi.org/10.2147/NDD.S56772
  26. Vogelstein B et al (2004) Cancer genes and the pathways they control. Nat Med 10:789–799CrossRefGoogle Scholar
  27. West CML et al (2004) The potential of positron-emission tomography to study anticancer-drug resistance. Nat Rev Cancer 4(6):457–469CrossRefGoogle Scholar
  28. Zhan T et al (2018) CRISPR/Cas9 for cancer research and therapy. Semin Cancer Biol. pii: S1044-579X(17)30274-2.  https://doi.org/10.1016/j.semcancer.2018.04.001,CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Pranay Ramteke
    • 1
  • Dipti Athavale
    • 1
  • Manoj Kumar Bhat
    • 1
    Email author
  1. 1.National Centre for Cell ScienceSavitribai Phule Pune University campusPuneIndia

Personalised recommendations