Advertisement

Polysaccharide-Based Films for Food Packaging Applications

  • K. Dharmalingam
  • R. AnandalakshmiEmail author
Chapter
Part of the Materials Horizons: From Nature to Nanomaterials book series (MHFNN)

Abstract

The existing food packaging materials made up of fossil fuel-based polymers pose a serious threat to the environment. This is the motivation behind the extensive research on biopolymer sources including polysaccharides, proteins and lipids so as to produce biodegradable food packaging materials. Amongst the existing biopolymer sources, commendable attention has been diverted to polysaccharide materials due to their abundancy, film-forming abilities and good gas barrier properties. Despite their desirable properties, polysaccharide-based films demonstrate a poor water barrier and mechanical properties. Further, they are expensive in comparison with conventional plastic materials which restrict the commercialisation. In this regards, an extensive research effort has been made to improve the inherent properties exhibited by the biopolymer-based films by fabricating composites, nanocomposites, blends and addition of cross-linking agents. Amongst available, starch is a kind of polysaccharides consisting of different ratios of amylose and amylopectin, which determines its property. Modified starch with other polymers/nanofillers exhibits improved film properties. In addition, cellulosic derivatives as ionic binders are of a good choice in controlling the moisture and also enhance the mechanical properties of food packaging films. Moreover, chitosan like polysaccharide exhibits an antibacterial activity which is an important property to produce films of higher shelf life and to maintain product integrity. The quest for producing low-cost biodegradable food packaging films derived from polysaccharides with better water barrier and mechanical properties is a never-ending process and demands a multidisciplinary approach to accomplish this goal. The present chapter mainly focuses on recent research accomplishments on polysaccharide-based films for food packaging applications.

Keywords

Food packaging films Starch Cellulose Chitosan Shelf life Packaging films 

Notes

Acknowledgements

The authors are grateful to Department of Chemical Engineering, Indian Institute of Technology Guwahati (IITG), India.

References

  1. 1.
    Barnes DK, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc Lond B Biol Sci 364:1985–1998.  https://doi.org/10.1098/rstb.2008.0205CrossRefGoogle Scholar
  2. 2.
    Prashanth HKV, Tharanathan RN (2007) Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends Food Sci Technol 18:117–131.  https://doi.org/10.1016/j.tifs.2006.10.022CrossRefGoogle Scholar
  3. 3.
    Krochta JM, Baldwin EA, Nisperos-Carriedo MO (eds) (1994) Edible coatings and films to improve food quality. Technomic Publ Co. Inc, Basel, pp 305–336Google Scholar
  4. 4.
    Faria FDO, Vercelheze AES, Mali S (2012) Physical properties of biodegradable films based on cassava starch, polyvinyl alcohol and montmorillonite. Quím Nova 35:487–492.  https://doi.org/10.1590/S0100-40422012000300009CrossRefGoogle Scholar
  5. 5.
    Toral FLB, Furlan AC, Scapinello C, Peralta RM, Figueiredo DF (2002) Digestibility of two starch sources and enzymatic activity of 35 and 45 days old rabbits. R Bras Zootec 31:1434–1441.  https://doi.org/10.1590/S1516-35982002000600015CrossRefGoogle Scholar
  6. 6.
    Souza AC, Benze R, Ferrão ES, Ditchfield C, Coelho ACV, Tadini CC (2012) Cassava starch biodegradable films: influence of glycerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature. LWT-Food Sci Technol 46:110–117.  https://doi.org/10.1016/j.lwt.2011.10.018CrossRefGoogle Scholar
  7. 7.
    Azeredo HM, Waldron KW (2016) Crosslinking in polysaccharide and protein films and coatings for food contact—a review. Trends Food Sci Technol 52:109–122.  https://doi.org/10.1016/j.tifs.2016.04.008CrossRefGoogle Scholar
  8. 8.
    Malhotra B, Keshwani A, Kharkwal H (2015) Antimicrobial food packaging: potential and pitfalls. Front Microbiol 6:611.  https://doi.org/10.3389/fmicb.2015.00611CrossRefGoogle Scholar
  9. 9.
    Ren L, Yan X, Zhou J, Tong J, Su X (2017) Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films. Int J Biol Macromol 105:1636–1643.  https://doi.org/10.1016/j.ijbiomac.2017.02.008CrossRefGoogle Scholar
  10. 10.
    Cazon P, Velazquez G, Ramírez JA, Vázquez M (2017) Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocoll 68:136–148.  https://doi.org/10.1016/j.foodhyd.2016.09.009CrossRefGoogle Scholar
  11. 11.
    Siracusa V, Rocculi P, Romani S, Rosa DM (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643.  https://doi.org/10.1016/j.tifs.2008.07.003CrossRefGoogle Scholar
  12. 12.
    Kale G, Auras R, Singh SP (2006) Degradation of commercial biodegradable packages under real composting and ambient exposure conditions. J Polym Environ 14:317–334.  https://doi.org/10.1007/s10924-006-0015-6CrossRefGoogle Scholar
  13. 13.
    Khalil HA, Banerjee A, Saurabh CK, Tye YY, Suriani AB, Mohamed A, Karim AA, Rizal S, Paridah MT (2018) Biodegradable films for fruits and vegetables packaging application: preparation and properties. Food Eng Rev 10:1–15.  https://doi.org/10.1007/s12393-018-9180-3CrossRefGoogle Scholar
  14. 14.
    Solano ACV, de Rojas Gante C (2012) Two different processes to obtain antimicrobial packaging containing natural oils. Food Bioprocess Tech 5:2522–2528.  https://doi.org/10.1007/s11947-011-0626-3CrossRefGoogle Scholar
  15. 15.
    Cirillo G, Spizzirri UG, Iemma F (eds) (2015) Functional polymers in food science: from technology to biology, vol 1. Food packaging. Wiley, Hoboken, NJGoogle Scholar
  16. 16.
    Donhowe IG, Fennema OR (1993) The effects of plasticizers on crystallinity, permeability, and mechanical properties of methylcellulose films. J Food Process Preserv 17:247–257.  https://doi.org/10.1111/j.1745-4549.1993.tb00729.xCrossRefGoogle Scholar
  17. 17.
    Su JF, Yuan XY, Huang Z, Wang XY, Lu XZ, Zhang LD, Wang SB (2012) Physicochemical properties of soy protein isolate/carboxymethyl cellulose blend films crosslinked by Maillard reactions: color, transparency and heat-sealing ability. Mater Sci Eng C 32:40–46.  https://doi.org/10.1016/j.msec.2011.09.009CrossRefGoogle Scholar
  18. 18.
    Garcia MA, Martino MN, Zaritzky NE (1998) Plasticized starch-based coatings to improve strawberry (fragaria × ananassa) quality and stability. J Agric Food Chem 46:3758–3767.  https://doi.org/10.1021/jf980014cCrossRefGoogle Scholar
  19. 19.
    Bastarrachea L, Dhawan S, Sablani SS (2011) Engineering properties of polymeric-based antimicrobial films for food packaging: a review. Food Eng Rev 3:79–93.  https://doi.org/10.1007/s12393-011-9034-8CrossRefGoogle Scholar
  20. 20.
    Galliard T (1987) Starch: properties and potential. Elsevier, Amsterdam, pp 1–151Google Scholar
  21. 21.
    Alcázar-Alay SC, Meireles MAA (2015) Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci Technol (Campinas) 35:215–236.  https://doi.org/10.1590/1678-457X.6749CrossRefGoogle Scholar
  22. 22.
    Singh N, Singh J, Kaur L, Sodhi NS, Gill BS (2003) Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem 81:219–231.  https://doi.org/10.1016/S0308-8146(02)00416-8CrossRefGoogle Scholar
  23. 23.
    Conde-Petit B, Nuessli J, Arrigoni E, Escher F, Amadò R (2001) Perspectives of starch in food science. Chimia 55:201–205Google Scholar
  24. 24.
    Atwell WA, Hood LF, Lineback DR, Varriano-Marston E, Zobel HF (1988) The terminology and methodology associated with basic starch phenomenon. CeR Foods World 33:306–311Google Scholar
  25. 25.
    Hoover R (2001) Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr Polym 45:253–267.  https://doi.org/10.1016/S0144-8617(00)00260-5CrossRefGoogle Scholar
  26. 26.
    Stevens DJ, Elton GAH (1971) Thermal properties of the starch/water system part I. measurement of heat of gelatinisation by differential scanning calorimetry. Starch-Starke 23:8–11.  https://doi.org/10.1002/star.19710230104CrossRefGoogle Scholar
  27. 27.
    Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K (2000) Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Ind Eng Chem Res 39:2883–2890.  https://doi.org/10.1021/ie990690jCrossRefGoogle Scholar
  28. 28.
    Santana A, Angela M (2014) New starches are the trend for industry applications: a review. Food Public Health 4:229–241.  https://doi.org/10.5923/j.fph.20140405.04CrossRefGoogle Scholar
  29. 29.
    Ghanbarzadeh B, Almasi H, Entezami AA (2010) Physical properties of edible modified starch/carboxymethyl cellulose films. Innov Food Sci Emerg Technol 11:697–702.  https://doi.org/10.1016/j.ifset.2010.06.001CrossRefGoogle Scholar
  30. 30.
    Kraak A (1992) Industrial applications of potato starch products. Ind Crops Prod 1:107–112.  https://doi.org/10.1016/0926-6690(92)90007-ICrossRefGoogle Scholar
  31. 31.
    Ratnayake WS, Hoover R, Warkentin T (2002) Pea starch: composition, structure and properties—a review. Starch-Starke 54:217–234.  https://doi.org/10.1002/1521-379X(200206)54:6%3c217:AID-STAR217%3e3.0.CO;2-RCrossRefGoogle Scholar
  32. 32.
    Bertuzzi MA, Gottifredi JC, Armada M (2012) Mechanical properties of a high amylose content corn starch based film, gelatinized at low temperature. Braz J Food Technol Campinas 15:219–227.  https://doi.org/10.1590/S1981-67232012005000015CrossRefGoogle Scholar
  33. 33.
    Wang C, He XW, Huang Q, Fu X, Liu S (2013) Physicochemical properties and application of micronized cornstarch in low fat cream. J Food Eng 116:881–888.  https://doi.org/10.1016/j.jfoodeng.2013.01.025CrossRefGoogle Scholar
  34. 34.
    Wongsagonsup R, Pujchakarn T, Jitrakbumrung S, Chaiwat W, Fuongfuchat A, Varavinit S, Dangtip S, Suphantharika M (2014) Effect of cross-linking on physicochemical properties of tapioca starch and its application in soup product. Carbohydr Polym 101:656–665.  https://doi.org/10.1016/j.carbpol.2013.09.100CrossRefGoogle Scholar
  35. 35.
    Amagliani L, O’Regan J, Kelly AL, O’Mahony JA (2016) Chemistry, structure, functionality and applications of rice starch. J Cereal Sci 70:291–300.  https://doi.org/10.1016/j.jcs.2016.06.014CrossRefGoogle Scholar
  36. 36.
    Shevkani K, Singh N, Bajaj R, Kaur A (2017) Wheat starch production, structure, functionality and applications—a review. Int J Food Sci Technol 52:38–58.  https://doi.org/10.1111/ijfs.13266CrossRefGoogle Scholar
  37. 37.
    Sarka E, Dvoracek V (2017) New processing and applications of waxy starch (a review). J Food Eng 206:77–87.  https://doi.org/10.1016/j.jfoodeng.2017.03.006CrossRefGoogle Scholar
  38. 38.
    Paunonen S (2013) Strength and barrier enhancements of cellophane and cellulose derivative films: a review. BioResources 8:3098–3121CrossRefGoogle Scholar
  39. 39.
    Tongdeesoontorn W, Mauer LJ, Wongruong S, Sriburi P, Rachtanapun P (2011) Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films. Chem Cent J 5:6.  https://doi.org/10.1186/1752-153X-5-6CrossRefGoogle Scholar
  40. 40.
    Mujtaba A, Kohli K (2016) In vitro/in vivo evaluation of HPMC/alginate based extended-release matrix tablets of cefpodoximeproxetil. Int J Biol Macromol 89:434–441.  https://doi.org/10.1016/j.ijbiomac.2016.05.010CrossRefGoogle Scholar
  41. 41.
    Chen H, An Y, Yan X, McClements DJ, Li B, Li Y (2015) Designing self-nanoemulsifying delivery systems to enhance bioaccessibility of hydrophobic bioactives (nobiletin): influence of hydroxypropyl methylcellulose and thermal processing. Food Hydrocoll 51:395–404.  https://doi.org/10.1016/j.foodhyd.2015.05.032CrossRefGoogle Scholar
  42. 42.
    de Dicastillo CL, Bustos F, Guarda A, Galotto MJ (2016) Cross-linked methyl cellulose films with murta fruit extract for antioxidant and antimicrobial active food packaging. Food Hydrocoll 60:335–344.  https://doi.org/10.1016/j.foodhyd.2016.03.020CrossRefGoogle Scholar
  43. 43.
    Balasubramaniam VM, Chinnan MS, Mallikarjunan P, Phillips RD (1997) The effect of edible film on oil uptake and moisture retention of a deep-fat fried poultry product. J Food Process Eng 20:17–29.  https://doi.org/10.1111/j.1745-4530.1997.tb00408.xCrossRefGoogle Scholar
  44. 44.
    Nelson KL, Fennema OR (1991) Methylcellulose films to prevent lipid migration in confectionery products. J Food Sci 56:504–509.  https://doi.org/10.1111/j.1365-2621.1991.tb05314.xCrossRefGoogle Scholar
  45. 45.
    Tang ZX, Qian JQ, Shi LE (2007) Preparation of chitosan nanoparticles as carrier for immobilized enzyme. Appl Biochem Biotechnol 136:77–96.  https://doi.org/10.1007/BF02685940CrossRefGoogle Scholar
  46. 46.
    Loredo RYA, Rodríguez-Hernández AI, Morales-Sánchez E, Gómez-Aldapa CA, Velazquez G (2016) Effect of equilibrium moisture content on barrier, mechanical and thermal properties of chitosan films. Food Chem 196:560–566.  https://doi.org/10.1016/j.foodchem.2015.09.065CrossRefGoogle Scholar
  47. 47.
    Tan YM, Lim SH, Tay BY, Lee MW, Thian ES (2015) Functional chitosan-based grapefruit seed extract composite films for applications in food packaging technology. Mater Res Bull 69:142–146.  https://doi.org/10.1016/j.materresbull.2014.11.041CrossRefGoogle Scholar
  48. 48.
    Aider M (2010) Chitosan application for active bio-based films production and potential in the food industry. LWT-Food Sci Technol 43:837–842.  https://doi.org/10.1016/j.lwt.2010.01.021CrossRefGoogle Scholar
  49. 49.
    van den Broek LAM, Knoop RJI, Kappen FHJ, Boeriu CG (2015) Chitosan films and blends for packaging material. Carbohydr Polym 116:237–242.  https://doi.org/10.1016/j.carbpol.2014.07.039CrossRefGoogle Scholar
  50. 50.
    Nazan Turhan K, Şahbaz F (2004) Water vapor permeability, tensile properties and solubility of methylcellulose-based edible films. J Food Eng 61:459–466.  https://doi.org/10.1016/S0260-8774(03)00155-9CrossRefGoogle Scholar
  51. 51.
    Muscat D, Adhikari B, Adhikari R, Chaudhary DS (2012) Comparative study of film forming behaviour of low and high amylose starches using glycerol and xylitol as plasticizers. J Food Eng 109:189–201.  https://doi.org/10.1016/j.jfoodeng.2011.10.019CrossRefGoogle Scholar
  52. 52.
    Dias AB, Müller CMO, Larotonda FDS, Laurindo JB (2010) Biodegradable films based on rice starch and rice flour. J Cereal Sci 51:213–219.  https://doi.org/10.1016/j.jcs.2009.11.014CrossRefGoogle Scholar
  53. 53.
    Shi R, Bi J, Zhang Z, Zhu A, Chen D, Zhou X, Zhang L, Tian W (2008) The effect of citric acid on the structural properties and cytotoxicity of the polyvinyl alcohol/starch films when molding at high temperature. Carbohydr Polym 74:763–770.  https://doi.org/10.1016/j.carbpol.2008.04.045CrossRefGoogle Scholar
  54. 54.
    Bonilla J, Talón E, Atarés L, Vargas M, Chiralt A (2013) Effect of the incorporation of antioxidants on physicochemical and antioxidant properties of wheat starch—chitosan films. J Food Eng 118:271–278.  https://doi.org/10.1016/j.jfoodeng.2013.04.008CrossRefGoogle Scholar
  55. 55.
    Demitri C, Del Sole R, Scalera F, Sannino A, Vasapollo G, Maffezzoli A, Ambrosio L, Nicolais L (2008) Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J Appl Polym Sci 110:2453–2460.  https://doi.org/10.1002/app.28660CrossRefGoogle Scholar
  56. 56.
    Bourtoom T, Chinnan MS (2008) Preparation and properties of rice starch—chitosan blend biodegradable film. LWT-Food Sci Technol 41:1633–1641.  https://doi.org/10.1016/j.lwt.2007.10.014CrossRefGoogle Scholar
  57. 57.
    Alves VD, Mali S, Beléia A, Grossmann MVE (2007) Effect of glycerol and amylose enrichment on cassava starch film properties. J Food Eng 78:941–946.  https://doi.org/10.1016/j.jfoodeng.2005.12.007CrossRefGoogle Scholar
  58. 58.
    El Mohdy HA (2007) Synthesis of starch based plastic films by electron beam irradiation. J Appl Polym Sci 104:504–513.  https://doi.org/10.1002/app.25524CrossRefGoogle Scholar
  59. 59.
    Da Roz AL, Carvalho AJF, Gandini A, Curvelo AAS (2006) The effect of plasticizers on thermoplastic starch compositions obtained by melt processing. Carbohydr Polym 63:417–424.  https://doi.org/10.1016/j.carbpol.2005.09.017CrossRefGoogle Scholar
  60. 60.
    Mali S, Grossmann MVE, García MA, Martino MN, Zaritzky NE (2006) Effects of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources. J Food Eng 75:453–460.  https://doi.org/10.1016/j.jfoodeng.2005.04.031CrossRefGoogle Scholar
  61. 61.
    Tang X, Alavi S, Herald TJ (2008) Barrier and mechanical properties of starch-clay nanocomposite films. Cereal Chem 85:433–439.  https://doi.org/10.1094/CCHEM-85-3-0433CrossRefGoogle Scholar
  62. 62.
    Muller CMO, Laurindo JB, Yamashita F (2009) Effect of cellulose fibers addition on the mechanical properties and water vapor barrier of starch-based films. Food Hydrocoll 23:1328–1333.  https://doi.org/10.1016/j.foodhyd.2008.09.002CrossRefGoogle Scholar
  63. 63.
    Nafchi AM, Alias AK, Mahmud S, Robal M (2012) Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. J Food Eng 113:511–519.  https://doi.org/10.1016/j.jfoodeng.2012.07.017CrossRefGoogle Scholar
  64. 64.
    Souza AC, Goto GEO, Mainardi JA, Coelho ACV, Tadini CC (2013) Cassava starch composite films incorporated with cinnamon essential oil: antimicrobial activity, microstructure, mechanical and barrier properties. LWT-Food Sci Technol 54:346–352.  https://doi.org/10.1016/j.lwt.2013.06.017CrossRefGoogle Scholar
  65. 65.
    Barzegar H, Azizi MH, Barzegar M, Hamidi-Esfahani Z (2014) Effect of potassium sorbate on antimicrobial and physical properties of starch—clay nanocomposite films. Carbohydr Polym 110:26–31.  https://doi.org/10.1016/j.carbpol.2014.03.092CrossRefGoogle Scholar
  66. 66.
    Ayana B, Suin S, Khatua BB (2014) Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly(lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay. Carbohydr Polym 110:430–439.  https://doi.org/10.1016/j.carbpol.2014.04.024CrossRefGoogle Scholar
  67. 67.
    Agustin MB, Ahmmad B, Alonzo SMM, Patriana FM (2014) Bioplastic based on starch and cellulose nanocrystals from rice straw. J Reinf Plast Compos 33:2205–2213.  https://doi.org/10.1177/0731684414558325CrossRefGoogle Scholar
  68. 68.
    Nisa IU, Ashwar BA, Shah A, Gani A, Gani A, Masoodi FA (2015) Development of potato starch based active packaging films loaded with antioxidants and its effect on shelf life of beef. J Food Sci Technol 52:7245–7253.  https://doi.org/10.1007/s13197-015-1859-3CrossRefGoogle Scholar
  69. 69.
    Cano A, Cháfer M, Chiralt A, González-Martínez C (2016) Development and characterization of active films based on starch-PVA, containing silver nanoparticles. Food Packag Shelf Life 10:16–24.  https://doi.org/10.1016/j.fpsl.2016.07.002CrossRefGoogle Scholar
  70. 70.
    Ji N, Qin Y, Xi T, Xiong L, Sun Q (2017) Effect of chitosan on the antibacterial and physical properties of corn starch nanocomposite films. Starch/Stärke 69:1600114–16000122.  https://doi.org/10.1002/star.201600114CrossRefGoogle Scholar
  71. 71.
    Mirjalili F, Yassini Ardekani A (2017) Preparation and characterization of starch film accompanied with ZnO nanoparticles. J Food Process Eng 40:12561.  https://doi.org/10.1111/jfpe.12561CrossRefGoogle Scholar
  72. 72.
    Ounkaew A, Kasemsiri P, Kamwilaisak K, Saengprachatanarug K, Mongkolthanaruk W, Souvanh M, Pongsa U, Chindaprasirt P (2018) Polyvinyl alcohol (PVA)/starch bioactive packaging film enriched with antioxidants from spent coffee ground and citric acid. J Polym Environ 26:1–11.  https://doi.org/10.1007/s10924-018-1254-zCrossRefGoogle Scholar
  73. 73.
    Zahedi Y, Fathi-Achachlouei B, Yousefi AR (2018) Physical and mechanical properties of hybrid montmorillonite/zinc oxide reinforced carboxymethyl cellulose nanocomposites. Int J Biol Macromol 108:863–873.  https://doi.org/10.1016/j.ijbiomac.2017.10.185CrossRefGoogle Scholar
  74. 74.
    Achachlouei BF, Zahedi Y (2018) Fabrication and characterization of CMC-based nanocomposites reinforced with sodium montmorillonite and TiO2 nanomaterials. Carbohydr Polym 199:415–425.  https://doi.org/10.1016/j.carbpol.2018.07.031CrossRefGoogle Scholar
  75. 75.
    George J, Kumar R, Sajeevkumar VA, Ramana KV, Rajamanickam R, Abhishek V, Nadanasabapathy S (2014) Hybrid HPMC nanocomposites containing bacterial cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 105:285–292.  https://doi.org/10.1016/j.carbpol.2014.01.057CrossRefGoogle Scholar
  76. 76.
    Uranga J, Puertas AI, Etxabide A, Dueñas MT, Guerrero P, de la Caba K (2019) Citric acid-incorporated fish gelatin/chitosan composite films. Food Hydrocoll 86:95–103.  https://doi.org/10.1016/j.foodhyd.2018.02.018CrossRefGoogle Scholar
  77. 77.
    Domene-López D, Guillén MM, Martin-Gullon I, García-Quesada JC, Montalbán MG (2018) Study of the behavior of biodegradable starch/polyvinyl alcohol/rosin blends. Carbohydr Polym 202:299–305.  https://doi.org/10.1016/j.carbpol.2018.08.137CrossRefGoogle Scholar
  78. 78.
    Tao F, Shi C, Cui Y (2018) Preparation and physicochemistry properties of smart edible films based on gelatin—starch nanoparticles. J Sci Food Agric 98:5470–5478.  https://doi.org/10.1002/jsfa.9091CrossRefGoogle Scholar
  79. 79.
    Zheng K, Li W, Fu B, Fu M, Ren Q, Yang F, Qin C (2018) Physical, antibacterial and antioxidant properties of chitosan films containing hardleaf oatchestnut starch and Litsea cubeba oil. Int J Biol Macromol 118:707–715.  https://doi.org/10.1016/j.ijbiomac.2018.06.126CrossRefGoogle Scholar
  80. 80.
    Sun H, Shao X, Jiang R, Shen Z, Ma Z (2018) Mechanical and barrier properties of corn distarch phosphate-zein bilayer films by thermocompression. Int J Biol Macromol 118:2076–2081.  https://doi.org/10.1016/j.ijbiomac.2018.07.069CrossRefGoogle Scholar
  81. 81.
    Lin D, Huang Y, Liu Y, Luo T, Xing B, Yang Y, Yang Z, Wu Z, Chen H, Zhang Q, Qin W (2018) Physico-mechanical and structural characteristics of starch/polyvinyl alcohol/nano-titania photocatalytic antimicrobial composite films. LWT 102:1–19.  https://doi.org/10.1016/j.lwt.2018.06.001CrossRefGoogle Scholar
  82. 82.
    Feng M, Yu L, Zhu P, Zhou X, Liu H, Yang Y, Zhou J, Gao C, Bao X, Chen P (2018) Development and preparation of active starch films carrying tea polyphenol. Carbohydr Polym 196:162–167.  https://doi.org/10.1016/j.carbpol.2018.05.043CrossRefGoogle Scholar
  83. 83.
    Siripatrawan U, Kaewklin P (2018) Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging. Food Hydrocoll 84:125–134.  https://doi.org/10.1016/j.foodhyd.2018.04.049CrossRefGoogle Scholar
  84. 84.
    Shankar S, Rhim JW (2018) Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films. Food Hydrocoll 82:116–123.  https://doi.org/10.1016/j.foodhyd.2018.03.054CrossRefGoogle Scholar
  85. 85.
    Priyadarshi R, Kumar B, Negi YS (2018) Chitosan film incorporated with citric acid and glycerol as an active packaging material for extension of green chilli shelf life. Carbohydr Polym 195:329–338.  https://doi.org/10.1016/j.carbpol.2018.04.089CrossRefGoogle Scholar
  86. 86.
    Otoni CG, Lorevice MV, de Moura MR, Mattoso LH (2018) On the effects of hydroxyl substitution degree and molecular weight on mechanical and water barrier properties of hydroxypropyl methylcellulose films. Carbohydr Polym 185:105–111.  https://doi.org/10.1016/j.carbpol.2018.01.016CrossRefGoogle Scholar
  87. 87.
    Luchese CL, Spada JC, Tessaro IC (2017) Starch content affects physicochemical properties of corn and cassava starch-based films. Ind Crops Prod 109:619–626.  https://doi.org/10.1016/j.indcrop.2017.09.020CrossRefGoogle Scholar
  88. 88.
    Noshirvani N, Ghanbarzadeh B, Gardrat C, Rezaei MR, Hashemi M, Le Coz C, Coma V (2017) Cinnamon and ginger essential oils to improve antifungal, physical and mechanical properties of chitosan-carboxymethyl cellulose films. Food Hydrocoll 70:36–45.  https://doi.org/10.1016/j.foodhyd.2017.03.015CrossRefGoogle Scholar
  89. 89.
    Saberi B, Vuong QV, Chockchaisawasdee S, Golding JB, Scarlett CJ, Stathopoulos CE (2016) Mechanical and physical properties of pea starch edible films in the presence of glycerol. J Food Process Preserv 40:1339–1351.  https://doi.org/10.1111/jfpp.12719CrossRefGoogle Scholar
  90. 90.
    Claro PIC, Neto ARS, Bibbo ACC, Mattoso LHC, Bastos MSR, Marconcini JM (2016) Biodegradable blends with potential use in packaging: a comparison of PLA/chitosan and PLA/cellulose acetate films. J Polym Environ 24:363–371.  https://doi.org/10.1007/s10924-016-0785-4CrossRefGoogle Scholar
  91. 91.
    Zhou M, Liu Q, Wu S, Gou Z, Wu X, Xu D (2016) Starch/chitosan films reinforced with polydopamine modified MMT: effects of dopamine concentration. Food Hydrocoll 61:678–684.  https://doi.org/10.1016/j.foodhyd.2016.06.030CrossRefGoogle Scholar
  92. 92.
    Youssef AM, El-Sayed SM, El-Sayed HS, Salama HH, Dufresne A (2016) Enhancement of Egyptian soft white cheese shelf life using a novel chitosan/carboxymethyl cellulose/zinc oxide bionanocomposite film. Carbohydr Polym 151:9–19.  https://doi.org/10.1016/j.carbpol.2016.05.023CrossRefGoogle Scholar
  93. 93.
    El Halal SLM, Colussi R, Deon VG, Pinto VZ, Villanova FA, Carreño NLV, Dias ARG, da Rosa Zavareze E (2015) Films based on oxidized starch and cellulose from barley. Carbohydr Polym 133:644–653.  https://doi.org/10.1016/j.carbpol.2015.07.024CrossRefGoogle Scholar
  94. 94.
    Li HZ, Chen SC, Wang YZ (2015) Preparation and characterization of nanocomposites of polyvinyl alcohol/cellulose nanowhiskers/chitosan. Compos Sci Technol 115:60–65.  https://doi.org/10.1016/j.compscitech.2015.05.004CrossRefGoogle Scholar
  95. 95.
    Dayarian S, Zamani A, Moheb A, Masoomi M (2014) Physico-mechanical properties of films of chitosan, carboxymethyl chitosan, and their blends. J Polym Environ 22:409–416.  https://doi.org/10.1007/s10924-014-0672-9CrossRefGoogle Scholar
  96. 96.
    Olsson E, Menzel C, Johansson C, Andersson R, Koch K, Järnström L (2013) The effect of pH on hydrolysis, cross-linking and barrier properties of starch barriers containing citric acid. Carbohydr Polym 98:1505–1513.  https://doi.org/10.1016/j.carbpol.2013.07.040CrossRefGoogle Scholar
  97. 97.
    Rao MS, Kanatt SR, Chawla SP, Sharma A (2010) Chitosan and guar gum composite films: preparation, physical, mechanical and antimicrobial properties. Carbohydr Polym 82:1243–1247.  https://doi.org/10.1016/j.carbpol.2010.06.058CrossRefGoogle Scholar
  98. 98.
    Chang PR, Jian R, Yu J, Ma X (2010) Fabrication and characterisation of chitosan nanoparticles/plasticised-starch composites. Food Chem 120:736–740.  https://doi.org/10.1016/j.foodchem.2009.11.002CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Advance Energy & Materials Systems Laboratory (AEMSL), Department of Chemical EngineeringIndian Institute of Technology GuwahatiNorth GuwahatiIndia

Personalised recommendations