Uses of Ceramic Membrane-Based Technology for the Clarification of Mosambi, Pineapple and Orange Juice

  • Murchana Changmai
  • Sriharsha Emani
  • Ramgopal Uppaluri
  • Mihir Kumar PurkaitEmail author
Part of the Materials Horizons: From Nature to Nanomaterials book series (MHFNN)


This chapter discusses the preparation and characterization of low-cost ceramic membranes for microfiltration (MF) application. The objective of this chapter is to elaborate the development of inorganic membranes which are low in cost and have a definite pore size and porosity to clarify mosambi, pineapple and orange juice and thereby provide a good juice quality. The clarified juice will thus have very less pectin content, higher clarity and good citric acid content and lesser reduction in oBrix. Hence, this microfiltration operation will be responsible for retaining sugars and flavoured components along with the elimination of substance that contributes towards the deterioration of fruit juice quality such as different colloidal substances. The subsequent sections of this chapter intricate the various experimental studies that are carried out to determine the membrane morphology and the subsequent microfiltration of the different fruit juices.


Fruit juice Microfiltration Membrane Characterization Quality 


  1. 1.
    Mulder M (1991) Basic principles of membrane technology. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  2. 2.
    Cheryan M (1998) Ultrafiltration and microfiltration handbook. Technomic Publishing Co. Inc., LancasterGoogle Scholar
  3. 3.
    Nunes SP, Pinemann KV (eds) (2001) Membrane technology in the chemical industry. Wiley-VCH Verlag Gmbh, WeinheimGoogle Scholar
  4. 4.
    Pearce G (2000) Introduction to membranes: membrane separation processes. CRC Press, Boca Raton, FLGoogle Scholar
  5. 5.
    Amin ShK, Abdallah HAM, Roushdy MH, El-Sherbiny SA (2016) An overview of production and development of ceramic membranes. IJAER 11:7708–7721Google Scholar
  6. 6.
    Monash P, Pugazhenthi G, Saravanan P (2013) Various fabrication methods of porous ceramic supports for membrane applications. Rev Chem Eng 29:357–383CrossRefGoogle Scholar
  7. 7.
    Manohar (2012) Development and characterization of ceramic membrane. Int J Mod Eng Res 2:1492–1506Google Scholar
  8. 8.
    Mallada R, Menendez M (2008) Inorganic membranes: synthesis, characterization and applications, membrane science and technology, vol 13. Elsevier, AmsterdamGoogle Scholar
  9. 9.
    Singh G, Bulasara VK (2015) Preparation of low-cost micro-filtration membranes from fly ash. Desalin Water Treat 53:1204–1212Google Scholar
  10. 10.
    Xu NP, Xing WH (2003) Separation technology and application of inorganic membrane. Chem. Indus. PressGoogle Scholar
  11. 11.
    She JH, Ohji T (2003) Fabrication and characterization of highly porous mullite ceramics. Mater Chem Phys 80:610–614CrossRefGoogle Scholar
  12. 12.
    Xie Z (1998) Study on binder removal process of ceramics injection molding. Bull Chin Ceram Soc 2:18–21Google Scholar
  13. 13.
    Liu YF, Liu XQ, Wei H, Meng GY (2001) Porous mullite ceramics from national clay produced by gelcasting. Ceram Int 27:1–7CrossRefGoogle Scholar
  14. 14.
    Yoshino Y, Suzuki T, Nair BN, Taguchi H, Itoh N (2005) Development of tubular substrates, silica based membranes and membrane modules for hydrogen separation at high temperature. J Membr Sci 267:8–17CrossRefGoogle Scholar
  15. 15.
    Li S, Du H, Guo A, Xu H, Yang D (2012) Preparation of self-reinforcement of porous mullite ceramics through in situ synthesis of mullite whisker in flyash body. Ceram Int 38:1027–1032CrossRefGoogle Scholar
  16. 16.
    Dong Y, Hampshire S, Lin BZ, Ji Z, Zhang X (2010) Recycling of flyash for preparing porous mullite membrane supports with titania addition. J Hazard Mater 180:173–180CrossRefGoogle Scholar
  17. 17.
    Li S, Li N (2005) Influences of composition of starting powders and sintering temperature on the pore size distribution of porous corundum-mullite ceramics. Sci Sinter 37:173–180CrossRefGoogle Scholar
  18. 18.
    Simitiy V, Jumate N, Moldovan V, Thalmaier G, Sechel N (2012) Characterization of gradual porous ceramic structures obtained by powder sedimentation. J Mater Sci Technol 28:362CrossRefGoogle Scholar
  19. 19.
    Chang Q, Yang Y, Zhang X, Wang Y, Zhou J, Wang X, Cerneaux S, Zhu L, Dong Y (2014) Effect of particle size distribution of raw powders on pore size distribution and bending strength of Al2O3 micro-filtration membrane supports. J Eur Ceram Soc 34:3819–3825CrossRefGoogle Scholar
  20. 20.
    Yan W, Li N (2006) Pore-size distribution and strength of porous mullite ceramics. Am Ceram Soc Bull 85:9401–9406Google Scholar
  21. 21.
    Colomer MT (2006) Nanoporous anatase ceramic membranes as fast-proton-conducting materials. J Eur Ceram Soc 26:1231CrossRefGoogle Scholar
  22. 22.
    Kharton VV, Yaremchenko AA, Kovalevsky AV, Viskup AP, Naumovich EN, Kerko PF (1999) Perovskite-type oxides for high-temperature oxygen separation membranes. J Memb Sci 16:307–317CrossRefGoogle Scholar
  23. 23.
    Vasanth D, Uppaluri R, Pugazhenthi G (2011) Influence of sintering temperature on the properties of porous ceramic support prepared by uniaxial dry compaction method using low-cost raw materials for membrane applications. Sep Sci Technol 46:1241–1249CrossRefGoogle Scholar
  24. 24.
    Khemakhem S, Larbot A, Amar RB (2009) New ceramic microfiltration membranes from Tunisian natural materials: application for the cuttlefish effluents treatment. Ceram Intl 35:55–61CrossRefGoogle Scholar
  25. 25.
    Chichkan AS, Chesnokov VV, Gerasimov EY, Parmon VN (2013) Production of nanoporous ceramic membranes using carbon nanomaterials. Dokl Phys Chem 450:135–137CrossRefGoogle Scholar
  26. 26.
    Saffaj N, Younssi SA, Albizane A, Messouadi A, Bouhria M, Persin M, Cretin M, Larbot A (2004) Preparation and characterization of ultrafiltration membranes for toxic removal from wastewater. Desalination 168:259–263CrossRefGoogle Scholar
  27. 27.
    Saffaj N, Persin M, Younsi SA, Albizane A, Cretin M, Larbot A (2006) New ceramic microfiltration membranes from Tunisian natural materials: application for the cuttlefish effluents treatment. Appl Clay Sci 31:110–119CrossRefGoogle Scholar
  28. 28.
    Tsuru T, Hino T, Yoshioka T, Asaeda M (2001) Permporometry characterization of microporous ceramic membranes. J Membr Sci 186:257–265CrossRefGoogle Scholar
  29. 29.
    Global tomato production in 2013, Crops/World/2013 FAOSTAT. UN Food and Agriculture OrganizationGoogle Scholar
  30. 30.
    Nandi BK, Das B, Uppaluri R, Purkait MK (2009) Micro-filtration of mosambi juice using low cost ceramic membrane. J Food Eng 95:597–605CrossRefGoogle Scholar
  31. 31.
    Ghosh D, Sinha MK, Purkait MK (2013) A comparative analysis of low-cost ceramic membrane preparation for effective fluoride removal using hybrid technique. Desalination 327:2–13CrossRefGoogle Scholar
  32. 32.
    Subriyer N (2013) Treatment of domestic water using ceramic filter from natural clay and fly-ash. J Eng Studies Res 19:71–75Google Scholar
  33. 33.
    Fang J, Qin G, Wei W, Zhao X (2011) Preparation and characterization of tubular supported ceramic micro-filtration membranes from fly ash. Sep Purif Technol 80:585–591CrossRefGoogle Scholar
  34. 34.
    Dong Y, Hampshire S, Zhou J, Ji Z, Wang J, Meng G (2011) Sintering and characterization of flyash-based mullite with MgO addition. J Eur Ceram Soc 31:687–695CrossRefGoogle Scholar
  35. 35.
    Jedidi I, Saidi S, Khmakem S, Larbot A, Ammar NE, Fourati A, Charfi A, Amar RB (2009) New ceramic micro-filtration membranes from mineral coal fly ash. Arab J Chem 2:31–39CrossRefGoogle Scholar
  36. 36.
    Zhua Z, Dong Y, Hampshire S, Cerneaux S, Winnubst L (2015) Waste-to-resource preparation of a porous ceramic membrane support featuring elongated mullite whiskers with enhanced porosity and permeance. J Eur Ceram Soc 35:11–721Google Scholar
  37. 37.
    Vaillant F, Millan A, Dornier M, Decloux M, Reynes M (2001) Strategy for economical optimisation of the clarification of pulpy fruit juices using crossflow micro-filtration. J Food Engg 48:83–90CrossRefGoogle Scholar
  38. 38.
    Vladisavljevic GT, Vukosavljevic P, Bukvic B (2003) Permeate flux and fouling resistance in ultra-filtration of depectinized apple juice using ceramic membranes. J Food Engg 60:241–247CrossRefGoogle Scholar
  39. 39.
    Cassano A, Drioli E, Galaverna G, Marchelli R, Silvestro GD, Cagnasso P (2003) Clarification and concentration of citrus and carrot juices by integrated membrane processes. J Food Engg 57:153–163CrossRefGoogle Scholar
  40. 40.
    Jiao B, Cassano A, Drioli E (2004) Recent advances on membrane processes for the concentration of fruit juices: a review. J Food Engg 63:303–305CrossRefGoogle Scholar
  41. 41.
    Cassano A, Conidi C, Drioli E (2011) Clarification and concentration of pomegranate juice (Punica granatum L.) using membrane processes. J Food Engg 107:366–373CrossRefGoogle Scholar
  42. 42.
    Onsekizoglua P, Bahcecib KS, Acara MJ (2010) Clarification and the concentration of apple juice using membrane processes: a comparative quality assessment. J Membr Sci 352:160–165CrossRefGoogle Scholar
  43. 43.
    Riedl K, Girard B, Lencki RW (1998) Interactions responsible for fouling layer formation during apple juice microfiltration. J Agric Food Chem 46:2458–2464CrossRefGoogle Scholar
  44. 44.
    Vaillanta F, Cissea M, Chaverri M, Perez A, Dornier M, Viquez F, Mayera CD (2005) Clarification and concentration of melon juice using membrane processes. Innov Food Sci Emerg Technol 6:213CrossRefGoogle Scholar
  45. 45.
    Bottino A, Capannelli G, Turchini A, Valleb PD, Trevisanc M (2002) Integrated membrane processes for the concentration of tomato juice. Desalination 148:73–77CrossRefGoogle Scholar
  46. 46.
    Koseoglu SS, Lawhon JT, Lusas EW (1990) Use of membranes in citrus juice processing. Food Technol 44:90–97Google Scholar
  47. 47.
    Pereira CC, Rufino JM, Habert AC, Nobrega A, Cabral LMC, Borges CP (2002) Membrane for processing tropical fruit juice. Desalination 148:57–60CrossRefGoogle Scholar
  48. 48.
    Kirk DE, Mongomery MW, Kortekaas MG (1983) Clarification of pear juice by hollow fiber ultra-filtration. J Food Sci 48:1663–1666CrossRefGoogle Scholar
  49. 49.
    Carneiro L, Sa ID, Gomes FD, Matta VM, Cabral LMC (2002) Cold sterilization and clarification of pineapple juice by tangential micro-filtration. Desalination 148:93–98CrossRefGoogle Scholar
  50. 50.
    Ushikubo FY, Watanabe AP, Viotto LA (2007) Micro-filtration of umbu (Spondias tuberose Arr. Com.) juice. J Membr Sci 288: 61–66Google Scholar
  51. 51.
    Cassano A, Marchio M, Drioli E (2007) Clarification of blood orange juice by ultra-filtration: analyses of operating parameters, membrane fouling and juice quality. Desalination 212:15–27CrossRefGoogle Scholar
  52. 52.
    Kozak A, Banvolgyi S, Vincze I, Kiss I, Bekassy-Molnar E, Vatai G (2008) Comparison of integrated large scale and laboratory scale membrane processes for the production of black currant juice concentrate. Chem Eng Process 47:1171–1177CrossRefGoogle Scholar
  53. 53.
    Ghosh D, Medhi CR, Purkait MK (2008) Treatment of fluoride containing drinking water by electrocoagulation using monopolar and bipolar electrode connection. Chemosphere 73:1393–1400CrossRefGoogle Scholar
  54. 54.
    Hermia J (1982) Constant pressure blocking filtration laws—Application to power—law non—newtonian fluids. Trans Inst Chem Eng 60:183–187Google Scholar
  55. 55.
    Jana S, Purkait MK, Mohanty K (2011) Clay supported polyvinyl acetate coated composite membrane by modified dip coating method: application for the purification of lysozyme from chicken egg white. J Membr Sci 382:243–251CrossRefGoogle Scholar
  56. 56.
    Nandi BK, Uppaluri R, Purkait MK (2009) Effects of dip coating parameters on the morphology and transport properties of cellulose acetate ceramic composite membranes. J Membr Sci 330:246–258CrossRefGoogle Scholar
  57. 57.
    Chakrabarty B, Ghoshal AK, Purkait MK (2008) SEM analysis and gas permeability test to characterize polysulfone membrane prepared with polyethylene glycol as additive. J Colloid Interf Sci 320(1):245–253CrossRefGoogle Scholar
  58. 58.
    Purkait MK, Bhattacharya PK, De S (2005) Membrane filtration of leather plant effluent: flux decline mechanism. J Membr Sci 258(1–2):85–96CrossRefGoogle Scholar
  59. 59.
    Purkait MK, Kumar VD, Maity D (2009) Treatment of leather plant effluent using NF followed by RO and permeate flux prediction using artificial neural network. Chemical Eng J 151(1–3):275–285CrossRefGoogle Scholar
  60. 60.
    Sinha MK, Purkait MK (2014) Preparation and characterization of novel pegylated hydrophilic pH responsive polysulfone ultrafiltration membrane. J Membr Sci 464(2014):20–32CrossRefGoogle Scholar
  61. 61.
    Nandi BK, Uppaluri R, Purkait MK (2009) Treatment of oily waste water using low-cost ceramic membrane: flux decline mechanism and economic feasibility. Sep Sci Technol 44(12):2840–2869CrossRefGoogle Scholar
  62. 62.
    Bulasara VK, Thakuria H, Uppaluri R, Purkait MK (2011) Effect of process parameters on electroless plating and nickel-ceramic composite membrane characteristics. Desalination 268(1–3):195–203CrossRefGoogle Scholar
  63. 63.
    Emani S, Uppaluri R, Purkait MK (2014) Cross flow microfiltration of oil–water emulsions using kaolin based low cost ceramic membranes. Desalination 341:61–71CrossRefGoogle Scholar
  64. 64.
    Volli V, Purkait MK (2015) Selective preparation of zeolite X and A from flyash and its use as catalyst for biodiesel production. J Hazard Mater 297:101–111CrossRefGoogle Scholar
  65. 65.
    Singh V, Purkait MK, Das C (2011) Cross-flow microfiltration of industrial oily wastewater: experimental and theoretical consideration. Sep Sci Technol 46(8):1213–1223CrossRefGoogle Scholar
  66. 66.
    Changmai M, Purkait MK (2018) Detailed study of temperature-responsive composite membranes prepared by dip coating poly (2-ethyl-2-oxazoline) onto a ceramic membrane. Ceram Int 44:959–968CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Murchana Changmai
    • 1
  • Sriharsha Emani
    • 1
  • Ramgopal Uppaluri
    • 1
  • Mihir Kumar Purkait
    • 1
    Email author
  1. 1.Department of Chemical EngineeringIndian Institute of Technology GuwahatiNorth GuwahatiIndia

Personalised recommendations