Sustainable Livestock Farming for Zero Hunger

  • Basanta Kumara Behera
  • Pramod Kumar Rout
  • Shyambhavee Behera


Sustainability in livestock farming is a highly challengeable task in the face of climate change. In a sustainable farming system, it is expected to keep the continuity in practising of farming throughout a year by introducing autonomy in management of farming system, even under adverse climatic changes or non-availability of feedstock from other sources. In sustainable farming system, the needs of one element are met by the wastes of another component. For example, animal manure builds the soil, replenishing nutrient used by crops that are fed to animals. Livestock farming can be fully autonomous by linking the farmhouse with a polyhouse or greenhouse where variety of feedstock can be developed, even unaffordable climatic conditions (Fig. 6.1). The same way independent from conventional energy, goat manure-based biogas generating system can be developed for fulfilling the energy need of a livestock farmhouse.


  1. 1.
    Raman S (2006) Agricultural sustainability: principles, processes, and prospects. Food Products Press, an imprint of The Haworth Press, BinghamtonGoogle Scholar
  2. 2.
    FAO (2011) World livestock 2011 – livestock in food security. FAO, RomeGoogle Scholar
  3. 3.
    Reynolds MP, Hellin J, Govaerts B et al (2012) Global crop improvement networks to bridge technology gaps. J Exp Bot 63(1):1–12PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Capper JL, Cady RA, Bauman DE (2009) The environmental impact of dairy production: 1944 compared with 2007. J Anim Sci 87:2160–2167PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Capper JL (2011) The environmental impact of beef production in the United States: 1977 compared with 2007. J Anim Sci 89:4249–4261PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Gill M, Smith P, Wilkinson JM (2010) Mitigating climate change: the role of domestic livestock. Animal 4:323–333PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Wilkinson JM (2011) Re-defining efficiency of feed use by livestock. Animal 5:1014–1022PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Gerber PJ, Vellinga TV, Steinfeld H (2010) Issues and options in addressing the environmental consequences of livestock sector’s growth. Meat Sci 84:244–247PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Godfray HCJ, Beddington JR, Crute IR et al (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Sands M, McDowell RE (1978) The potential of the goat for milk production in the tropics. Cornell University, Department of Animal Science, Ithaca, International Agricultural Mimeo 60Google Scholar
  11. 11.
    Hillel D, Rosenzweig C (2008) Biodiversity and food production. In: Chivian E, Bernstein A (eds) Sustaining life: how human health depends on biodiversity. Oxford University Press, New York, pp 325–381Google Scholar
  12. 12.
    Kohn RA, Dinneen MM, Russek-Cohen E (2005) Using blood urea nitrogen to predict nitrogen excretion and efficiency of nitrogen utilization in cattle, sheep, goats, horses, pigs, and rats. J Anim Sci 83:879–889PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner GK et al (eds) Climate change 2013: the physical science basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, p 1535Google Scholar
  14. 14.
    Ellis JL, Bannink A, France J et al (2010) Evaluation of enteric methane prediction equations for dairy cows used in whole farm models. Glob Chang Biol 16:3246–3256CrossRefGoogle Scholar
  15. 15.
    Beauchemin KA, McAllister TA, McGinn SM (2009) Dietary mitigation of enteric methane from cattle. CAB Rev: Perspectives Agric Vet Sci Nutr Natur Resour 4:035CrossRefGoogle Scholar
  16. 16.
    Martin C, Morgavi DP, Moreau D (2010) Methane mitigation in ruminants: from microbe to the farm scale. Animal 4:351–365PubMedCrossRefGoogle Scholar
  17. 17.
    Grainger C, Beauchemin KA (2011) Can enteric methane emissions from ruminants be lowered without lowering their production? Anim Feed Sci Technol 166–167:308–320CrossRefGoogle Scholar
  18. 18.
    Nolan JV, Hegarty RS, Hegarty J et al (2010) Effects of dietary nitrate on rumen fermentation, methane production and water kinetics in sheep. Anim Prod Sci 50:801–806CrossRefGoogle Scholar
  19. 19.
    Knapp JR, Laur GL, Vadas PA et al (2014) Invited review: enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions. J Dairy Sci 97:3231–3261PubMedCrossRefGoogle Scholar
  20. 20.
    Hristov AN, Oh J, Firkins JL et al (2013) Mitigation of methane and nitrous oxide emissions from animal operations: I. a review of enteric methane mitigation options. J Anim Sci 11(91):5045–5069CrossRefGoogle Scholar
  21. 21.
    Eckard RJ, Grainger C, de Klein CAM (2010) Options for the abatement of methane and nitrous oxide from ruminant production: a review. Livest Sci 130:47–56CrossRefGoogle Scholar
  22. 22.
    Luo Y, Wei Z, Sun Q et al (2011) Effects of zeolite addition on ammonia volatilization in chicken manure composting. Nongye Gongcheng Xuebao/Trans Chin Soc Agric Eng 27:243–247Google Scholar
  23. 23.
    Gerber PJ, Steinfeld H, Henderson B et al (2013) Tackling climate change through livestock – a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), RomeGoogle Scholar
  24. 24.
    Williams A, Chatterton J, Hateley G et al (2015) A systems-life cycle assessment approach to modelling the impact of improvements in cattle health on greenhouse gas emissions. Adv Anim Biosci 6:29–31CrossRefGoogle Scholar
  25. 25.
    Steinfeld H, Gerber P, Wassenaar T et al (2006) Livestock’s long shadow: environmental issues and opinions. FAO, RomeGoogle Scholar
  26. 26.
    Goldewijk KK, Beusen A, Janssen P (2010) Long term dynamic modeling of global population and built-up area in a spatially explicit way, HYDE 3.1. The Holocene 20(4):565–573CrossRefGoogle Scholar
  27. 27.
    FAO (2014b) FAOSTAT. Online statistical database (retrieved November 2014) (available at
  28. 28.
    United Nations Department of Economic and Social Affairs/Population Division World Population Prospects: The 2010Google Scholar
  29. 29.
    FAO (2013c) Agribusiness public–private partnerships: a country report of Thailand. RomeGoogle Scholar
  30. 30.
    FAO, SOFA (2014) The State of Food and Agriculture 2014. Innovation in Family Farming. RomeGoogle Scholar
  31. 31.
    Nagayets O (2005) Small farms: current status and key trends. Prepared for the Future of Small Farms Research Workshop held in Wye, UK. June 26–29. Washington, D.C., IFPRIGoogle Scholar
  32. 32.
    FAO (2016) The state of food and agriculture 2016. Climate change, agriculture and food security. RomeGoogle Scholar
  33. 33.
    FAO (2013) 2000 world census of agriculture: analysis and international comparison of the results (1996–2005). FAO Statistical Development Series No. 13. RomeGoogle Scholar
  34. 34.
    FAO, SOFO (2018) State of the World’s Forests 2018. Forest pathways to Sustainable Development. RomeGoogle Scholar
  35. 35.
    FAO, SOFO (2012) State of the world’s forests 2012. RomeGoogle Scholar
  36. 36.
    Kennedy D (2013) Time to deal with antibiotics. Science 342:777PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Van Boeckel TP, Brower C, Gilbert M et al (2015) Global trends in antimicrobial use in food animals. Proc Natl Acad Sci USA 112:5649–5654PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Vishnuraj MR, Kandeepan G, Rao KH et al (2016) Occurrence, public health hazards and detection methods of antibiotic residues in foods of animal origin: a comprehensive review. Cogent Food Agric 2:1Google Scholar
  39. 39.
    Marshall BM, Levy SB (2011) Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev 24:718–733PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    O’Neill J (2015) Rapid diagnostics stopping the unnecessary use of antibiotics. 8DA9ED9E3F7B2A7F. 2015.10. Accessed April 6, 2018
  41. 41.
    Lim SJ, Seo CK, Kim TH et al (2013) Occurrence and ecological hazard assessment of selected veterinary medicines in livestock wastewater treatment plants. J Environ Sci Health B 48:658–670PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Watanabe N, Bergamaschi BA, Loftin KA et al (2010) Use and environmental occurrence of antibiotics in freestall dairy farms with manured forage fields. Environ Sci Technol 44:6591–6600PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Zhu Y, Johnson TA, Su J et al (2013) Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci USA 110:3435–3440PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Sarmah AK, Meyer MT, Boxall AB (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (vas) in the environment. Chemosphere 65:725–759PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Underwood JC, Harvey RW, Metge DW et al (2011) Effects of the antimicrobial sulfamethoxazole on groundwater bacterial enrichment. Environ Sci Technol 45:3096–3101PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Jia S, Zhang XX, Miao Y et al (2017) Fate of antibiotic resistance genes and their associations with bacterial community in livestock breeding wastewater and its receiving river water. Water Res 124:259–268PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Kolpin DW, Furlong ET, Meyer MT et al (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. Streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Environmental Agency (2005) Targeted monitoring study for veterinary medicines in the UK environment. Environment Agency, Rio House, Waterside Drive, Aztec West, Almondsbury, Bristol, BS32 4UD. uk/government/uploads/system/uploads/attachment_data/file/290533/ scho0806blhh-e-e.pdf. Accessed March 13, 2014
  49. 49.
    Stokestad ELR, Jukes TH (1950) Further observations on the “animal protein factor”. Proc Soc Exp Biol Med 73:523–528CrossRefGoogle Scholar
  50. 50.
    Gorbach SL (2001) Antimicrobial use in animal feed—time to stop. N Engl J Med 345:1202–1203PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Howells CH, Joynson DH (1975) Possible role of animal feeding stuffs in spread of antibiotic-resistant intestinal coliforms. Lancet:156–157Google Scholar
  52. 52.
    Levy SB (2002) The antibiotic paradox: how the misuse of antibiotics destroys their curative powers, 2nd edn. Perseus Publishing, Cambridge, MAGoogle Scholar
  53. 53.
    Smith HW, Crabb WE (1957) The effect of the continuous administration of diets containing low levels of tetracyclines on the incidence of drug-resistant Bacterium coli in the faeces of pigs and chickens: the sensitivity of the Bact. coli to other chemotherapeutic agents. Vet Rec 69:24–30Google Scholar
  54. 54.
    Levy SB, FitzGerald GB, Macone AB (1976) Spread of antibiotic resistant plasmids from chicken to chicken and from chicken to man. Nature 260:40–42PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Hershberger E, Oprea SF, Donabedian SM et al (2005) Epidemiology of antimicrobial resistance in enterococci of animal origin. J Antimicrob Chemother 55:127–130PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Witte W (2000) Selective pressure by antibiotic use in livestock. Int J Antimicrob Agents 16(Suppl. 1):S19–S24PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Shanahan F, van Sinderen D, O’Toole PW et al (2017) Feeding the microbiota: transducer of nutrient signals for the host. Gut 66:1709–1717PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    De Vrese M, Schrezenmeir J (2008) Probiotics, prebiotics and synbiotics. In: Stahl U, UEB D, Nevoigt E (eds) Food biotechnology, advances in biochemical engineering/biotechnology. Springer, Berlin, pp 1–66Google Scholar
  59. 59.
    Kuo SM (2013) The interplay between fiber and the intestinal microbiome in the inflammatory response. Adv Nutr 4(1):16–28PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Pokusaeva K, Fitzgerald GF, van Sinderen D (2011) Carbohydrate metabolism in Bifidobacteria. Genes Nutr 6(3):285–306PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Peña AS (2007) Intestinal flora, probiotics, prebiotics, synbiotics and novel foods. Revista Espanola de Enfermedades Digestivas 99(11):653PubMedPubMedCentralGoogle Scholar
  62. 62.
    Gibson RG, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Appl Bacteriol 125(6):1401–1412Google Scholar
  63. 63.
    Cencic A, Chingwaru W (2010) The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients 2(6):611–625PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Rioux KP, Madsen KL, Fedorak RN (2005) The role of enteric microflora in inflammatory bowel disease: human and animal studies with probiotics and prebiotics. Gastroenterol Clin N Am 34:465–482CrossRefGoogle Scholar
  65. 65.
    Blay GL, Michel C, Blottiere HM et al (1999) Prolonged intake of fructo-oligosaccharides induces a short-term elevation of lactic acid-producing bacteria and a persistent increase in cecal butyrate in rats. J Nutr 129(12):2231–2235PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Gibson GR (2003) Prebiotics. Best Pract Res Clin Gastroenterol 18:287–298Google Scholar
  67. 67.
    Bengmark S (2005) Bioecological control of the gastrointestinal tract: the role of flora and supplemented probiotics and synbiotics. Gastroenterol Clin N Am 34:413–436CrossRefGoogle Scholar
  68. 68.
    Panesar PS, Kaur G, Panesar R et al (2009) Synbiotics: potential dietary supplements in functional foods. Food Science CentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Basanta Kumara Behera
    • 1
  • Pramod Kumar Rout
    • 2
  • Shyambhavee Behera
    • 3
  1. 1.Advanced Centre for BiotechnologyMaharshi Dayanand UniversityRohtakIndia
  2. 2.Genetics and Breeding DivisionICAR-Central Institute for Research on Goats, MakhdoomMathuraIndia
  3. 3.Department of Community Medicine, University of DelhiUniversity College of Medical Sciences, GTB HospitalNew DelhiIndia

Personalised recommendations