Beneficial Effects of Weed Endophytic Bacteria: Diversity and Potentials of Their Usage in Sustainable Agriculture

  • Kaniz Fatema
  • Nur Uddin Mahmud
  • M. Tofazzal Islam


Plant growth-promoting endophytic bacteria dwell a relatively privileged niche within the host plants and confer beneficial effects to their hosts. These plant probiotics from weed species are poorly explored but possess the tremendous potentials for application in eco-friendly sustainable agriculture. Bacteria from diverse taxonomic genera such as Sinorhizobium, Bacillus, Pseudomonas, Marinorhizobium, Sphingomonas, Sphingobium, Herbaspirillum, Micrococcus, Microbacterium, and Rhodococcus are associated with weed species. Weed-originated plant growth-promoting bacteria (PGPB) exert beneficial effects to their host plants through fixation of atmospheric nitrogen and solubilization of insoluble essential mineral elements (e.g., phosphorus) produce phytohormones (e.g., indole-3-acetic acid), induce systemic resistance (ISR) response to hosts, and secrete antimicrobial substances and other metabolites to protect their hosts from biotic and abiotic stresses. The ISR have tied to disease resistance and abiotic tolerance of plants against drought, cold, salinity, and extreme temperature. As there is no comprehensive review on weed endophytes, this study reviews taxonomic diversity and beneficial effects of weed-associated bacteria and discusses how these natural bioresources could be utilized in agricultural productivity to a new dimension.


Weed endophytic bacteria Nitrogen fixation Sustainable agriculture Biocontrol Abiotic stress tolerance 



The authors are thankful to the Ministry of Science and Technology of the Government of Bangladesh, RMC of BSMRAU, World Bank, and Bangladesh Academy of Sciences for partial funding of this work.


  1. Abdallah RAB, Mokni-Tlili S, Nefzi A, Jabnoun Khiareddine H, Daami-Remadi M (2016) Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs. Biol Control 97:80–88CrossRefGoogle Scholar
  2. Addiscott TM, Whitmore AP, Powlson DS (1991) Farming, fertilizers and the nitrate problem. CAB International, WallingfordGoogle Scholar
  3. Aldrich RJ (1984) Weed-crop ecology: principles in weed management. Breton Publishers, North ScituateGoogle Scholar
  4. Alonso A, Sanchez P & Martinez JL (2000) Stenotrophomonas maltophilia D457R contains a cluster of genes from gram-positive bacteria involved in antibiotic and heavy metal resistance. Antimicrob Agents Chemother 44:1778–1782Google Scholar
  5. Anon (1997a) Cultivating Island solutions: round table on resource land use and stewardship. Queen’s Printer, CharlottetownGoogle Scholar
  6. Anon (1997b) Agriculture in harmony with nature: strategy for environmentally sustainable agriculture and agri-food development in Canada. Agriculture and Agri-Food Canada. Publication 1937/E. Ottawa, Ontario, CanadaGoogle Scholar
  7. Ardanov P, Ovcharenko L, Zaets I, Kozyrovska N, Pirttilä AM (2011) Endophytic bacteria enhancing growth and disease resistance of potato (Solanum tuberosum L.). Biol Control 56:43–49CrossRefGoogle Scholar
  8. Bacon CW, Glenn AE, Yates IE (2008) Fusarium verticillioides: managing the endophytic association with maize for reduced fumonisins accumulation. Toxin Rev 27:411–446CrossRefGoogle Scholar
  9. Bakker AW, Schippers P (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.-mediated plant growth stimulation. Soil Biol Biochem 19:451–457CrossRefGoogle Scholar
  10. Barazani O, Friedman J (1999) Allelopathic bacteria and their impact on higher plants. Crit Rev Plant Sci 18:741–755CrossRefGoogle Scholar
  11. Barbieri P, Zannelli T, Galli E, Zanetti G (1986) Wheat inoculation with Azospirillum brasilense Sp6 and some mutants altered in nitrogen fixation and indole-3-acetic acid production. FEMS Microbiol Lett 36:87–90CrossRefGoogle Scholar
  12. Bary AB (1866) Morphologie und Physiologie Pilze, Flechten, und myxomyceten. In: Hofmeister W (ed). Handbuch der Physiologischen Botanik. Zweiter Band. Wilhelm Engelmann, Leipzig. Available from: 32044053007316. Accessed: 2017-10-02
  13. Benhizia Y, Benhizia H, Benguedouar A, Muresu R, Giacomini A, Squartini A (2004) Gammaproteobacteria can nodulate legumes of the genus Hedysarum. Syst Appl Microbiol 27(4):462–468PubMedCrossRefGoogle Scholar
  14. Berg G, Marten P, Ballin G (1996) Stenotrophomonas maltophilia in the rhizosphere of oilseed rape — occurrence, characterization and interaction with phytopathogenic fungi. Microbiol Res 151:19–27CrossRefGoogle Scholar
  15. Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51(2):215–229CrossRefGoogle Scholar
  16. Bhandari DC, Sen DN (1979) Agro-ecosystem analysis of the Indian arid zone Indigofera cordifolia as a weed. Agro-Ecosystems 5(3):257–262CrossRefGoogle Scholar
  17. Bhattacharyya PN, Jha DK (2012) Plant growth promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bordiec S, Paquis S, Lacroix H, Dhondt S, Ait Barka E, Kauffmann S, Jeandet P, Mazeyrat-Gourbeyre F, Clement C, Baillieul F, Dorey S (2011) Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions. J Exp Bot 62:595–603PubMedCrossRefPubMedCentralGoogle Scholar
  19. Brown M (1974) Seed and root bacterization. Annu Rev Phytopathol 12:181–197CrossRefGoogle Scholar
  20. Cao ZJ et al (2009) Characterization of a novel Stenotrophomonas isolate with high keratinase activity and purification of the enzyme. J Ind Microbiol Biotechnol 36:181–188PubMedCrossRefPubMedCentralGoogle Scholar
  21. Carroll GC (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69:2–9CrossRefGoogle Scholar
  22. Carroll GC (1991) Fungal associates of woody plants as insect antagonists in leaves and stems. In: Barbosa P, Krischik VA, Jones CG (eds) Microbial mediation of plant-herbivore interactions. Wiley, New York, pp 253–271Google Scholar
  23. Chandler JM (1980) Assessing losses caused by weeds. In: Proceedings of the E.C. Stakman commemorative symposium. Miscellaneous publication no. 7. Agriculture experiment station, University of Minnesota, St. Paul, Minn., U.S.A. pp 234–240Google Scholar
  24. Chandrashekhara, Niranjsnraj S, Deepak SA, Amruthesh KN, Shetty NP, Shetty HS (2007) Endophytic bacteria from different plant origin enhance growth and induce downy mildew resistance in pearl millet. Asian J Plant Pathol 1(1):1–11CrossRefGoogle Scholar
  25. Chanway CP (1996) Endophytes: they’re not just fungi. Can J Bot 74(3):321–322CrossRefGoogle Scholar
  26. Chanway CP (1998) Bacterial endophytes: ecological and practical implications. Sydowia 50:149–170Google Scholar
  27. Chanway CP, Anand R, Yang H (2014) Nitrogen fixation outside and inside plant tissues. In: Ohyama T (ed) Advances in biology and ecology of nitrogen fixation. In Tech, Croatia, pp 3–23. Scholar
  28. Chi F, Shen S, Cheng H, Jing Y, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71(11):7271–7278PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cocking E (2003) Endophytic colonization of plant roots by N-fixing bacteria. Plant Soil 252(1):169–175CrossRefGoogle Scholar
  30. Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678CrossRefGoogle Scholar
  31. Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62(1):188–197PubMedCrossRefPubMedCentralGoogle Scholar
  32. Datta C, Basu PS (2000) Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan. Microbiol Res 155:123–127PubMedCrossRefPubMedCentralGoogle Scholar
  33. Davison J (1988) Plant beneficial bacteria. Biotechnology 6:282–286Google Scholar
  34. DéFago G, Berling CH, Burger U, Haas D, Kahr G, Keel C, Voisard C, Wirthner P, Wüthrich B (1990) Suppression of black rot of tobacco and other root diseases by strains of Pseudomonas fluorescens: potential applications and mechanisms. In: Hornby D (ed) Biological control of soil-borne plant pathogens. CAB International, Wallingford, pp 93–108Google Scholar
  35. Estrada AER, Jonkers W, Kistler HC, May G (2012) Interactions between Fusarium verticillioides, Ustilago maydis, and Zea mays: an endophyte, a a pathogen, and their shared plant host. Fungal Genet Biol 49:578–587CrossRefGoogle Scholar
  36. Fahey JW, Dimock MB, Tomasino SF, Taylor JM, Carlson PS (1991) Genetically engineered endophytes as biocontrol agents: a case study from industry. In: Microbial ecology of leaves. Springer, New York, pp 401–411CrossRefGoogle Scholar
  37. Fickett ND, Boerboom CM, Stoltenberg DE (2013) Predicted corn yield loss due to weed competition prior to postemergence herbicide application on Wisconsin farms. Weed Technol 27(1):54–62CrossRefGoogle Scholar
  38. Fredrickson JK, Elliott LF (1985) Effects on winter wheat seedling growth by toxin producing rhizobacteria. Plant Soil 83:399–409CrossRefGoogle Scholar
  39. Frommel MI, Nowak J, Lazarovits G (1993) Treatment of potato tubers with a growth promoting Pseudomonas sp.: plant growth responses and bacterium distribution in the rhizosphere. Plant Soil 150:51–60CrossRefGoogle Scholar
  40. Gagné S, Richard C, Antoun H (1989) Pouvoir pathogène des bactéries endoracinaires de la luzerne. Can J Plant Pathol 11:22–27CrossRefGoogle Scholar
  41. Galai S, Limam F, Marzouki MN (2008) A new Stenotrophomonas maltophilia strain producing laccase. Use in decolorization of synthetics dyes. Appl Biochem Biotechnol 158:416–431PubMedCrossRefPubMedCentralGoogle Scholar
  42. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43(10):895–914CrossRefGoogle Scholar
  43. Hardoim PR, Overbeek LSV, Berg G, Pirttila AM, Compant S, Campisano A et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320PubMedPubMedCentralCrossRefGoogle Scholar
  44. Harris GH, Hesterman OB, Paul EA, Peters SE, Jahnke RR (1994) Fate of legume and fertilizer nitrogen-15 in a long-term cropping systems experiment. Agron J 86:910–915CrossRefGoogle Scholar
  45. Holland MA (1997) Occam’s razor applied to hormonology: are cytokinins produced by plants? Plant Physiol 115:865–868PubMedPubMedCentralCrossRefGoogle Scholar
  46. Islam MT (2011) Potentials for biological control of plant diseases by Lysobacter spp., with special reference to strain SB-K88. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin/Heidelberg, pp 335–364CrossRefGoogle Scholar
  47. Islam MT, von Tiedemann A (2011) 2,4-Diacetylphloroglucinol suppresses zoosporogenesis and impairs motility of the Peronospotomycete zoospores. World J Microbiol Biotechnol 27:2071–2079PubMedPubMedCentralCrossRefGoogle Scholar
  48. Islam MT, Hashidoko Y, Deora A, Ito T, Tahara S (2005) Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne Peronosporomycetes. Appl Environ Microbiol 71:3786–3796PubMedPubMedCentralCrossRefGoogle Scholar
  49. Islam MT, Croll D, Gladieux P, Soanes DM, Persoons A, Bhattacharjee AP, Hossain MS, Gupta DR, Rahman MM, Mahboob MG, Cook N, Salam MU, Surovy MZ, Sancho VB, Maciel JLN, Júnior AN, Castroagudín VL, Reges JTDA, Ceresini PC, Ravel S, Kellner R, Fournier E, Tharreau D, Lebrun MH, McDonald BA, Stitt T, Swan D, Talbot NJ, Saunders DGO, Win J, Kamoun S (2016) Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol 14:84. Scholar
  50. Islam MT, Rahman M, Piyush P, Aeron A (2017) Bacilli and Agrobiotechnology. An edited series book published by Springer International Publishing, p 416Google Scholar
  51. Jacobs MJ, Bugbee WM, Gabrielson DA (1985) Enumeration, location, and characterization of endophytic bacteria within sugar beet roots. Can J Bot 63(7):1262–1265CrossRefGoogle Scholar
  52. Jacobson CB, Pasternak JJ, Glick BR (1994) Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 40:1019–1025CrossRefGoogle Scholar
  53. James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PPM, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant-Microbe Interact 15(9):894–906PubMedCrossRefGoogle Scholar
  54. Janick J (1979) Horticultural science (3rd edn). W.H. Freeman, San Francisco, p 308. ISBN 0-7167-1031-5Google Scholar
  55. Khatun A, Farhana T, Sabir AA, Islam SMN, West HM, Rahman M, Islam T (2018) Pseudomonas and Burkholderia inhibit growth and asexual development of Phytophthora capsici. Zeitschrift fuer Naturforschung C 73(3–4):123–135. Scholar
  56. Kirchhof G, Eckert B, Stoffels MJ, Baldani I, Reis VM, Hartmann A (2001) Herbaspirillum frisingense sp. nov., a new nitrogen-fixing bacterial species that occurs in C4-fibre plants. Int J Syst Evol Microbiol 51:157–168PubMedCrossRefGoogle Scholar
  57. Kloepper JW (1992) Plant growth promoting rhizobacteria as biological control agents. In: Soil microbial ecology: applications in agricultural and environmental management. Marcel Dekker, New York, pp 255–274Google Scholar
  58. Kloepper JW, Ryu CM (2006) Bacterial endophytes as elicitors of induced systemic resistance. Springer, Berlin/Heidelberg, pp 33–52Google Scholar
  59. Kloepper JW, Leong J, Tientze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature 286:885–886CrossRefGoogle Scholar
  60. Kloepper JW, Zablotowicz RM, Tipping EM, Lifshitz R (1991) Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic Publishers, Dordrecht, pp 315–326Google Scholar
  61. Kobayashi D, Palumbo J (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker, New York, pp 199–233Google Scholar
  62. Kobayashi DY, Reedy RM, Bick J, Oudemans PV (2002) Characterization of a chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Appl Environ Microbiol 68:1047–1054PubMedPubMedCentralCrossRefGoogle Scholar
  63. Krimi Z, Alim D, Djellout H, Tafifet L, Mohamed-mahmoud F, Raio MA (2016) Bacterial endophytes of weeds are effective biocontrol agents of Agrobacterium spp., Pectobacterium spp., and promote growth of tomato plants. Phytopathol Mediterr 55(2):184–196Google Scholar
  64. Kumar GP, Ahmed SKMH, Desai S, Amalraj ELD, Rasul A (2014) In vitro screening for abiotic stress tolerance in potent biocontrol and plant growth promoting strains of Pseudomonas and Bacillus spp. Int J Bacteriol 2014:1–6. Article ID 195946CrossRefGoogle Scholar
  65. Lafi FF, Ramirez-Prado JS, Alam I, Bajic VB, Hirt H, Saad MM (2017) Draft genome sequence of plant growth–promoting Micrococcus luteus strain K39 isolated from Cyperus conglomeratus in Saudi Arabia. Genome Announc 5:e01520–e01516PubMedPubMedCentralGoogle Scholar
  66. Lazarovits G, Nowak J (1997) Rhizobacteria for improvement of plant growth and establishment. Hortic Sci 32:188–192Google Scholar
  67. Loon LCV, Bakker PAHM, van der Heijdt WHW, Wendehenne D, Pugin A (2008) Early responses of tobacco suspension cells to rhizobacterial elicitors of induced systemic resistance. Mol Plant-Microbe Interact 21:1609–1621PubMedCrossRefPubMedCentralGoogle Scholar
  68. Loper JE, Haack C, Schroth MN (1985) Population dynamics of soil pseudomonads in the rhizosphere of potato (Solanum tuberosum L.). Appl Environ Microbiol 49(2):416–422PubMedPubMedCentralGoogle Scholar
  69. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556PubMedPubMedCentralCrossRefGoogle Scholar
  70. Malhotra M, Srivastava S (2009) Stress responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth. Eur J Soil Biol 45:73–80CrossRefGoogle Scholar
  71. Mastretta C et al (2006) Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments. Biotechnol Genet Eng Rev 23:175–207PubMedCrossRefPubMedCentralGoogle Scholar
  72. Misaghi IJ, Donndelinger CR (1990) Endophytic bacteria in symptom-free cotton plants. Phytopathology 80(9):8080–8811CrossRefGoogle Scholar
  73. Murty MG, Ladha JK (1988) Influence of Azospirillum inoculation on the mineral uptake and growth of rice under hydroponic conditions. Plant Soil 108:281–285CrossRefGoogle Scholar
  74. Nave WR, Wax LM (1971) Effects of weeds on soybean yield and harvesting efficiency. Weed Sci 19:533–535CrossRefGoogle Scholar
  75. Naz I, Bano A (2010) Biochemical, molecular characterization and growth promoting effects of phosphate solubilizing Pseudomonas sp. isolated from weeds grown in salt range of Pakistan. Plant Soil 334:199–207CrossRefGoogle Scholar
  76. Newton AC, Fitt BDL, Atkins SD, Walters DR, Daniell TJ (2010) Pathogenesis, parasitism and mutualism in the trophic space of microbe–plant interactions. Trends Microbiol 18:365–373CrossRefGoogle Scholar
  77. Okunishi S, Sako K, Mano H, Imamura A, Morisaki H (2005) Bacterial flora of endophytes in the maturing seed of cultivated rice (Oryza sativa). Microbes Environ 20(3):168–177CrossRefGoogle Scholar
  78. Pages D, Rose J, Conrod S, Cuine S, Carrier P, Heulin T et al (2008) Heavy metal tolerance in Stenotrophomonas maltophilia. PLoS One 3(2):e1539PubMedPubMedCentralCrossRefGoogle Scholar
  79. Paul LR, Chapman WK, Chanway CP (2013) Diazotrophic bacteria reside inside Suillus tomentosus/Pinus contorta tuberculate ectomycorrhizae. Botany 91(1):48–52CrossRefGoogle Scholar
  80. Pereira GVDM, Magalhaes KT, Lorenzetii ER, Souza TP, Schwan RF (2012) A multiphasic approach for the identification of endophytic bacterial in strawberry fruit and their potential for plant growth promotion. Microb Ecol 63(2):405–417CrossRefGoogle Scholar
  81. Peterson LA, Peterson RT (1999) A field guide to edible wild plants: Eastern and entral North America. Houghton-Mifflin, Boston, p 345Google Scholar
  82. Putnam AR, Weston LA (1986) Adverse impacts of allelopathy in agricultural systems. In: The science of allelopathy. Wiley, New York, pp 43–56Google Scholar
  83. Rahman M, Sabir AS, Mukta JA, Khan MMA, Mohi-Ud-Di M, Miah MG, Rahman M, Islam MT (2018) Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit. Sci Rep 8:2504. Scholar
  84. Rangel WM, Thijs S, Janssen J, Longatti SMO, Bonaldi DS, Ribeiro PRA, Jambon I, Eevers N, Weyens N, Vangronsveld J, Moreira FMS (2016) Native rhizobia from Zn mining soil promote the growth of Leucaena leucocephala on contaminated soil. Int J Phytorem 19(2):142–156CrossRefGoogle Scholar
  85. Reinhold-Hurek B, Hurek T (1998a) Interactions of gramineous plants with Azoarcus spp. and other diazotrophs: identification, localization, and perspectives to study their function. Crit Rev Plant Sci 17(1):29–54CrossRefGoogle Scholar
  86. Reinhold-Hurek B, Hurek T (1998b) Life in grasses: Diazotrophic endophytes. Trends Microbol 6(4):139–144CrossRefGoogle Scholar
  87. Rice EL (1986) Allelopathic growth stimulation. In: The science of allelopathy. Wiley, New York, pp 23–42Google Scholar
  88. Richardson A, Barea JM, McNeill A, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1–2):305–339CrossRefGoogle Scholar
  89. Robert-Seilaniantz A, Grant M, Jones JDG (2011) Hormone cross talking plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343PubMedCrossRefPubMedCentralGoogle Scholar
  90. Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interaction with hosts. Mol Plant-Microbe Interact 19(8):827–837PubMedCrossRefPubMedCentralGoogle Scholar
  91. Rout ME, Chrzanowski TH (2009) The invasive Sorghum halepense harbors endophytic N2-fixing bacteria and alters soil biogeochemistry. Plant Soil 315:163–172CrossRefGoogle Scholar
  92. Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, Berg G, Lelie DVD, Dow JM (2009) The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 7:514–525PubMedCrossRefPubMedCentralGoogle Scholar
  93. Samad A, Antonielli L, Sessitsch A, Compant A, Trognitz F (2017a) Comparative genome analysis of the vineyard weed endophyte Pseudomonas viridiflava CDRTc14 showing selective herbicidal activity. Sci Rep 7:17336PubMedPubMedCentralCrossRefGoogle Scholar
  94. Samad A, Trognitz F, Compant S, Antonielli L, Sessitsch L (2017b) Shared and host-specific microbiome diversity and functioning of grapevine and accompanying weed plants. Environ Microbiol 19(4):1407–1424PubMedPubMedCentralCrossRefGoogle Scholar
  95. Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111(5):743–767PubMedPubMedCentralCrossRefGoogle Scholar
  96. Schippers B, Bakker AW, Bakker PAHM (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 25:339–358CrossRefGoogle Scholar
  97. Schippers B, Bakker AW, Bakker PAHM (1990) Beneficial and deleterious effects of HCN-producing pseudomonads on rhizosphere interactions. Plant Soil 129:75–83CrossRefGoogle Scholar
  98. Scortichini M, Loreti S (2007) Occurrence of an endophytic, potentially pathogenic strain of Pseudomonas syringae in symptomless wild trees of Corylus avellana L. J Plant Pathol 89:431–434Google Scholar
  99. Sessitsch A, Reiter B, Pfeifer U, Wilhelm E (2002) Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes specific PCR of 16S rRNA genes. FEMS Microbiol Ecol 39(1):23–32PubMedCrossRefPubMedCentralGoogle Scholar
  100. Siegert P et al (2007) Medium/means containing proteases from Stenotrophomonas maltophilia. Patent DE 102007033104 20070713Google Scholar
  101. Sloger C, Van Berkum P (1992) Approaches for enhancing nitrogen fixation in cereal crops. In: Dutta SK, Sloger C (eds) Biological nitrogen fixation associated with rice production. Oxford and IBH Publishing, New Delhi, pp 229–234Google Scholar
  102. Sorty AM, Meena KK, Choudhary K, Bitla UM, Minhas PS, Krishnani KK (2016) Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L.) on germination and seedling growth of wheat under saline conditions. Appl Biochem Biotechnol 180(5):872–882PubMedCrossRefPubMedCentralGoogle Scholar
  103. Spahillari M, Hammer K, Gladis T, Diederichsen A (1999) Weeds as a part of agrobiodiversity. Agriculture 28:227–232Google Scholar
  104. Sturz AV, Christie BR (1996) Endophytic bacteria of red clover as causal agents of allelopathic clover-maize syndromes. Soil Biol Biochem 28:583–588CrossRefGoogle Scholar
  105. Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soils 25(1):13–19CrossRefGoogle Scholar
  106. Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19(1):1–30CrossRefGoogle Scholar
  107. Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. Springer, New Delhi, pp 117–143Google Scholar
  108. Tien TM, Gaskins MH, Hubell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37:1016–1024PubMedPubMedCentralGoogle Scholar
  109. Trevet IW, Hollis JP (1948) Bacteria in storage organs of healthy plants. Phytopathology 38:960–967Google Scholar
  110. Trognitz F, Piller K, Nagel M, Borner A, Bacher C-F, Rechlik M, Mayrhofer H, Sessitsch A (2014) Isolation and characterization of endophytes isolated from seeds of different plants and the application to increase juvenile development. In: Tagung Zukünftiges Saatgut—Produktion, Vermarktung, Nutzung und Konzervierung. Future Seed—Production, Marketing, Use and Conservation; 24–26 November 2014; Austria. Irdning: Höhere Bundeslehr- und Forschungsanstalt für Landwirtschaft Raumberg-Gumpenstein, pp 25–28Google Scholar
  111. Turner JT, Kelly JL, Carlson PS (1993) Endophytes: an alternative genome for crop improvement. Int Crop Sci:555–560Google Scholar
  112. Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138PubMedPubMedCentralCrossRefGoogle Scholar
  113. Ulloa WJ, Awaya JD, Bellinger MR, Shintaku M (2017) Isolation of mimosine-degrading endophytic bacteria from the invasive plant: Leucaena leucocephala.
  114. Walker BH (1992) Biodiversity and ecological redundancy. Conserv Biol 6:18–23CrossRefGoogle Scholar
  115. Xu H, Griffith M, Patten CL, Glick BR (1998) Isolation of an antifreeze protein with ice nucleation activity from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 44:64–73CrossRefGoogle Scholar
  116. Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25:139–150PubMedPubMedCentralCrossRefGoogle Scholar
  117. Zhang Z, Yuen GY (1999) Biological control of Bipolaris sorokiniana on tall fescue by Stenotrophomonas maltophilia strain C3. Phytopathology 89:817–822PubMedCrossRefPubMedCentralGoogle Scholar
  118. Zhang ZG, Yuen GY (2000a) The role of chitinase production by Stenotrophomonas maltophilia strain C3 in biological control of Bipolaris sorokiniana. Phytopathology 90:384–389PubMedCrossRefPubMedCentralGoogle Scholar
  119. Zhang Z, Yuen GY (2000b) Effects of culture fluids and preinduction of chitinase production on biocontrol of Bipolaris leaf spot by Stenotrophomonas maltophilia C3. Biol Control 18:277–286CrossRefGoogle Scholar
  120. Zhang Z, Yuen GY, Sarath G, Penheiter AR (2001) Chitinases from the plant disease biocontrol agent, Stenotrophomonas maltophilia C3. Phytopathology 91:204–211PubMedCrossRefGoogle Scholar
  121. Zimdahl RL (1980) Weed-crop competition: a review. International Plant Protection Center, CorvallisGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Kaniz Fatema
    • 1
  • Nur Uddin Mahmud
    • 1
  • M. Tofazzal Islam
    • 1
  1. 1.Institute of Biotechnology and Genetic Engineering (IBGE)Bangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipurBangladesh

Personalised recommendations