Advertisement

Highly Linear Source-Degenerated OTA with Floating Gate Auxiliary Differential Pair

  • Tanmay DubeyEmail author
  • Anurag Kumar
  • Vijaya Bhadauria
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 587)

Abstract

This paper presents a linear operational transconductance amplifier (OTA) using two signal attenuation techniques (floating gate MOSFET along with nonlinear attenuator) and source degeneration technique to achieve the large input differential voltage range for which linear voltage-to-current conversion is obtained. The proposed linear OTA is simulated on Cadence Virtuoso environment with UMC 0.18 μm CMOS process technology having power supply of 1.8 V. The proposed OTA gives transconductance (Gm) of 70 µA/V when biased with 100 μA current and the third-order harmonic distortion (HD3) is found to be −79 dB for a 400 mVpp input signal at 10 MHz.

Keywords

Floating gate Linearity Nonlinear attenuator OTA Source-degeneration 

Notes

Acknowledgements

This work has been performed using the resources of VLSI Laboratory under Special Manpower Development Programme Chip to System Design (SMDP-C2SD) project funded by Ministry of Electronics and Information Technology (MeitY), Government of India.

References

  1. 1.
    Voorman, H., Veenstra, H.: Tunable high-frequency Gm-C filters. IEEE J. Solid-State Circuits 35, 1097–1108 (2000).  https://doi.org/10.1109/4.859498CrossRefGoogle Scholar
  2. 2.
    Kar, S.K., Sen, S.: Tunable square-wave generator for integrated sensor applications. IEEE Trans. Instrum. Meas. 60, 3369–3375 (2011)CrossRefGoogle Scholar
  3. 3.
    Kar, S.K., Sen, S.: A highly linear CMOS transconductance amplifier in 180 nm process technology. Analog Integr. Circuits Signal Process. 72, 163–171 (2012).  https://doi.org/10.1007/s10470-011-9796-1CrossRefGoogle Scholar
  4. 4.
    Bhadauria, V., Kant, K., Banerjee, S.: Linearity enhancement of 0.18 µm transconductor using active attenuation technique. Can. J. Electr. Electron. Eng. 2, 598–601 (2011)Google Scholar
  5. 5.
    Sharan, T., Bhadauria, V.: Fully differential, bulk-driven, class AB, sub-threshold OTA with enhanced slew rates and gain. J. Circuits Syst. Comput. 26, 1750001 (2017).  https://doi.org/10.1142/S0218126617500013CrossRefGoogle Scholar
  6. 6.
    Sharan, T., Bhadauria, V.: Sub-threshold, cascode compensated, bulk-driven OTAs with enhanced gain and phase-margin. Microelectron. J. 54, 150–165 (2016).  https://doi.org/10.1016/j.mejo.2016.05.009CrossRefGoogle Scholar
  7. 7.
    Khateb, F., Kulej, T., Vlassis, S.: Extremely low-voltage bulk-driven tunable transconductor. Circuits Syst. Signal Process. 36, 511–524 (2017).  https://doi.org/10.1007/s00034-016-0329-0CrossRefGoogle Scholar
  8. 8.
    Dubey, T., Pandey, R.: Low-voltage highly linear floating gate MOSFET based source degenerated OTA and its applications. Inf. MIDEM 48, 19–28 (2018)Google Scholar
  9. 9.
    Sánchez-Rodríguez, T., Muñoz, F., Galán, J., et al.: Low voltage linear tunable transconductor for high speed filters. Analog Integr. Circuits Signal Process. 82, 329–333 (2015).  https://doi.org/10.1007/s10470-014-0435-5CrossRefGoogle Scholar
  10. 10.
    Shen, D.-L., Chu, Y.-J., Chen, H.-W.: A linearized technique in an all-MOS transconductance amplifier. Microelectron. J. 43, 1023–1028 (2012).  https://doi.org/10.1016/j.mejo.2012.07.017CrossRefGoogle Scholar
  11. 11.
    Lewinski, A., Silva-Martinez, J.: A high-frequency transconductor using a robust nonlinearity cancellation. IEEE Trans. Circuits Syst. II Express Briefs 53, 896–900 (2006).  https://doi.org/10.1109/TCSII.2006.880025CrossRefGoogle Scholar
  12. 12.
    Kar, S.K., Sen, S.: Linearity improvement of source degenerated transconductance amplifiers. Analog Integr. Circuits Signal Process. 74, 399–407 (2013).  https://doi.org/10.1007/s10470-012-9948-yCrossRefGoogle Scholar
  13. 13.
    Ngamkham, W., Kiatwarin, N., Narksap, W., et al.: A linearized source-couple pair transconductor using a low-voltage square root circuit. In: 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON 2008, pp. 701–704 (2008)Google Scholar
  14. 14.
    Elamien, M.B., Mahmoud, S.A.: On the design of highly linear CMOS digitally programmable operational transconductance amplifiers for low and high-frequency applications. Analog Integr. Circuits Signal Process. p. 2 (2018).  https://doi.org/10.1007/s10470-018-1128-2CrossRefGoogle Scholar
  15. 15.
    Rezaei, F.: Linearity enhancement in the entire tuning range of CMOS OTA using a new tune compensated source degeneration technique. Microelectron. J. 66, 128–135 (2017).  https://doi.org/10.1016/j.mejo.2017.06.008CrossRefGoogle Scholar
  16. 16.
    Nedungadi, A., Viswanathan, T.R.: Design of Linear CMOS transconductance elements. IEEE Trans. Circuits Syst. 31, 891–894 (1984).  https://doi.org/10.1109/TCS.1984.1085428CrossRefGoogle Scholar
  17. 17.
    Khateb, F.: Bulk-driven floating-gate and bulk-driven quasi-floating-gate techniques for low-voltage low-power analog circuits design. AEU Int. J. Electron. Commun. 68, 64–72 (2014).  https://doi.org/10.1016/j.aeue.2013.08.019CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Electronics and Communication Engineering DepartmentMotilal Nehru National Institute of Technology AllahabadAllahabadIndia
  2. 2.Bharat Sanchar Nigam LimitedBallygungeIndia

Personalised recommendations