Advertisement

Analyzing the Sensitivity of Heterostructure of BP-Graphene/TMDC Layer Coated SPR Biosensor

  • Sarika PalEmail author
  • Y. K. Prajapati
  • J. P. Saini
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 587)

Abstract

In this paper, the heterostructure of Au-BP-Graphene/TMDC layers coated SPR sensor is proposed for sensing of biomolecules. The proposed sensor is compared with conventional SPR and graphene based SPR biosensor in terms of sensitivity. Angular interrogation method is used for analyzing the sensitivity of proposed SPR biosensor at 633 nm operation wavelength. The sensitivity obtained for conventional SPR, Au-Graphene SPR and Au-BP-Graphene based SPR biosensors are 75.43°/RIU, 76.29°/RIU and 108.85°/RIU respectively. Highest sensitivity of 153.21°/RIU is obtained for two layer of WS2 for heterostructure of Au-BP/TMDC-based SPR biosensor. The sensitivity increases for higher number of BP layers due to extraordinary sensing ability of BP. It is also observed that sensitivity increases with sensing layer RI due to better binding of biomolecules on sensor surface.

Keywords

Black phosphorus (BP) Graphene Molybdenum disulfide (MoS2Tungsten disulfide (WS2Molybdenum diselenide (MoSe2Tungsten diselenide (WSe2Surface plasmon resonance (SPR) 

References

  1. 1.
    Lukosz, W.: Integrated optical chemical and direct biochemical sensors. Int. J. Sens. Actuators B 29, 3750–1975CrossRefGoogle Scholar
  2. 2.
    Zeng, S., Baillargeat, D., Ho, H.P., Yong, K.T.: Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 43, 3426–3452 (2014)CrossRefGoogle Scholar
  3. 3.
    Pal, S., Prajapati, Y.K., Saini, J.P., Singh, V.: Sensitivity enhancement of metamaterial based SPR biosensor for near infrared. Opt. Appl. 46(1), 131–134 (2016)Google Scholar
  4. 4.
    Ladd, J., Taylor, A., Jiang, S.: SPR biosensors for food safety. In: Homola, J. (eds.) Surface Plasmon Resonance Based Sensors. Springer Series on Chemical Sensors and Biosensors, p. 4. Springer, Berlin, Heidelberg (2006)Google Scholar
  5. 5.
    Pal, S., Prajapati, Y.K., Saini, J.P., Singh, V.: Resolution enhancement of optical SPR sensor using metamaterial. Int. J. Photonic Sens. 5(4), 330–338 (2015)CrossRefGoogle Scholar
  6. 6.
    Kretschmann, E., Reather, H.: Radiative decay of non-radiative surface plasmons excited by light. Int. J. Zeitschrift für Naturforschung 23, 2135–2136 (1968)CrossRefGoogle Scholar
  7. 7.
    Otto, A.: Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 216, 398–410 (1968)CrossRefGoogle Scholar
  8. 8.
    Kowalczyk, S.W., Tuijtel, M.W., Donkers, S.P., Dekker, C.: Unrevealing single stranded DNA in solid state nanopore. Nano Lett. 10, 1414–1420 (2010)CrossRefGoogle Scholar
  9. 9.
    Shalabney, A., Abdulhalim, I.: Sensitivity-enhancement methods for surface plasmon sensors. Laser Photon. Rev. 5, 571–606 (2011)CrossRefGoogle Scholar
  10. 10.
    Karimi, H., Yusof, R., Rahmani, R., Hosseinpour, H., Ahmadi, M.T.: Development of solution-gated graphene transistor model for biosensors. Nanoscale Res. Lett. 9(1), 71 (2014).  https://doi.org/10.1186/1556-276X-9-71CrossRefGoogle Scholar
  11. 11.
    Song, B., Li, D., Qi, W., Elstner, M., Fan, C., Fang, H.: Graphene on Au(111): a highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification. ChemPhysChem 11, 585–589 (2010)CrossRefGoogle Scholar
  12. 12.
    Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)CrossRefGoogle Scholar
  13. 13.
    Xia, F., Wang, H., Jia, Y.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014).  https://doi.org/10.1038/ncomms5458
  14. 14.
    Cai, Y., Zhang, G., Zhang, Y.W.: Layer-dependent band alignment and work function of few-layer phosphorene. Sci. Rep. 4, 6677–6682 (2014)CrossRefGoogle Scholar
  15. 15.
    Cho, S.Y., Lee, Y., Koh, H.J., Jung, H., Kim, J.S., Yoo, H.W., Kim, J., Jung, H.T.: Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene. Adv. Mater. 28(32), 7020–7028 (2016)CrossRefGoogle Scholar
  16. 16.
    Pal, S., Verma, A., Prajapati, Y.K., Saini, J.P.: Influence of black phosphorous on performance of surface plasmon resonance biosensor. Int. J. Opt. Quantum Electron. (OQEL) 49(403), 1–13 (2017) (Springer Publication)Google Scholar
  17. 17.
    Ouyang, Q., Zeng, S., Li, J., Hong, L., Xu, G., Dinh, X.Q., Qian, J., He, S., Qu, J., Coquet, P., Yong, K.T.: Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. Sci. Rep. 6 (2016)Google Scholar
  18. 18.
    Pal, S., Verma, A., Saini, J.P., Prajapati, Y.K.: Sensitivity Enhancement Using Silicon-Black Phosphorus-TDMC Coated Surface Plasmon Resonance Biosensor, IET Optoelectronics, vol. 13, pp. 1–7 (2019)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Electronics EngineeringNIT UttarakhandSrinagar, GarhwalIndia
  2. 2.Department of Electronics and Communication EngineeringMNNITAllahabadIndia
  3. 3.Netaji Subhas Institute of Technology (NSIT)New DelhiIndia

Personalised recommendations