Advertisement

Design and Analysis of Self-biased OTA for Low-Power Applications

  • G. Manikanta
  • R. A. Mishra
  • N. A. SrivastavaEmail author
  • R. K. Jaiswal
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 587)

Abstract

This paper presents an operational-transconductance-amplifier (OTA) for ultra-low power applications with high CMRR (common mode rejection ratio) and PSRR (power supply rejection ratio). The proposed OTA is a three-stage design. In order to attain the lower supply voltage and high CMRR, a bulk-driven differential pair with the tail current source has been considered as the first stage. The current mirror biasing technique makes sure that all the transistors operate in subthreshold region. A common source amplifier has been opted with current mirror as a load in second stage. At last, common source inverting amplifier is third stage of the designed OTA. The circuit has been designed and synthesized using cadence virtuoso simulator in 180 nm CMOS technology. It has been found that these stages are helpful in achieving high low-frequency gain. Hence, CMRR and PSRR also increase in significant amount. The results describe that the proposed design offers low-frequency gain of 58 dB with CMRR of 72 dB and PSRR of 56 dB for a supply voltage (\( V_{DD} \)) of 0.5 V. The proposed OTA provides the power dissipation of 1.8 µW at \( V_{DD} \) = 0.5 V. Also, the low-frequency gain of 57 dB, CMRR of 70 dB and PSRR of 55 dB with a power dissipation of 2.5 µW have been measured at \( V_{DD} \) = 0.6 V.

Keywords

Bulk-driven MOS transistor CMRR OTA PSRR 

References

  1. 1.
    International Technology Roadmap for Semiconductors (2011). http://www.itrs2.net/2011-itrs.html
  2. 2.
    Yan, S., Sanchez-Sinencio, E.: Low voltage analog circuit design techniques: a tutorial. IEICE Trans. Analog Integr. Circuits Syst. E00-A(2), 1–17 (2000)Google Scholar
  3. 3.
    Rajput, S.S., Jamuar, S.S.: Low voltage analog circuit design techniques. IEEE Circuits Syst. Mag. 2(1), 24–42 (2002). 1531-636X/4/$10.00©2002IEEECrossRefGoogle Scholar
  4. 4.
    Blalock, B.J., Allen, P.E., Rincon-Mora, G.A.: Designing 1-V op amps using standard digital CMOS technology. IEEE Trans. Circuits Syst.-II: Analog Digit. Signal Process. 45(7), 769–780 (1998). doi: 1057-7130(98)05054-XGoogle Scholar
  5. 5.
    Lin, T.-H., Wu, C.-K., Tsai, M.-C.: A 0.8-V 0.25mW current mirror OTA with 160-MHz GBW in 0.18-µm CMOS. IEEE Trans. Circuits Syst.-II: Exp. Briefs. 54(2), 131–135 (2007).  https://doi.org/10.1109/tcsii.2006.886465
  6. 6.
    Wang, J., Lee, T.-Y., Kim, D.-G., Matsuoka, T., Taniguchi K.: Design of a 0.5 V op-amp based on CMOS inverter using floating voltage sources. IEICE. Trans. Electron. E-91-C(8), 1375–1378 (2008).  https://doi.org/10.1093/ietele/e91-c.8.1375CrossRefGoogle Scholar
  7. 7.
    Rezzi, F., Baschirotto, A., Castello, R.: A 3 V 12–55 MHz BiCMOS pseudo-differential continuous–time filter. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 42(11), 896–903 (1995)CrossRefGoogle Scholar
  8. 8.
    Mohieldin, A.N., Sanchez-Sinencio, E., Silva-Martinez, J.: A fully balanced pseudo-differential OTA with common mode feedforward and inherent common-mode feedback detector. IEEE J. Solid-State Circuits 38(4), 663–668 (2003).  https://doi.org/10.1109/JSSC.2003.809520CrossRefGoogle Scholar
  9. 9.
    Ferreiraand, L., Sonkusale, S.: A 60-dB gain OTA operating at 0.25 V power supply in 130 nm digital CMOS process. IEEE Trans. Circuits Syst.-I: Reg. Pap. 61(6), 1609–1617 (2014).  https://doi.org/10.1109/tcsi.2013.2289413CrossRefGoogle Scholar
  10. 10.
    Ragheb, A.N., Kim, H.W.: Ultra-low power OTA based on bias recycling and subthreshold operation with phase margin enhancement. Microelectron. J. 60, 94–101 (2017).  https://doi.org/10.1016/j.mejo.2016.12.007CrossRefGoogle Scholar
  11. 11.
    Abdelfattah, O., Roberts, G.W., Shih, I., Shih, Y.-C.: An ultra-low-voltage CMOS process-insensitive self-biased OTA with rail-to-rail input range. IEEE Trans. Circuits Syst. I: Regul. Pap. 62(10), (2015).  https://doi.org/10.1109/tcsi.2015.2469011MathSciNetCrossRefGoogle Scholar
  12. 12.
    Razavi, B.: Design of analog CMOS Integrated Circuits, 1st edn. McGraw- Hill, New York (2001)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • G. Manikanta
    • 1
  • R. A. Mishra
    • 1
  • N. A. Srivastava
    • 1
    Email author
  • R. K. Jaiswal
    • 1
  1. 1.Motilal Nehru National Institute of Technology AllahabadPrayagrajIndia

Personalised recommendations