Study and Performance Analysis of Carbon Nanotubes (CNTs) as a Global VLSI Interconnects

  • Kavindra Kumar KaviEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 587)


This research works are primarily focused on the modeling approach of Carbon Nanotubes (CNTs). Based on the number of conducting channels and different number of shells and their arrangements in bundles an Equivalent Single Conductor (ESC) transmission line model proposed to analyze the effect of power dissipation and propagation delay. Driver Interconnect Load (DIL) system is used to analyze the power dissipation and propagation delay performances. A SPICE simulation is used to compare the performance of bundle Multiwall Carbon Nanotubes (MWCNTs) as compare to conventional bundle Single Wall Carbon Nanotubes (SWCNTs) interconnect. After the performance analysis it is observed that power dissipation and propagation delay increase with the length of interconnects, but the power dissipation and propagation delay decreases for bundle of MWCNT as compare to the conventional bundle SWCNT.


Carbon nanotube (CNT) Multiwall CNT bundle (MWCNT) Power dissipation Propagation delay Interconnects Driver interconnect load (DIL) 


  1. 1.
    International technology roadmap for semiconductors. (2013)
  2. 2.
    Srivastava, N., Banerjee, K.: A comparative scaling analysis of metallic and carbon nanotube interconnections for nanometer scale VLSI technologies. In: Proceedings of the 21st International VLSI Multilevel Interconnect Conference (VMIC), 29 September–2 October, Waikoloa, HI, pp. 393–398 (2004)Google Scholar
  3. 3.
    Das, P.K., Yadav, A., Kumar, K.: Propagation delay analysis of multi-layered GNR and multi-walled CNT through-silicon via at different technology nodes. In: Proceedings of the World Congress on Engineering and Computer Science, WCECS 2017, October 2017, San Francisco, USA, vol. 1 (2017)Google Scholar
  4. 4.
    Wei, B.Q., Vaijai, R., Ajayan, P.M.: Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 79(8), 1172–1174 (2001)CrossRefGoogle Scholar
  5. 5.
    Berber, S., Kwon, Y.-K., Tomanek, D.: Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84(20), 4613–4616 (2000)CrossRefGoogle Scholar
  6. 6.
    Collins, P.G., Hersam, M., Arnold, M., Martel, R., Avouris, P.: Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys. Rev. Lett. 86(14), 3128–3131 (2001)CrossRefGoogle Scholar
  7. 7.
    Li, H., Xu, C., Srivastava, N., Banerjee, K.: Carbon nanomaterials for next-generation interconnects and passives: physics, status and prospects. IEEE Trans. Electron Devices 56(9), 1799–1821 (2006)CrossRefGoogle Scholar
  8. 8.
    Pu, S.N., Yin, W.Y., Mao, J.-F., Liu, Q.-H.: Crosstalk prediction of single- and double-walled carbon-nanotube (SWCNT/DWCNT) bundle interconnects. IEEE Trans. Electron Devices 56(4), 560–568 (2009)CrossRefGoogle Scholar
  9. 9.
    Sathyakam, P.U., Mallick, P.S.: Transient analysis of mixed carbon nanotube bundle interconnects. IET Electron. Lett. 47(20), 1134–1136 (2011)CrossRefGoogle Scholar
  10. 10.
    Majumder, M.K., Pandya, N.D., Kaushik, B.K., Manhas, S.K.: Analysis of MWCNT and bundled SWCNT interconnects: impact on crosstalk and area. IEEE Electron Device Lett. 33(8), 1180–1182 (2012)CrossRefGoogle Scholar
  11. 11.
    Burke, P.J.: Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans. Nanotechnol. 1(3), 129–144 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Majumder, M.K., Das, P.K., Kaushik, B.K.: Delay and crosstalk reliability issue in mixed MWCNT bundle interconnect. 0026–2714/©2014 elsevier LtdGoogle Scholar
  13. 13.
    Rossi, D., Cazeaux, J.M., Metra, C., Lombardi, F.: Modeling crosstalk effects in CNT bus architecture. IEEE Trans. Nanotechnol. 6(2), 133–145 (2007)CrossRefGoogle Scholar
  14. 14.
    Majumder, M.K., Kaushik, B.K., Manhas, S.K.: Analysis of mixed CNT bundle interconnects: impact on delay and power dissipation. In: 5th International conference on computers and devices for communication (CODEC) (2012)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of ECEDMNNIT AllahabadAllahabadIndia

Personalised recommendations