Advertisement

Development of Neuroimaging-Based Biomarkers in Psychiatry

  • Orkun Aydin
  • Pinar Unal Aydin
  • Ayla ArslanEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1192)

Abstract

This chapter presents an overview of accumulating neuroimaging data with emphasis on translational potential. The subject will be described in the context of three disease states, i.e., schizophrenia, bipolar disorder, and major depressive disorder, and for three clinical goals, i.e., disease risk assessment, subtyping, and treatment decision.

Keywords

Connectomics Neuroimaging Amygdala Hippocampus Prefrontal cortex White matter Gray matter Functional magnetic resonance imaging Magnetic resonance imaging Positron emission tomography Diffusion tensor imaging Voxel-based morphometry Machine learning Biomarker Schizophrenia Depression Diagnosis Prognosis Predictive Personalized Bipolar disorder 

Abbreviations

AD

Alzheimer’s disease

ADHD

Attention deficit hyperactivity disorder

ACC

Anterior cingulate cortex

BD

Bipolar disorder

BOLD

Blood oxygenation level dependent

CS

Chronic schizophrenia

CT

Computerized tomography

DALYs

Disability-adjusted life years

DSM

Diagnostics and Statistics Manual

DMN

Default mode network

DLPFC

Dorsolateral prefrontal cortex

DTI

Diffusion tensor imaging

EPI

Echo-planar imaging

FA

Fractional anisotropy

FCS

Functional connectivity strength

FES

First episode schizophrenia

fMRI

Functional magnetic resonance imaging

ICD

International Classification of Diseases

MCI

Mild cognitive impairment

MRI

Magnetic resonance imaging

MDD

Major depression disorder

mPFC

Medial prefrontal cortex

NCD

Neurocognitive disorder

OCD

Obsessive-compulsive disorder

P4

Predictive, preventative, personalized, and participatory

PET

Positron emission tomography

RDoC

Research domain criteria

SAD

Social anxiety disorder

SZ

Schizophrenia

SPECT

Single-photon emission computed tomography

VBM

Voxel-based morphometry

YLDs

Years lived with disability

References

  1. 1.
    Hood L, Friend SH. Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat Rev Clin Oncol. 2011;8(3):184.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Hyman SE, Fenton WS. What are the right targets for psychopharmacology? Science. 2003;299(5605):350–1.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Arslan A. Genes, brains, and behavior: imaging genetics for neuropsychiatric disorders. J Neuropsychiatry Clin Neurosci. 2015;27(2):81–92.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Fernandes BS, Williams LM, Steiner J, Leboyer M, Carvalho AF, Berk M. The new field of ‘precision psychiatry’. BMC Med BioMed Central. 2017;15(1):80.Google Scholar
  5. 5.
    Cataldo I, Azhari A, Lepri B, Esposito G. Oxytocin receptors (OXTR) and early parental care: an interaction that modulates psychiatric disorders. Res Dev Disabil. 2018;82:27–38.PubMedCrossRefGoogle Scholar
  6. 6.
    Mascheretti S, Andreola C, Scaini S, Sulpizio S. Beyond genes: a systematic review of environmental risk factors in specific reading disorder. Res Dev Disabil. 2018.Google Scholar
  7. 7.
    Vieta E, Berk M, Schulze TG, Carvalho AF, Suppes T, Calabrese JR, et al. Bipolar disorders. Nat Rev Dis Prim. 2018 [cited 2018 Dec 24];4:18008. http://www.ncbi.nlm.nih.gov/pubmed/29516993.
  8. 8.
    Kim Y-K, Shin C. The microbiota-gut-brain axis in neuropsychiatric disorders: pathophysiological mechanisms and novel treatments. Curr Neuropharmacol. 2018;16(5):559–73.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Rogers J, Renoir T, Hannan AJ. Gene-environment interactions informing therapeutic approaches to cognitive and affective disorders. Neuropharmacology. 2019 [cited 2018 Dec 24];145(Pt A):37–48. http://www.ncbi.nlm.nih.gov/pubmed/29277490.PubMedCrossRefGoogle Scholar
  10. 10.
    Insel TR. The NIMH research domain criteria (RDoC) project: precision medicine for psychiatry. Am J Psychiatry. 2014;171(4):395–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Arslan A. Mapping the Schizophrenia genes by neuroimaging: the opportunities and the challenges. Int J Mol Sci. 2018;19(1):219.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    John B, Lewis KR. Chromosome variability and geographic distribution in insects. Science. 1966;152(3723):711–21.PubMedCrossRefGoogle Scholar
  13. 13.
    Gottesman II, Shields J. Genetic theorizing and schizophrenia. Br J Psychiatry. 1973;122(566):15–30.PubMedCrossRefGoogle Scholar
  14. 14.
    Flint J, Munafò MR. The endophenotype concept in psychiatric genetics. Psychol Med. 2007 [cited 2018 Dec 25];37(02):163. http://www.journals.cambridge.org/abstract_S0033291706008750.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS. Time course EPI of human brain function during task activation. Magn Reson Med. 1992;25(2):390–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci. 1992;89(12):5675–9.CrossRefGoogle Scholar
  17. 17.
    Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA. 1990 [cited 2018 Dec 24];87(24):9868–72. http://www.ncbi.nlm.nih.gov/pubmed/2124706.CrossRefGoogle Scholar
  18. 18.
    Mansfield JR. Evaluation and refinement of a system and a method for the use of hyperspectral imaging for metabolic monitoring. 2003 [cited 2018 Dec 25]. https://apps.dtic.mil/docs/citations/ADA420083.
  19. 19.
    Mankoff DA. Molecular imaging as a tool for translating breast cancer science. Breast Cancer Res. 2008;10(1):S3.Google Scholar
  20. 20.
    Le Roux LG, Schellingerhout D. Molecular neuroimaging: the basics. In: Seminars in roentgenology. Elsevier; 2014. p. 225–33.Google Scholar
  21. 21.
    Arslan A. Application of neuroimaging in the diagnosis and treatment of depression. In: Understanding depression. Springer; 2018. p. 69–81.Google Scholar
  22. 22.
    Arslan A. Imaging genetics of schizophrenia in the post-GWAS era. Prog Neuro-Psychopharmacology Biol Psychiatry. 2018;80:155–65.CrossRefGoogle Scholar
  23. 23.
    Xia L, Li S, Wang T, Guo Y, Meng L, Feng Y, et al. Spontaneous alterations of regional brain activity in patients with adult generalized anxiety disorder. Neuropsychiatr Dis Treat. 2017 [cited 2018 Dec 24];13:1957–65. http://www.ncbi.nlm.nih.gov/pubmed/28790831.CrossRefGoogle Scholar
  24. 24.
    Fusar‐Poli P, Meyer‐Lindenberg A. Forty years of structural imaging in psychosis: promises and truth. Acta Psychiatr Scand. 2016;134(3):207–24.PubMedCrossRefGoogle Scholar
  25. 25.
    Guo S, Iwabuchi S, Balain V, Feng J, Liddle P, Palaniyappan L. Cortical folding and the potential for prognostic neuroimaging in schizophrenia. Br J Psychiatry. 2015;207(5):458–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Hahn C, Lim HK, Lee CU. Neuroimaging findings in late-onset schizophrenia and bipolar disorder. J Geriatr Psychiatry Neurol. 2014;27(1):56–62.PubMedCrossRefGoogle Scholar
  27. 27.
    Tamashiro JH, Zung S, Zanetti MV, de Castro CC, Vallada H, Busatto GF, et al. Increased rates of white matter hyperintensities in late-onset bipolar disorder. Bipolar Disord. 2008 [cited 2018 Dec 24];10(7):765–75. http://www.ncbi.nlm.nih.gov/pubmed/19032708.PubMedCrossRefGoogle Scholar
  28. 28.
    Nakajima S, Takeuchi H, Plitman E, Fervaha G, Gerretsen P, Caravaggio F, et al. Neuroimaging findings in treatment-resistant schizophrenia: a systematic review: lack of neuroimaging correlates of treatment-resistant schizophrenia. Schizophr Res. 2015;164(1–3):164–75.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Ball TM, Stein MB, Ramsawh HJ, Campbell-Sills L, Paulus MP. Single-subject anxiety treatment outcome prediction using functional neuroimaging. Neuropsychopharmacology. 2014;39(5):1254.PubMedCrossRefGoogle Scholar
  30. 30.
    Desmyter S, Van Heeringen C, Audenaert K. Structural and functional neuroimaging studies of the suicidal brain. Prog Neuro-Psychopharmacology Biol Psychiatry. 2011;35(4):796–808.PubMedCrossRefGoogle Scholar
  31. 31.
    Pagano G, Niccolini F, Politis M. Current status of PET imaging in Huntington’s disease. Eur J Nucl Med Mol Imaging. 2016 [cited 2018 Dec 24];43(6):1171–82. http://www.ncbi.nlm.nih.gov/pubmed/26899245.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Teixeira AL, Barbosa IG, Machado-Vieira R, Rizzo LB, Wieck A, Bauer ME. Novel biomarkers for bipolar disorder. Expert Opin Med Diagn. 2013 [cited 2018 Dec 24];7(2):147–59. http://www.ncbi.nlm.nih.gov/pubmed/23530885.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Won E, Kim Y-K. Neuroimaging in psychiatry: steps toward the clinical application of brain imaging in psychiatric disorders. Prog Neuro-Psychopharmacology Biol Psychiatry. 2018 [cited 2018 Dec 24];80(Pt B):69–70. http://www.ncbi.nlm.nih.gov/pubmed/28962844.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Vigo D, Thornicroft G, Atun R. Estimating the true global burden of mental illness. The Lancet Psychiatry. 2016 [cited 2018 Dec 24];3(2):171–8. http://www.ncbi.nlm.nih.gov/pubmed/26851330.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Grudzinski AN. Considerations in the treatment of anxiety disorders: a pharmacoeconomic review. Expert Opin Pharmacother. 2001;2(10):1557–69.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Woo C-W, Chang LJ, Lindquist MA, Wager TD. Building better biomarkers: brain models in translational neuroimaging. Nat Neurosci. 2017 [cited 2018 Dec 24];20(3):365–77. http://www.ncbi.nlm.nih.gov/pubmed/28230847.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Davidson LL, Heinrichs RW. Quantification of frontal and temporal lobe brain-imaging findings in schizophrenia: a meta-analysis. Psychiatry Res Neuroimaging. 2003;122(2):69–87.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Wright IC, Rabe-Hesketh S, Woodruff PWR, David AS, Murray RM, Bullmore ET. Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry. 2000;157(1):16–25.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Adriano F, Spoletini I, Caltagirone C, Spalletta G. Updated meta-analyses reveal thalamus volume reduction in patients with first-episode and chronic schizophrenia. Schizophr Res. 2010;123(1):1–14.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Konick LC, Friedman L. Meta-analysis of thalamic size in schizophrenia. Biol Psychiatry. 2001;49(1):28–38.PubMedCrossRefGoogle Scholar
  41. 41.
    Hulshoff Pol HE, Kahn RS. What happens after the first episode? A review of progressive brain changes in chronically ill patients with schizophrenia. Schizophr Bull. 2008;34(2):354–66.CrossRefGoogle Scholar
  42. 42.
    Olabi B, Ellison-Wright I, McIntosh AM, Wood SJ, Bullmore E, Lawrie SM. Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies. Biol Psychiatry. 2011;70(1):88–96.PubMedCrossRefGoogle Scholar
  43. 43.
    Ellison-Wright I, Bullmore E. Anatomy of bipolar disorder and schizophrenia: a meta-analysis. Schizophr Res. 2010;117(1):1–12.PubMedCrossRefGoogle Scholar
  44. 44.
    Buehlmann E, Berger GE, Aston J, Gschwandtner U, Pflueger MO, Borgwardt SJ, et al. Hippocampus abnormalities in at risk mental states for psychosis? A cross-sectional high resolution region of interest magnetic resonance imaging study. J Psychiatr Res. 2010;44(7):447–53.PubMedCrossRefGoogle Scholar
  45. 45.
    Borgwardt SJ, Riecher-Rössler A, Dazzan P, Chitnis X, Aston J, Drewe M, et al. Regional gray matter volume abnormalities in the at risk mental state. Biol Psychiatry. 2007;61(10):1148–56.PubMedCrossRefGoogle Scholar
  46. 46.
    Vita A, De Peri L, Silenzi C, Dieci M. Brain morphology in first-episode schizophrenia: a meta-analysis of quantitative magnetic resonance imaging studies. Schizophr Res. 2006;82(1):75–88.PubMedCrossRefGoogle Scholar
  47. 47.
    Woods BT, Ward KE, Johnson EH. Meta-analysis of the time-course of brain volume reduction in schizophrenia: implications for pathogenesis and early treatment. Schizophr Res. 2005;73(2–3):221–8.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Fornito A, Yung AR, Wood SJ, Phillips LJ, Nelson B, Cotton S, et al. Anatomic abnormalities of the anterior cingulate cortex before psychosis onset: an MRI study of ultra-high-risk individuals. Biol Psychiatry. 2008;64(9):758–65.PubMedCrossRefGoogle Scholar
  49. 49.
    Röthlisberger M, Riecher-Rössler A, Aston J, Fusar-Poli P, Radü E-W, Borgwardt S. Cingulate volume abnormalities in emerging psychosis. Curr Pharm Des. 2012 [cited 2018 Dec 24];18(4):495–504. http://www.ncbi.nlm.nih.gov/pubmed/22239580.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Takayanagi Y, Kulason S, Sasabayashi D, Takahashi T, Katagiri N, Sakuma A, et al. Reduced thickness of the anterior cingulate cortex in individuals with an at-risk mental state who later develop psychosis. Schizophr Bull. 2017 [cited 2018 Dec 24];43(4):907–13. http://www.ncbi.nlm.nih.gov/pubmed/28338751.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Bora E, Fornito A, Radua J, Walterfang M, Seal M, Wood SJ, et al. Neuroanatomical abnormalities in schizophrenia: a multimodal voxelwise meta-analysis and meta-regression analysis. Schizophr Res. 2011;127(1–3):46–57.PubMedCrossRefGoogle Scholar
  52. 52.
    Chan RCK, Di X, McAlonan GM, Gong Q. Brain anatomical abnormalities in high-risk individuals, first-episode, and chronic schizophrenia: an activation likelihood estimation meta-analysis of illness progression. Schizophr Bull. 2009;37(1):177–88.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Trzesniak C, Oliveira IR, Kempton MJ, Galvão-de Almeida A, Chagas MHN, Ferrari MCF, et al. Are cavum septum pellucidum abnormalities more common in schizophrenia spectrum disorders? A systematic review and meta-analysis. Schizophr Res. 2011;125(1):1–12.PubMedCrossRefGoogle Scholar
  54. 54.
    Sun D, Stuart GW, Jenkinson M, Wood SJ, McGorry PD, Velakoulis D, et al. Brain surface contraction mapped in first-episode schizophrenia: a longitudinal magnetic resonance imaging study. Mol Psychiatry. 2009;14(10):976.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Glahn DC, Laird AR, Ellison-Wright I, Thelen SM, Robinson JL, Lancaster JL, et al. Meta-analysis of gray matter anomalies in schizophrenia: application of anatomic likelihood estimation and network analysis. Biol Psychiatry. 2008;64(9):774–81.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    van Erp TGM, Hibar DP, Rasmussen JM, Glahn DC, Pearlson GD, Andreassen OA, et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry. 2016;21(4):547.Google Scholar
  57. 57.
    Lieberman JA, Girgis RR, Brucato G, Moore H, Provenzano F, Kegeles L, et al. Hippocampal dysfunction in the pathophysiology of schizophrenia: a selective review and hypothesis for early detection and intervention. Mol Psychiatry. 2018.Google Scholar
  58. 58.
    Walton E, Hibar DP, van Erp TGM, Potkin SG, Roiz‐Santiañez R, Crespo‐Facorro B, et al. Positive symptoms associate with cortical thinning in the superior temporal gyrus via the ENIGMA Schizophrenia consortium. Acta Psychiatr Scand. 2017;135(5):439–47.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Lee J, Chon M-W, Kim H, Rathi Y, Bouix S, Shenton ME, et al. Diagnostic value of structural and diffusion imaging measures in schizophrenia. NeuroImage Clin. 2018;18:467–74.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    McGuire P, Dazzan P. Does neuroimaging have a role in predicting outcomes in psychosis? World Psychiatry. 2017;16(2):209–10.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Colibazzi T, Yang Z, Horga G, Yan C-G, Corcoran CM, Klahr K, et al. Aberrant temporal connectivity in persons at clinical high risk for psychosis. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2(8):696–705.Google Scholar
  62. 62.
    Li T, Wang Q, Zhang J, Rolls ET, Yang W, Palaniyappan L, et al. Brain-wide analysis of functional connectivity in first-episode and chronic stages of schizophrenia. Schizophr Bull. 2017;43(2):436–48.Google Scholar
  63. 63.
    Anticevic A, Haut K, Murray JD, Repovs G, Yang GJ, Diehl C, et al. Association of thalamic dysconnectivity and conversion to psychosis in youth and young adults at elevated clinical risk. JAMA Psychiatry. 2015;72(9):882–91.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Lancaster TM, Linden DE, Tansey KE, Banaschewski T, Bokde ALW, Bromberg U, et al. Polygenic risk of psychosis and ventral striatal activation during reward processing in healthy adolescents. JAMA Psychiatry. 2016;73(8):852–61.PubMedCrossRefGoogle Scholar
  65. 65.
    Reus LM, Shen X, Gibson J, Wigmore E, Ligthart L, Adams MJ, et al. Association of polygenic risk for major psychiatric illness with subcortical volumes and white matter integrity in UK Biobank. Sci Rep. 2017 [cited 2018 Dec 24];7(1):42140. http://www.ncbi.nlm.nih.gov/pubmed/28186152.
  66. 66.
    Arnone D, Wise T, Cleare A, Young A, Herane A. Diagnostic and therapeutic utility of neuroimaging in depression: an overview. Neuropsychiatr Dis Treat. 2014 [cited 2018 Dec 24];10:1509. http://www.dovepress.com/diagnostic-and-therapeutic-utility-of-neuroimaging-in-depression-an-ov-peer-reviewed-article-NDT.
  67. 67.
    Brent BK, Thermenos HW, Keshavan MS, Seidman LJ. Gray matter alterations in schizophrenia high-risk youth and early-onset schizophrenia: a review of structural MRI findings. Child Adolesc Psychiatr Clin. 2013;22(4):689–714.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Ganzola R, Maziade M, Duchesne S. Hippocampus and amygdala volumes in children and young adults at high-risk of schizophrenia: research synthesis. Schizophr Res. 2014;156(1):76–86.PubMedCrossRefGoogle Scholar
  69. 69.
    Thermenos HW, Keshavan MS, Juelich RJ, Molokotos E, Whitfield-Gabrieli S, Brent BK, et al. A review of neuroimaging studies of young relatives of individuals with schizophrenia: a developmental perspective from schizotaxia to schizophrenia. Am J Med Genet Part B Neuropsychiatr Genet. 2013 [cited 2018 Dec 24];162(7):604–35. http://www.ncbi.nlm.nih.gov/pubmed/24132894.CrossRefGoogle Scholar
  70. 70.
    Ordóñez AE, Luscher ZI, Gogtay N. Neuroimaging findings from childhood onset schizophrenia patients and their non-psychotic siblings. Schizophr Res. 2016 [cited 2018 Dec 24];173(3):124–31. http://www.ncbi.nlm.nih.gov/pubmed/25819937.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Arango C, Moreno C, Martínez S, Parellada M, Desco M, Moreno D, et al. Longitudinal brain changes in early-onset psychosis. Schizophr Bull. 2008;34(2):341–53.CrossRefGoogle Scholar
  72. 72.
    Arango C, Rapado-Castro M, Reig S, Castro-Fornieles J, González-Pinto A, Otero S, et al. Progressive brain changes in children and adolescents with first-episode psychosis. Arch Gen Psychiatry. 2012;69(1):16–26.PubMedCrossRefGoogle Scholar
  73. 73.
    Mechelli A, Riecher-Rössler A, Meisenzahl EM, Tognin S, Wood SJ, Borgwardt SJ, et al. Neuroanatomical abnormalities that predate the onset of psychosis: a multicenter study. Arch Gen Psychiatry. 2011;68(5):489–95.PubMedCrossRefGoogle Scholar
  74. 74.
    Pantelis C, Velakoulis D, McGorry PD, Wood SJ, Suckling J, Phillips LJ, et al. Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet. 2003 [cited 2018 Dec 24];361(9354):281–8. http://www.ncbi.nlm.nih.gov/pubmed/12559861.CrossRefGoogle Scholar
  75. 75.
    Caseras X, Tansey KE, Foley S, Linden D. Association between genetic risk scoring for schizophrenia and bipolar disorder with regional subcortical volumes. Transl Psychiatry. 2015;5(12):e692.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Ranlund S, Rosa MJ, de Jong S, Cole JH, Kyriakopoulos M, Fu CHY, et al. Associations between polygenic risk scores for four psychiatric illnesses and brain structure using multivariate pattern recognition. NeuroImage Clin. 2018 [cited 2018 Dec 24];20:1026–36. http://www.ncbi.nlm.nih.gov/pubmed/30340201.CrossRefGoogle Scholar
  77. 77.
    Ranlund S, Calafato S, Thygesen JH, Lin K, Cahn W, Crespo-Facorro B, et al. A polygenic risk score analysis of psychosis endophenotypes across brain functional, structural, and cognitive domains. Am J Med Genet Part B Neuropsychiatr Genet. 2018 [cited 2018 Dec 24];177(1):21–34. http://www.ncbi.nlm.nih.gov/pubmed/28851104.CrossRefGoogle Scholar
  78. 78.
    Savill M, D’Ambrosio J, Cannon TD, Loewy RL. Psychosis risk screening in different populations using the Prodromal Questionnaire: a systematic review. Early Interv Psychiatry. 2018 [cited 2018 Dec 24];12(1):3–14. http://www.ncbi.nlm.nih.gov/pubmed/28782283.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Pantlin LN, Davalos D. Neurophysiology for detection of high risk for psychosis. Schizophr Res Treatment. 2016 [cited 2018 Dec 24];2016:1–5. http://www.ncbi.nlm.nih.gov/pubmed/27579180.CrossRefGoogle Scholar
  80. 80.
    Perkins DO, Jeffries CD, Addington J, Bearden CE, Cadenhead KS, Cannon TD, et al. Towards a psychosis risk blood diagnostic for persons experiencing high-risk symptoms: preliminary results from the NAPLS project. Schizophr Bull. 2015 [cited 2018 Dec 24];41(2):419–28. http://www.ncbi.nlm.nih.gov/pubmed/25103207.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Sommer IE, Bearden CE, van Dellen E, Breetvelt EJ, Duijff SN, Maijer K, et al. Early interventions in risk groups for schizophrenia: what are we waiting for? NPJ Schizophr. 2016 [cited 2018 Dec 24];2(1):16003. http://www.ncbi.nlm.nih.gov/pubmed/27336054.
  82. 82.
    Chung Y, Cannon TD. Brain imaging during the transition from psychosis prodrome to schizophrenia. J Nerv Ment Dis. 2015;203(5):336.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Koutsouleris N, Meisenzahl EM, Davatzikos C, Bottlender R, Frodl T, Scheuerecker J, et al. Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition. Arch Gen Psychiatry. 2009;66(7):700–12.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Valli I, Marquand AF, Mechelli A, Raffin M, Allen P, Seal ML, et al. Identifying individuals at high risk of psychosis: predictive utility of support vector machine using structural and functional MRI data. Front Psychiatry. 2016 [cited 2018 Dec 24];7:52. http://www.ncbi.nlm.nih.gov/pubmed/27092086.
  85. 85.
    Vieira S, Pinaya WHL, Mechelli A. Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications. Neurosci Biobehav Rev. 2017 [cited 2018 Dec 24];74(Pt A):58–75. http://www.ncbi.nlm.nih.gov/pubmed/28087243.CrossRefGoogle Scholar
  86. 86.
    Kim Y-K, Na K-S. Application of machine learning classification for structural brain MRI in mood disorders: critical review from a clinical perspective. Prog Neuro-Psychopharmacology Biol Psychiatry. 2018;80:71–80.CrossRefGoogle Scholar
  87. 87.
    Torres LC, Burke E, Shin JH, Straub R, Tao R, Hyde T, et al. 264. Unique molecular correlates of schizophrenia and its genetic risk in the hippocampus compared to frontal cortex. Biol Psychiatry. 2018;83(9):S107.CrossRefGoogle Scholar
  88. 88.
    Mitelman SA, Buchsbaum MS, Young DS, Haznedar MM, Hollander E, Shihabuddin L, et al. Increased white matter metabolic rates in autism spectrum disorder and schizophrenia. Brain Imaging Behav. 2018;12(5):1290–305.CrossRefGoogle Scholar
  89. 89.
    Kim G-W, Kim Y-H, Jeong G-W. Whole brain volume changes and its correlation with clinical symptom severity in patients with schizophrenia: a DARTEL-based VBM study. PLoS One. 2017;12(5):e0177251.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Crossley NA, Marques TR, Taylor H, Chaddock C, Dell’Acqua F, Reinders AATS, et al. Connectomic correlates of response to treatment in first-episode psychosis. Brain. 2016;140(2):487–96.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Zeng B, Ardekani BA, Tang Y, Zhang T, Zhao S, Cui H, et al. Abnormal white matter microstructure in drug-naive first episode schizophrenia patients before and after eight weeks of antipsychotic treatment. Schizophr Res. 2016 [cited 2018 Dec 24];172(1–3):1–8. http://www.ncbi.nlm.nih.gov/pubmed/26852402.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Reis Marques T, Taylor H, Chaddock C, Dell’Acqua F, Handley R, Reinders AATS, et al. White matter integrity as a predictor of response to treatment in first episode psychosis. Brain. 2014 [cited 2018 Dec 24];137(1):172–82. http://www.ncbi.nlm.nih.gov/pubmed/24253201.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Palaniyappan L, Marques TR, Taylor H, Mondelli V, Reinders AATS, Bonaccorso S, et al. Globally efficient brain organization and treatment response in psychosis: a connectomic study of gyrification. Schizophr Bull. 2016 [cited 2018 Dec 24];42(6):1446–56. http://www.ncbi.nlm.nih.gov/pubmed/27352783.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Schmidt A, Borgwardt S. Third-generation neuroimaging: translating research into clinical utility. Front Psychiatry. 2016;7:170.Google Scholar
  95. 95.
    van Amelsvoort T, Hernaus D. Effect of pharmacological interventions on the fronto-cingulo-parietal cognitive control network in psychiatric disorders: a transdiagnostic systematic review of fMRI studies. Front Psychiatry. 2016 [cited 2018 Dec 24];7:82. http://journal.frontiersin.org/Article/10.3389/fpsyt.2016.00082/abstract.
  96. 96.
    Honey GD, Bullmore ET, Soni W, Varatheesan M, Williams SCR, Sharma T. Differences in frontal cortical activation by a working memory task after substitution of risperidone for typical antipsychotic drugs in patients with schizophrenia. Proc Natl Acad Sci. 1999;96(23):13432–7.CrossRefGoogle Scholar
  97. 97.
    Ebdrup BH, Raghava JM, Nielsen MØ, Rostrup E, Glenthøj B. Frontal fasciculi and psychotic symptoms in antipsychotic-naive patients with schizophrenia before and after 6 weeks of selective dopamine D2/3 receptor blockade. J Psychiatry Neurosci JPN. 2016;41(2):133.CrossRefGoogle Scholar
  98. 98.
    Molina V, Reig S, Sarramea F, Sanz J, Artaloytia JF, Luque R, et al. Anatomical and functional brain variables associated with clozapine response in treatment-resistant schizophrenia. Psychiatry Res Neuroimaging. 2003;124(3):153–61.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Ahmed M, Cannon DM, Scanlon C, Holleran L, Schmidt H, McFarland J, et al. Progressive brain atrophy and cortical thinning in schizophrenia after commencing clozapine treatment. Neuropsychopharmacology. 2015;40(10):2409.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Garcia GJ, Chagas MH, Silva CH, Machado-de-Sousa JP, Crippa JA, Hallak JE. Structural and functional neuroimaging findings associated with the use of clozapine in schizophrenia: a systematic review. Rev Bras Psiquiatr. 2015;37(1):71–9.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Pérez-Gómez M, Junqué C. Clozapine: neuropsychological and neuroimaging studies. Actas Esp Psiquiatr. [Cited 2018 Dec 24];27(5):341–6. http://www.ncbi.nlm.nih.gov/pubmed/10545667.
  102. 102.
    Vyas NS, Patel NH, Nijran KS, Al-Nahhas A, Puri BK. The use of PET imaging in studying cognition, genetics and pharmacotherapeutic interventions in schizophrenia. Expert Rev Neurother. 2011 [cited 2018 Dec 24];11(1):37–51. http://www.ncbi.nlm.nih.gov/pubmed/21158554.PubMedCrossRefGoogle Scholar
  103. 103.
    Fagerlund B, Mackeprang T, Gade A, Hemmingsen R, Glenthøj BY. Effects of low-dose risperidone and low-dose zuclopenthixol on cognitive functions in first-episode drug-naive schizophrenic patients. CNS Spectr. 2004;9(5):364–74.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Massana G, Salgado-Pineda P, Junqué C, Pérez M, Baeza I, Pons A, et al. Volume changes in gray matter in first-episode neuroleptic-naive schizophrenic patients treated with risperidone. J Clin Psychopharmacol. 2005;25(2):111–7.Google Scholar
  105. 105.
    Molina V, Taboada D, Aragüés M, Hernández JA, Sanz-Fuentenebro J. Greater clinical and cognitive improvement with clozapine and risperidone associated with a thinner cortex at baseline in first-episode schizophrenia. Schizophr Res. 2014;158(1–3):223–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Ho B-C, Andreasen NC, Ziebell S, Pierson R, Magnotta V. Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia. Arch Gen Psychiatry. 2011;68(2):128–37.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Moncrieff J, Leo J. A systematic review of the effects of antipsychotic drugs on brain volume. Psychol Med. 2010;40(9):1409–22.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Navari S, Dazzan P. Do antipsychotic drugs affect brain structure? A systematic and critical review of MRI findings. Psychol Med. 2009;39(11):1763–77.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Smieskova R, Fusar-Poli P, Allen P, Bendfeldt K, Stieglitz RD, Drewe J, et al. The effects of antipsychotics on the brain: what have we learnt from structural imaging of schizophrenia? A systematic review. Curr Pharm Des. 2009;15(22):2535–49.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Glenthoj A, Glenthoj BY, Mackeprang T, Pagsberg AK, Hemmingsen RP, Jernigan TL, et al. Basal ganglia volumes in drug-naive first-episode schizophrenia patients before and after short-term treatment with either a typical or an atypical antipsychotic drug. Psychiatry Res Neuroimaging. 2007;154(3):199–208.PubMedCrossRefGoogle Scholar
  111. 111.
    Samanaite R, Gillespie A, Sendt K-V, McQueen G, MacCabe JH, Egerton A. Biological predictors of clozapine response: a systematic review. Front Psychiatry. 2018 [cited 2018 Dec 24];9:327. http://www.ncbi.nlm.nih.gov/pubmed/30093869.
  112. 112.
    Sarpal DK, Robinson DG, Lencz T, Argyelan M, Ikuta T, Karlsgodt K, et al. Antipsychotic treatment and functional connectivity of the striatum in first-episode schizophrenia. JAMA Psychiatry. 2015 [cited 2018 Dec 24];72(1):5. http://www.ncbi.nlm.nih.gov/pubmed/25372846.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Sarpal DK, Argyelan M, Robinson DG, Szeszko PR, Karlsgodt KH, John M, et al. Baseline striatal functional connectivity as a predictor of response to antipsychotic drug treatment. Am J Psychiatry. 2016 [cited 2018 Dec 24];173(1):69–77. http://www.ncbi.nlm.nih.gov/pubmed/26315980.PubMedCrossRefGoogle Scholar
  114. 114.
    Sarpal DK, Robinson DG, Fales C, Lencz T, Argyelan M, Karlsgodt KH, et al. Relationship between duration of untreated psychosis and intrinsic corticostriatal connectivity in patients with early phase schizophrenia. Neuropsychopharmacology. 2017 [cited 2018 Dec 24];42(11):2214–21. http://www.ncbi.nlm.nih.gov/pubmed/28294137.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Tolmeijer E, Kumari V, Peters E, Williams SCR, Mason L. Using fMRI and machine learning to predict symptom improvement following cognitive behavioural therapy for psychosis. NeuroImage Clin. 2018 [cited 2018 Dec 24];20:1053–61. http://www.ncbi.nlm.nih.gov/pubmed/30343250.CrossRefGoogle Scholar
  116. 116.
    Koutsouleris N, Wobrock T, Guse B, Langguth B, Landgrebe M, Eichhammer P, et al. Predicting response to repetitive transcranial magnetic stimulation in patients with schizophrenia using structural magnetic resonance imaging: a multisite machine learning analysis. Schizophr Bull. 2017.Google Scholar
  117. 117.
    Li J, Yang Y, Zhu Y, Zhou L, Han Y, Yin T, et al. Towards characterizing the regional cerebral perfusion in evaluating the severity of major depression disorder with SPECT/CT. BMC Psychiatry. 2018;18(1):70.Google Scholar
  118. 118.
    Gillespie AL, Samanaite R, Mill J, Egerton A, MacCabe JH. Is treatment-resistant schizophrenia categorically distinct from treatment-responsive schizophrenia? A systematic review. BMC Psychiatry. 2017;17(1):12.Google Scholar
  119. 119.
    Gao S, Calhoun VD, Sui J. Machine learning in major depression: From classification to treatment outcome prediction. CNS Neurosci Ther. 2018;24(11):1037–52.CrossRefGoogle Scholar
  120. 120.
    Nucifora FC, Woznica E, Lee BJ, Cascella N, Sawa A. Treatment resistant schizophrenia: clinical, biological, and therapeutic perspectives. Neurobiol Dis. 2018 [cited 2018 Dec 24]. https://www.sciencedirect.com/science/article/pii/S0969996118304947?via%3Dihub.
  121. 121.
    Paul S, Sharfman N. Functional connectivity as a means to delineate differences between treatment-resistant and treatment-responsive schizophrenia. J Neurophysiol. 2016 [cited 2018 Dec 24];116(2):229–31. http://www.ncbi.nlm.nih.gov/pubmed/26763784.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Mouchlianitis E, McCutcheon R, Howes OD. Brain-imaging studies of treatment-resistant schizophrenia: a systematic review. The Lancet Psychiatry. 2016;3(5):451–63.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Clementz BA, Sweeney JA, Hamm JP, Ivleva EI, Ethridge LE, Pearlson GD, et al. Identification of distinct psychosis biotypes using brain-based biomarkers. Am J Psychiatry. 2015;173(4):373–84.PubMedCrossRefGoogle Scholar
  124. 124.
    Ivleva EI, Clementz BA, Dutcher AM, Arnold SJM, Jeon-Slaughter H, Aslan S, et al. Brain structure biomarkers in the psychosis biotypes: findings from the bipolar-schizophrenia network for intermediate phenotypes. Biol Psychiatry. 2017;82(1):26–39.PubMedCrossRefGoogle Scholar
  125. 125.
    Xia CH, Ma Z, Ciric R, Gu S, Betzel RF, Kaczkurkin AN, et al. Linked dimensions of psychopathology and connectivity in functional brain networks. Nat Commun. 2018 [cited 2018 Dec 24];9(1):3003. http://www.nature.com/articles/s41467-018-05317-y.
  126. 126.
    Honorio J, Tomasi D, Goldstein RZ, Leung H-C, Samaras D. Can a single brain region predict a disorder? IEEE Trans Med Imaging. 2012;31(11):2062–72.PubMedCrossRefGoogle Scholar
  127. 127.
    Costafreda SG, Fu CHY, Picchioni M, Toulopoulou T, McDonald C, Kravariti E, et al. Pattern of neural responses to verbal fluency shows diagnostic specificity for schizophrenia and bipolar disorder. BMC Psychiatry. 2011;11(1):18.Google Scholar
  128. 128.
    Nieuwenhuis M, van Haren NEM, Pol HEH, Cahn W, Kahn RS, Schnack HG. Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples. Neuroimage. 2012;61(3):606–12.PubMedCrossRefGoogle Scholar
  129. 129.
    Sabuncu MR, Konukoglu E, Initiative ADN. Clinical prediction from structural brain MRI scans: a large-scale empirical study. Neuroinformatics. 2015;13(1):31–46.CrossRefGoogle Scholar
  130. 130.
    Zhu J, Zhuo C, Qin W, Wang D, Ma X, Zhou Y, et al. Performances of diffusion kurtosis imaging and diffusion tensor imaging in detecting white matter abnormality in schizophrenia. NeuroImage Clin. 2015;7:170–6.PubMedCrossRefGoogle Scholar
  131. 131.
    Brodersen KH, Deserno L, Schlagenhauf F, Lin Z, Penny WD, Buhmann JM, et al. Dissecting psychiatric spectrum disorders by generative embedding. NeuroImage Clin. 2014;4:98–111.PubMedCrossRefGoogle Scholar
  132. 132.
    Sun H, Lui S, Yao L, Deng W, Xiao Y, Zhang W, et al. Two patterns of white matter abnormalities in medication-naive patients with first-episode schizophrenia revealed by diffusion tensor imaging and cluster analysis. JAMA Psychiatry. 2015;72(7):678–86.PubMedCrossRefGoogle Scholar
  133. 133.
    Dwyer DB, Cabral C, Kambeitz-Ilankovic L, Sanfelici R, Kambeitz J, Calhoun V, et al. Brain subtyping enhances the neuroanatomical discrimination of schizophrenia. Schizophr Bull. 2018.Google Scholar
  134. 134.
    Maggioni E, Crespo-Facorro B, Nenadic I, Benedetti F, Gaser C, Sauer H, et al. Common and distinct structural features of schizophrenia and bipolar disorder: the European network on psychosis, affective disorders and cognitive trajectory (ENPACT) study. PLoS One. 2017;12(11):e0188000.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Calvo A, Delvecchio G, Altamura AC, Soares JC, Brambilla P. Gray matter volume differences between affective and non-affective first episode psychosis: a review of magnetic resonance imaging studies. J Affect Disord. 2018.Google Scholar
  136. 136.
    Delvecchio G, Altamura AC, Soares JC, Brambilla P. Pituitary gland in bipolar disorder and major depression: evidence from structural MRI studies: special section on “translational and neuroscience studies in affective disorders”. J Affect Disord. 2017;218:446–50.PubMedCrossRefGoogle Scholar
  137. 137.
    Arbabshirani MR, Plis S, Sui J, Calhoun VD. Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. Neuroimage. 2017;145:137–65.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Cheng H, Newman S, Goñi J, Kent JS, Howell J, Bolbecker A, et al. Nodal centrality of functional network in the differentiation of schizophrenia. Schizophr Res. 2015;168(1–2):345–52.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Koutsouleris N, Meisenzahl EM, Borgwardt S, Riecher-Rössler A, Frodl T, Kambeitz J, et al. Individualized differential diagnosis of schizophrenia and mood disorders using neuroanatomical biomarkers. Brain. 2015;138(7):2059–73.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Kim YK. Molecular neurobiology of major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2016;64:275.PubMedCrossRefGoogle Scholar
  141. 141.
    Rashid B, Chen J, Rashid I, Damaraju E, Liu J, Miller R, et al. A framework for linking resting-state chronnectome/genome features in schizophrenia: a pilot study. Neuroimage. 2019;184:843–54.PubMedCrossRefGoogle Scholar
  142. 142.
    Mikoláš P. Improving the diagnosis of first-episode schizophrenia from magnetic resonance imaging using machine learning. Univerzita Karlova, 3. lékařská fakulta; 2018.Google Scholar
  143. 143.
    Rozycki M, Satterthwaite TD, Koutsouleris N, Erus G, Doshi J, Wolf DH, et al. Multisite machine learning analysis provides a robust structural imaging signature of schizophrenia detectable across diverse patient populations and within individuals. Schizophr Bull. 2018 [cited 2018 Dec 24];44(5):1035–44. http://www.ncbi.nlm.nih.gov/pubmed/29186619.PubMedCentralCrossRefPubMedGoogle Scholar
  144. 144.
    Skåtun KC, Kaufmann T, Doan NT, Alnæs D, Córdova-Palomera A, Jönsson EG, et al. Consistent functional connectivity alterations in schizophrenia spectrum disorder: a multisite study. Schizophr Bull. 2017 [cited 2018 Dec 24];43(4):914–24. http://www.ncbi.nlm.nih.gov/pubmed/27872268.PubMedCentralCrossRefPubMedGoogle Scholar
  145. 145.
    Calhoun VD, Maciejewski PK, Pearlson GD, Kiehl KA. Temporal lobe and “default” hemodynamic brain modes discriminate between schizophrenia and bipolar disorder. Hum Brain Mapp. 2008;29(11):1265–75.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Arribas JI, Calhoun VD, Adali T. Automatic Bayesian classification of healthy controls, bipolar disorder, and schizophrenia using intrinsic connectivity maps from FMRI data. IEEE Trans Biomed Eng. 2010;57(12):2850–60.PubMedCrossRefGoogle Scholar
  147. 147.
    Fusté M, Pauls A, Worker A, Reinders AATS, Simmons A, Williams SCR, et al. Brain structure in women at risk of postpartum psychosis: an MRI study. Transl Psychiatry. 2017;7(12):1286.Google Scholar
  148. 148.
    Kasai K, Shenton ME, Salisbury DF, Onitsuka T, Toner SK, Yurgelun-Todd D, et al. Differences and similarities in insular and temporal pole MRI gray matter volume abnormalities in first-episode schizophrenia and affective psychosis. Arch Gen Psychiatry. 2003;60(11):1069–77.PubMedCrossRefGoogle Scholar
  149. 149.
    Kubicki M, Shenton ME, Salisbury DF, Hirayasu Y, Kasai K, Kikinis R, et al. Voxel-based morphometric analysis of gray matter in first episode schizophrenia. Neuroimage. 2002;17(4):1711–9.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Hirayasu Y, Shenton ME, Salisbury DF, Dickey CC, Fischer IA, Mazzoni P, et al. Lower left temporal lobe MRI volumes in patients with first-episode schizophrenia compared with psychotic patients with first-episode affective disorder and normal subjects. Am J Psychiatry. 1998;155(10):1384–91.PubMedCrossRefGoogle Scholar
  151. 151.
    Ardekani BA, Tabesh A, Sevy S, Robinson DG, Bilder RM, Szeszko PR. Diffusion tensor imaging reliably differentiates patients with schizophrenia from healthy volunteers. Hum Brain Mapp. 2011;32(1):1–9.CrossRefGoogle Scholar
  152. 152.
    Sakoğlu Ü, Pearlson GD, Kiehl KA, Wang YM, Michael AM, Calhoun VD. A method for evaluating dynamic functional network connectivity and task-modulation: application to schizophrenia. Magn Reson Mater Physics, Biol Med. 2010 [cited 2018 Dec 24];23(5–6):351–66. http://www.ncbi.nlm.nih.gov/pubmed/20162320.CrossRefGoogle Scholar
  153. 153.
    Du Y, Fu Z, Calhoun VD. Classification and prediction of brain disorders using functional connectivity: promising but challenging. Front Neurosci. 2018;12.Google Scholar
  154. 154.
    Laumann TO, Snyder AZ, Mitra A, Gordon EM, Gratton C, Adeyemo B, et al. On the stability of BOLD fMRI correlations. Cereb Cortex. 2016;27(10):4719–32.Google Scholar
  155. 155.
    Zeng L-L, Wang H, Hu P, Yang B, Pu W, Shen H, et al. Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI. EBioMedicine. 2018 [cited 2018 Dec 24];30:74–85. http://www.ncbi.nlm.nih.gov/pubmed/29622496.
  156. 156.
    Phillips ML, Kupfer DJ. Bipolar disorder diagnosis: challenges and future directions. Lancet. 2013 [cited 2018 Dec 24];381(9878):1663–71. http://www.ncbi.nlm.nih.gov/pubmed/23663952.CrossRefGoogle Scholar
  157. 157.
    Leboyer M, Kupfer DJ. Bipolar disorder: new perspectives in health care and prevention. J Clin Psychiatry. 2010;71(12):1689.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Benarous X, Consoli A, Milhiet V, Cohen D. Early interventions for youths at high risk for bipolar disorder: a developmental approach. Eur Child Adolesc Psychiatry. 2016;25(3):217–33.CrossRefGoogle Scholar
  159. 159.
    Chen C, Suckling J, Lennox BR, Ooi C, Bullmore ET. A quantitative meta‐analysis of fMRI studies in bipolar disorder. Bipolar Disord. 2011;13(1):1–15.PubMedCrossRefGoogle Scholar
  160. 160.
    Ganzola R, Nickson T, Bastin ME, Giles S, Macdonald A, Sussmann J, et al. Longitudinal differences in white matter integrity in youth at high familial risk for bipolar disorder. Bipolar Disord. 2017;19(3):158–67.PubMedCrossRefGoogle Scholar
  161. 161.
    Roberts G, Perry A, Lord A, Frankland A, Leung V, Holmes-Preston E, et al. Structural dysconnectivity of key cognitive and emotional hubs in young people at high genetic risk for bipolar disorder. Mol Psychiatry. 2018 [cited 2018 Dec 24];23(2):413–21. http://www.ncbi.nlm.nih.gov/pubmed/27994220.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Jeganathan J, Perry A, Bassett DS, Roberts G, Mitchell PB, Breakspear M. Fronto-limbic dysconnectivity leads to impaired brain network controllability in young people with bipolar disorder and those at high genetic risk. NeuroImage Clin. 2018;19:71–81.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Redlich R, Almeida JR, Grotegerd D, Opel N, Kugel H, Heindel W, et al. Brain morphometric biomarkers distinguishing unipolar and bipolar depression: a voxel-based morphometry–pattern classification approach. JAMA Psychiatry. 2014;71(11):1222–30.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Rocha-Rego V, Jogia J, Marquand AF, Mourao-Miranda J, Simmons A, Frangou S. Examination of the predictive value of structural magnetic resonance scans in bipolar disorder: a pattern classification approach. Psychol Med. 2014;44(3):519–32.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Nortje G, Stein DJ, Radua J, Mataix-Cols D, Horn N. Systematic review and voxel-based meta-analysis of diffusion tensor imaging studies in bipolar disorder. J Affect Disord. 2013;150(2):192–200.PubMedCrossRefGoogle Scholar
  166. 166.
    Kafantaris V, Spritzer L, Doshi V, Saito E, Szeszko PR. Changes in white matter microstructure predict lithium response in adolescents with bipolar disorder. Bipolar Disord. 2017;19(7):587–94.PubMedCrossRefGoogle Scholar
  167. 167.
    Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, Gollub RL, et al. Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage. 2007;36(3):630–44.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Wise T, Radua J, Nortje G, Cleare AJ, Young AH, Arnone D. Voxel-based meta-analytical evidence of structural disconnectivity in major depression and bipolar disorder. Biol Psychiatry. 2016;79(4):293–302.PubMedCrossRefGoogle Scholar
  169. 169.
    Gold AL, Brotman MA, Adleman NE, Lever SN, Steuber ER, Fromm SJ, et al. Comparing brain morphometry across multiple childhood psychiatric disorders. J Am Acad Child Adolesc Psychiatry. 2016;55(12):1027–37.CrossRefGoogle Scholar
  170. 170.
    Wang X, Tian F, Wang S, Cheng B, Qiu L, He M, et al. Gray matter bases of psychotic features in adult bipolar disorder: a systematic review and voxel-based meta-analysis of neuroimaging studies. Hum Brain Mapp. 2018 [cited 2018 Dec 24];39(12):4707–23. http://www.ncbi.nlm.nih.gov/pubmed/30096212.PubMedCrossRefGoogle Scholar
  171. 171.
    Altamura AC, Maggioni E, Dhanoa T, Ciappolino V, Paoli RA, Cremaschi L, et al. The impact of psychosis on brain anatomy in bipolar disorder: a structural MRI study. J Affect Disord. 2018;233:100–9.PubMedCrossRefGoogle Scholar
  172. 172.
    Wei Y, Chang M, Womer FY, Zhou Q, Yin Z, Wei S, et al. Local functional connectivity alterations in schizophrenia, bipolar disorder, and major depressive disorder. J Affect Disord. 2018 [cited 2018 Dec 24];236:266–73. http://www.ncbi.nlm.nih.gov/pubmed/29751242.PubMedCrossRefGoogle Scholar
  173. 173.
    Pasternak O, Kelly S, Sydnor VJ, Shenton ME. Advances in microstructural diffusion neuroimaging for psychiatric disorders. Neuroimage. 2018 [cited 2018 Dec 24];182:259–82. http://www.ncbi.nlm.nih.gov/pubmed/29729390.PubMedCrossRefGoogle Scholar
  174. 174.
    Tréhout M, Leroux E, Delcroix N, Dollfus S. Relationships between corpus callosum and language lateralization in patients with schizophrenia and bipolar disorders. Bipolar Disord. 2017 [cited 2018 Dec 24];19(6):496–504. http://www.ncbi.nlm.nih.gov/pubmed/28834020.PubMedCrossRefGoogle Scholar
  175. 175.
    Nenadić I, Hoof A, Dietzek M, Langbein K, Reichenbach JR, Sauer H, et al. Diffusion tensor imaging of cingulum bundle and corpus callosum in schizophrenia vs. bipolar disorder. Psychiatry Res Neuroimaging. 2017 [cited 2018 Dec 24];266:96–100. https://www.sciencedirect.com/science/article/pii/S0925492716303651?via%3Dihub.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Li J, Edmiston EK, Chen K, Tang Y, Ouyang X, Jiang Y, et al. A comparative diffusion tensor imaging study of corpus callosum subregion integrity in bipolar disorder and schizophrenia. Psychiatry Res Neuroimaging. 2014;221(1):58–62.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Nazeri A, Mulsant BH, Rajji TK, Levesque ML, Pipitone J, Stefanik L, et al. Gray matter neuritic microstructure deficits in schizophrenia and bipolar disorder. Biol Psychiatry. 2017 [cited 2018 Dec 24];82(10):726–36. http://www.ncbi.nlm.nih.gov/pubmed/28073491.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Parvathaneni P, Rogers BP, Huo Y, Schilling KG, Hainline AE, Anderson AW, et al. Gray matter surface based spatial statistics (GS-BSS) in diffusion microstructure. In: Medical image computing and computer-assisted intervention: MICCAI. International conference on medical image computing and computer-assisted intervention. 2017 [cited 2018 Dec 24]. p. 638–46. http://www.ncbi.nlm.nih.gov/pubmed/29226284.CrossRefGoogle Scholar
  179. 179.
    Huo Y, Bao S, Parvathaneni P, Landman BA. Improved stability of whole brain surface parcellation with multi-atlas segmentation. In: Medical imaging 2018: image processing. International Society for Optics and Photonics; 2018. p. 1057438.Google Scholar
  180. 180.
    Perlman SB, Almeida JR, Kronhaus DM, Versace A, LaBarbara EJ, Klein CR, et al. Amygdala activity and prefrontal cortex-amygdala effective connectivity to emerging emotional faces distinguish remitted and depressed mood states in bipolar disorder. Bipolar Disord. 2012 [cited 2018 Dec 24];14(2):162–74. http://www.ncbi.nlm.nih.gov/pubmed/22420592.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Fournier JC, Chase HW, Almeida J, Phillips ML. Within-and between-session changes in neural activity during emotion processing in unipolar and bipolar depression. Biol Psychiatry Cogn Neurosci Neuroimaging. 2016;1(6):518–27.Google Scholar
  182. 182.
    Liu H, Tang Y, Womer F, Fan G, Lu T, Driesen N, et al. Differentiating patterns of amygdala-frontal functional connectivity in schizophrenia and bipolar disorder. Schizophr Bull. 2013;40(2):469–77.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Birur B, Kraguljac NV, Shelton RC, Lahti AC. Brain structure, function, and neurochemistry in schizophrenia and bipolar disorder—a systematic review of the magnetic resonance neuroimaging literature. NPJ Schizophr. 2017;3(1):15.Google Scholar
  184. 184.
    Tighe SK, Mahon PB, Potash JB. Predictors of lithium response in bipolar disorder. Ther Adv Chronic Dis. 2011 [cited 2018 Dec 24];2(3):209–26. http://www.ncbi.nlm.nih.gov/pubmed/23251751.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Moore GJ, Cortese BM, Glitz DA, Zajac-Benitez C, Quiroz JA, Uhde TW, et al. A longitudinal study of the effects of lithium treatment on prefrontal and subgenual prefrontal gray matter volume in treatment-responsive bipolar disorder patients. J Clin Psychiatry. 2009 [cited 2018 Dec 24];70(5):699–705. http://www.psychiatrist.com/abstracts/abstracts.asp?abstract=200905/050908.htm.PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Lyoo IK, Dager SR, Kim JE, Yoon SJ, Friedman SD, Dunner DL, et al. Lithium-induced gray matter volume increase as a neural correlate of treatment response in bipolar disorder: a longitudinal brain imaging study. Neuropsychopharmacology. 2010;35(8):1743.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Fleck DE, Ernest N, Adler CM, Cohen K, Eliassen JC, Norris M, et al. Prediction of lithium response in first‐episode mania using the lithium intelligent agent (LITHIA): pilot data and proof‐of‐concept. Bipolar Disord. 2017;19(4):259–72.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Dusi N, De Carlo V, Delvecchio G, Bellan M, Soares JC, Brambilla P. MRI features of clinical outcome in bipolar disorder: a selected review. J Affect Disord. 2018.Google Scholar
  189. 189.
    Fakhoury M. New insights into the neurobiological mechanisms of major depressive disorders. Gen Hosp Psychiatry. 2015;37(2):172–7.PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Campbell S, Marriott M, Nahmias C, MacQueen GM. Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am J Psychiatry. 2004;161(4):598–607.PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Drevets WC, Price JL, Simpson Jr JR, Todd RD, Reich T, Vannier M, et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature. 1997;386(6627):824.PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Caetano SC, Kaur S, Brambilla P, Nicoletti M, Hatch JP, Sassi RB, et al. Smaller cingulate volumes in unipolar depressed patients. Biol Psychiatry. 2006;59(8):702–6.PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, Charney DS. Hippocampal volume reduction in major depression. Am J Psychiatry. 2000;157(1):115–8.PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Frodl T, Jäger M, Smajstrlova I, Born C, Bottlender R, Palladino T, et al. Effect of hippocampal and amygdala volumes on clinical outcomes in major depression: a 3-year prospective magnetic resonance imaging study. J Psychiatry Neurosci JPN. 2008;33(5):423.Google Scholar
  195. 195.
    Hamilton JP, Siemer M, Gotlib IH. Amygdala volume in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Mol Psychiatry. 2008;13(11):993.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Ebmeier K, Rose E, Steele D. Cognitive impairment and fMRI in major depression. Neurotox Res. 2006;10(2):87–92.PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Anand A, Li Y, Wang Y, Wu J, Gao S, Bukhari L, et al. Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study. Biol Psychiatry. 2005;57(10):1079–88.PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Cullen KR, Gee DG, Klimes-Dougan B, Gabbay V, Hulvershorn L, Mueller BA, et al. A preliminary study of functional connectivity in comorbid adolescent depression. Neurosci Lett. 2009;460(3):227–31.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Liu Z, Xu C, Xu Y, Wang Y, Zhao B, Lv Y, et al. Decreased regional homogeneity in insula and cerebellum: a resting-state fMRI study in patients with major depression and subjects at high risk for major depression. Psychiatry Res Neuroimaging. 2010;182(3):211–5.PubMedCrossRefGoogle Scholar
  200. 200.
    Horn DI, Yu C, Steiner J, Buchmann J, Kaufmann J, Osoba A, et al. Glutamatergic and resting-state functional connectivity correlates of severity in major depression–the role of pregenual anterior cingulate cortex and anterior insula. Front Syst Neurosci. 2010;4:33.Google Scholar
  201. 201.
    Wang L, Hermens DF, Hickie IB, Lagopoulos J. A systematic review of resting-state functional-MRI studies in major depression. J Affect Disord. 2012;142(1–3):6–12.PubMedCrossRefGoogle Scholar
  202. 202.
    Zhang S, Chen J, Kuang L, Cao J, Zhang H, Ai M, et al. Association between abnormal default mode network activity and suicidality in depressed adolescents. BMC Psychiatry. 2016 [cited 2018 Dec 24];16(1):337. http://www.ncbi.nlm.nih.gov/pubmed/27688124.
  203. 203.
    Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJS. Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev. 2009;33(3):279–96.CrossRefGoogle Scholar
  204. 204.
    Anand A, Li Y, Wang Y, Wu J, Gao S, Bukhari L, et al. Antidepressant effect on connectivity of the mood-regulating circuit: an FMRI study. Neuropsychopharmacology. 2005;30(7):1334.PubMedCrossRefGoogle Scholar
  205. 205.
    Anand A, Li Y, Wang Y, Gardner K, Lowe MJ. Reciprocal effects of antidepressant treatment on activity and connectivity of the mood regulating circuit: an FMRI study. J Neuropsychiatry Clin Neurosci. 2007;19(3):274–82.CrossRefGoogle Scholar
  206. 206.
    Anand A, Li Y, Wang Y, Lowe MJ, Dzemidzic M. Resting state corticolimbic connectivity abnormalities in unmedicated bipolar disorder and unipolar depression. Psychiatry Res Neuroimaging. 2009;171(3):189–98.PubMedCrossRefGoogle Scholar
  207. 207.
    Foland-Ross LC, Gilbert BL, Joormann J, Gotlib IH. Neural markers of familial risk for depression: an investigation of cortical thickness abnormalities in healthy adolescent daughters of mothers with recurrent depression. J Abnorm Psychol. 2015;124(3):476.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Rao U, Chen L-A, Bidesi AS, Shad MU, Thomas MA, Hammen CL. Hippocampal changes associated with early-life adversity and vulnerability to depression. Biol Psychiatry. 2010 [cited 2018 Dec 24];67(4):357–64. http://www.ncbi.nlm.nih.gov/pubmed/20015483.PubMedCrossRefGoogle Scholar
  209. 209.
    Amico F, Meisenzahl E, Koutsouleris N, Reiser M, Möller H-J, Frodl T. Structural MRI correlates for vulnerability and resilience to major depressive disorder. J Psychiatry Neurosci JPN. 2011;36(1):15.CrossRefGoogle Scholar
  210. 210.
    Monk CS, Klein RG, Telzer EH, Schroth EA, Mannuzza S, Moulton JL, et al. Amygdala and nucleus accumbens activation to emotional facial expressions in children and adolescents at risk for major depression. Am J Psychiatry. 2008;165(1):90–8.  https://doi.org/10.1176/appi.ajp.2007.06111917.PubMedCrossRefGoogle Scholar
  211. 211.
    Mannie ZN, Filippini N, Williams C, Near J, Mackay CE, Cowen PJ. Structural and functional imaging of the hippocampus in young people at familial risk of depression. Psychol Med. 2014;44(14):2939–48.PubMedCrossRefGoogle Scholar
  212. 212.
    Bürger C, Redlich R, Grotegerd D, Meinert S, Dohm K, Schneider I, et al. Differential abnormal pattern of anterior cingulate gyrus activation in unipolar and bipolar depression: an fMRI and pattern classification approach. Neuropsychopharmacology. 2017;42(7):1399.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Zou K, Huang X, Li T, Gong Q, Li Z, Ou-yang L, et al. Alterations of white matter integrity in adults with major depressive disorder: a magnetic resonance imaging study. J Psychiatry Neurosci JPN. 2008;33(6):525.Google Scholar
  214. 214.
    Sexton CE, Mackay CE, Ebmeier KP. A systematic review of diffusion tensor imaging studies in affective disorders. Biol Psychiatry. 2009;66(9):814–23.PubMedCrossRefGoogle Scholar
  215. 215.
    Öngür D, Price JL. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex. 2000;10(3):206–19.PubMedCrossRefGoogle Scholar
  216. 216.
    Kondo H, Saleem KS, Price JL. Differential connections of the perirhinal and parahippocampal cortex with the orbital and medial prefrontal networks in macaque monkeys. J Comp Neurol. 2005;493(4):479–509.PubMedCrossRefGoogle Scholar
  217. 217.
    Cole J, Costafreda SG, McGuffin P, Fu CHY. Hippocampal atrophy in first episode depression: a meta-analysis of magnetic resonance imaging studies. J Affect Disord. 2011;134(1–3):483–7.PubMedCrossRefGoogle Scholar
  218. 218.
    Kempton MJ, Salvador Z, Munafò MR, Geddes JR, Simmons A, Frangou S, et al. Structural neuroimaging studies in major depressive disorder: meta-analysis and comparison with bipolar disorder. Arch Gen Psychiatry. 2011;68(7):675–90.PubMedCrossRefGoogle Scholar
  219. 219.
    Costafreda SG, Chu C, Ashburner J, Fu CHY. Prognostic and diagnostic potential of the structural neuroanatomy of depression. PLoS One. 2009;4(7):e6353.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Bracht T, Horn H, Strik W, Federspiel A, Schnell S, Höfle O, et al. White matter microstructure alterations of the medial forebrain bundle in melancholic depression. J Affect Disord. 2014;155:186–93.PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    Lois G, Wessa M. Differential association of default mode network connectivity and rumination in healthy individuals and remitted MDD patients. Soc Cogn Affect Neurosci. 2016;11(11):1792–801.PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Vassilopoulou K, Papathanasiou M, Michopoulos I, Boufidou F, Oulis P, Kelekis N, et al. A magnetic resonance imaging study of hippocampal, amygdala and subgenual prefrontal cortex volumes in major depression subtypes: melancholic versus psychotic depression. J Affect Disord. 2013 [cited 2018 Dec 24];146(2):197–204. http://www.ncbi.nlm.nih.gov/pubmed/23021193.PubMedCrossRefPubMedCentralGoogle Scholar
  223. 223.
    Kerestes R, Davey CG, Stephanou K, Whittle S, Harrison BJ. Functional brain imaging studies of youth depression: a systematic review. NeuroImage Clin. 2014;4:209–31.PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Tang S, Lu L, Zhang L, Hu X, Bu X, Li H, et al. Abnormal amygdala resting-state functional connectivity in adults and adolescents with major depressive disorder: a comparative meta-analysis. EBioMedicine. 2018 [cited 2018 Dec 24];36:436–45. http://www.ncbi.nlm.nih.gov/pubmed/30316866.PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Clark DL, Konduru N, Kemp A, Bray S, Brown EC, Goodyear B, et al. The impact of age of onset on amygdala intrinsic connectivity in major depression. Neuropsychiatr Dis Treat. 2018;14:343.CrossRefGoogle Scholar
  226. 226.
    Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med. 2017;23(1):28.PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Williams LM. Defining biotypes for depression and anxiety based on large‐scale circuit dysfunction: a theoretical review of the evidence and future directions for clinical translation. Depress Anxiety. 2017;34(1):9–24.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Dunlop BW, Mayberg HS. Neuroimaging advances for depression. In: Cerebrum: the Dana forum on brain science. Dana Foundation; 2017.Google Scholar
  229. 229.
    Grotegerd D, Stuhrmann A, Kugel H, Schmidt S, Redlich R, Zwanzger P, et al. Amygdala excitability to subliminally presented emotional faces distinguishes unipolar and bipolar depression: an fMRI and pattern classification study. Hum Brain Mapp. 2014;35(7):2995–3007.PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    Ambrosi E, Arciniegas DB, Madan A, Curtis KN, Patriquin MA, Jorge RE, et al. Insula and amygdala resting‐state functional connectivity differentiate bipolar from unipolar depression. Acta Psychiatr Scand. 2017;136(1):129–39.PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Delvecchio G, Fossati P, Boyer P, Brambilla P, Falkai P, Gruber O, et al. Common and distinct neural correlates of emotional processing in bipolar disorder and major depressive disorder: a voxel-based meta-analysis of functional magnetic resonance imaging studies. Eur Neuropsychopharmacol. 2012;22(2):100–13.PubMedCrossRefGoogle Scholar
  232. 232.
    Wise T, Radua J, Via E, Cardoner N, Abe O, Adams TM, et al. Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: evidence from voxel-based meta-analysis. Mol Psychiatry. 2017;22(10):1455.PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Niu M, Wang Y, Jia Y, Wang J, Zhong S, Lin J, et al. Common and specific abnormalities in cortical thickness in patients with major depressive and bipolar disorders. EBioMedicine. 2017;16:162–71.PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    Karim HT, Wang M, Andreescu C, Tudorascu D, Butters MA, Karp JF, et al. Acute trajectories of neural activation predict remission to pharmacotherapy in late-life depression. NeuroImage Clin. 2018.Google Scholar
  235. 235.
    Lin E, Kuo P-H, Liu Y-L, Yu YWY, Yang A, Tsai S-J. A deep learning approach for predicting antidepressant response in major depression using clinical and genetic biomarkers. Front Psychiatry. 2018;9:290.Google Scholar
  236. 236.
    Hilbert K, Lueken U, Muehlhan M, Beesdo‐Baum K. Separating generalized anxiety disorder from major depression using clinical, hormonal, and structural MRI data: a multimodal machine learning study. Brain Behav. 2017;7(3):e00633.PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Sacchet MD, Prasad G, Foland-Ross LC, Thompson PM, Gotlib IH. Support vector machine classification of major depressive disorder using diffusion-weighted neuroimaging and graph theory. Front Psychiatry. 2015 [cited 2018 Dec 24];6:21. http://www.ncbi.nlm.nih.gov/pubmed/25762941.
  238. 238.
    Orru G, Pettersson-Yeo W, Marquand AF, Sartori G, Mechelli A. Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci Biobehav Rev. 2012;36(4):1140–52.CrossRefGoogle Scholar
  239. 239.
    Marquand AF, Mourão-Miranda J, Brammer MJ, Cleare AJ, Fu CHY. Neuroanatomy of verbal working memory as a diagnostic biomarker for depression. Neuroreport. 2008;19(15):1507–11.PubMedCrossRefGoogle Scholar
  240. 240.
    Fu CHY, Mourao-Miranda J, Costafreda SG, Khanna A, Marquand AF, Williams SCR, et al. Pattern classification of sad facial processing: toward the development of neurobiological markers in depression. Biol Psychiatry. 2008;63(7):656–62.PubMedCrossRefGoogle Scholar
  241. 241.
    Chen C-H, Suckling J, Ooi C, Fu CHY, Williams SCR, Walsh ND, et al. Functional coupling of the amygdala in depressed patients treated with antidepressant medication. Neuropsychopharmacology. 2008;33(8):1909.PubMedCrossRefGoogle Scholar
  242. 242.
    Lisiecka D, Meisenzahl E, Scheuerecker J, Schoepf V, Whitty P, Chaney A, et al. Neural correlates of treatment outcome in major depression. Int J Neuropsychopharmacol. 2011;14(4):521–34.PubMedCrossRefGoogle Scholar
  243. 243.
    Li B, Liu L, Friston KJ, Shen H, Wang L, Zeng L-L, et al. A treatment-resistant default mode subnetwork in major depression. Biol Psychiatry. 2013;74(1):48–54.PubMedCrossRefGoogle Scholar
  244. 244.
    Posner J, Hellerstein DJ, Gat I, Mechling A, Klahr K, Wang Z, et al. Antidepressants normalize the default mode network in patients with dysthymia. JAMA Psychiatry. 2013;70(4):373–82.PubMedPubMedCentralCrossRefGoogle Scholar
  245. 245.
    Liston C, Chen AC, Zebley BD, Drysdale AT, Gordon R, Leuchter B, et al. Default mode network mechanisms of transcranial magnetic stimulation in depression. Biol Psychiatry. 2014;76(7):517–26.PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Abbott CC, Lemke NT, Gopal S, Thoma RJ, Bustillo J, Calhoun VD, et al. Electroconvulsive therapy response in major depressive disorder: a pilot functional network connectivity resting state FMRI investigation. Front Psychiatry. 2013;4:10.Google Scholar
  247. 247.
    Wu F, Tang Y, Xu K, Kong L, Sun W, Wang F, et al. Whiter matter abnormalities in medication-naive subjects with a single short-duration episode of major depressive disorder. Psychiatry Res Neuroimaging. 2011;191(1):80–3.PubMedCrossRefGoogle Scholar
  248. 248.
    Yamamura T, Okamoto Y, Okada G, Takaishi Y, Takamura M, Mantani A, et al. Association of thalamic hyperactivity with treatment-resistant depression and poor response in early treatment for major depression: a resting-state fMRI study using fractional amplitude of low-frequency fluctuations. Transl Psychiatry. 2017;6(3):e754.PubMedPubMedCentralCrossRefGoogle Scholar
  249. 249.
    Walsh EC, Eisenlohr-Moul TA, Minkel J, Bizzell J, Petty C, Crowther A, et al. Pretreatment brain connectivity during positive emotion upregulation predicts decreased anhedonia following behavioral activation therapy for depression. J Affect Disord. 2019 [cited 2018 Dec 24];243:188–92. http://www.ncbi.nlm.nih.gov/pubmed/30245249.PubMedCrossRefGoogle Scholar
  250. 250.
    Crane NA, Jenkins LM, Bhaumik R, Dion C, Gowins JR, Mickey BJ, et al. Multidimensional prediction of treatment response to antidepressants with cognitive control and functional MRI. Brain. 2017;140(2):472–86.PubMedPubMedCentralCrossRefGoogle Scholar
  251. 251.
    Spies M, Kraus C, Geissberger N, Auer B, Klöbl M, Tik M, et al. Default mode network deactivation during emotion processing predicts early antidepressant response. Transl Psychiatry. 2017 [cited 2018 Dec 24];7(1):e1008. http://www.ncbi.nlm.nih.gov/pubmed/28117844.PubMedPubMedCentralCrossRefGoogle Scholar
  252. 252.
    Phillips ML, Chase HW, Sheline YI, Etkin A, Almeida JRC, Deckersbach T, et al. Identifying predictors, moderators, and mediators of antidepressant response in major depressive disorder: neuroimaging approaches. Am J Psychiatry. 2015 [cited 2018 Dec 24];172(2):124–38. http://www.ncbi.nlm.nih.gov/pubmed/25640931.PubMedCrossRefGoogle Scholar
  253. 253.
    Fonseka TM, MacQueen GM, Kennedy SH. Neuroimaging biomarkers as predictors of treatment outcome in major depressive disorder. J Affect Disord. 2018;233:21–35.PubMedCrossRefGoogle Scholar
  254. 254.
    Lener MS, Iosifescu DV. In pursuit of neuroimaging biomarkers to guide treatment selection in major depressive disorder: a review of the literature. Ann N Y Acad Sci. 2015;1344(1):50–65.PubMedCrossRefGoogle Scholar
  255. 255.
    Poldrack RA, Gorgolewski KJ. Making big data open: data sharing in neuroimaging. Nat Neurosci. 2014 [cited 2018 Dec 24];17(11):1510–7. http://www.ncbi.nlm.nih.gov/pubmed/25349916.PubMedCrossRefGoogle Scholar
  256. 256.
    Milham MP, Ai L, Koo B, Xu T, Amiez C, Balezeau F, et al. An open resource for non-human primate imaging. Neuron. 2018;100(1):61–74.Google Scholar
  257. 257.
    Zuo X-N, Anderson JS, Bellec P, Birn RM, Biswal BB, Blautzik J, et al. An open science resource for establishing reliability and reproducibility in functional connectomics. Sci Data. 2014 [cited 2018 Dec 24];1:140049. http://www.ncbi.nlm.nih.gov/pubmed/25977800.
  258. 258.
    Cui L-B, Liu L, Wang H-N, Wang L-X, Guo F, Xi Y-B, et al. Disease definition for schizophrenia by functional connectivity using radiomics strategy. Schizophr Bull. 2018.Google Scholar
  259. 259.
    Tamminga CA, Pearlson GD, Stan AD, Gibbons RD, Padmanabhan J, Keshavan M, et al. Strategies for advancing disease definition using biomarkers and genetics: the bipolar and schizophrenia network for intermediate phenotypes. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017 [cited 2018 Dec 24];2(1):20–7. http://www.ncbi.nlm.nih.gov/pubmed/29560884.Google Scholar
  260. 260.
    Proudfoot M, Woolrich MW, Nobre AC, Turner MR. Magnetoencephalography. Pract Neurol. 2014 [cited 2018 Dec 24];14(5):336–43. http://www.ncbi.nlm.nih.gov/pubmed/24647614.PubMedPubMedCentralCrossRefGoogle Scholar
  261. 261.
    Brookes MJ, Woolrich M, Luckhoo H, Price D, Hale JR, Stephenson MC, et al. Investigating the electrophysiological basis of resting state networks using magnetoencephalography. Proc Natl Acad Sci. 2011.  https://doi.org/10.1073/1112685108.
  262. 262.
    Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc London B Biol Sci. 2005;360(1457):1001–13.CrossRefGoogle Scholar
  263. 263.
    Smith SM, Miller KL, Moeller S, Xu J, Auerbach EJ, Woolrich MW, et al. Temporally-independent functional modes of spontaneous brain activity. Proc Natl Acad Sci USA. 2012 [cited 2018 Dec 24];109(8):3131–6. http://www.ncbi.nlm.nih.gov/pubmed/22323591.CrossRefGoogle Scholar
  264. 264.
    Luckhoo H, Hale JR, Stokes MG, Nobre AC, Morris PG, Brookes MJ, et al. Inferring task-related networks using independent component analysis in magnetoencephalography. Neuroimage. 2012;62(1):530–41.PubMedCrossRefGoogle Scholar
  265. 265.
    Patel MJ, Andreescu C, Price JC, Edelman KL, Reynolds CF, Aizenstein HJ, et al. Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction. Int J Geriatr Psychiatry. 2015 [cited 2018 Dec 24];30(10):1056–67. http://www.ncbi.nlm.nih.gov/pubmed/25689482.PubMedPubMedCentralCrossRefGoogle Scholar
  266. 266.
    Guillaume B, Wang C, Poh J, Shen MJ, Ong ML, Tan PF, et al. Improving mass-univariate analysis of neuroimaging data by modelling important unknown covariates: application to epigenome-wide association studies. Neuroimage. 2018;173:57–71.PubMedCrossRefGoogle Scholar
  267. 267.
    Habeck C, Stern Y, Initiative ADN. Multivariate data analysis for neuroimaging data: overview and application to Alzheimer’s disease. Cell Biochem Biophys. 2010;58(2):53–67.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Psychology Program, Faculty of Arts and Social SciencesInternational University of SarajevoSarajevoBosnia and Herzegovina
  2. 2.Genetics and Bioengineering Program, Faculty of Engineering and Natural SciencesInternational University of SarajevoSarajevoBosnia and Herzegovina

Personalised recommendations