Advertisement

Neuromodulation and Cognitive Control of Emotion

  • Meysam Amidfar
  • Young-Hoon Ko
  • Yong-Ku KimEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1192)

Abstract

Recently, noninvasive brain stimulation (NIBS) methodologies, including TMS and tDCS, have been considered as efficacious, safe, and innovative treatments and alternatives to conventional therapies for some psychiatric disorders. Developing evidence suggests that applying rTMS and tDCS over the cognitive control network (CCN), particularly the dorsolateral prefrontal cortex (DLPFC), may improve core symptoms in various psychiatric disorders via direct impact on the cognitive control processes involved in emotion regulation. Therefore, neuromodulation of brain regions involved in the cognitive control of emotion by NIBS approaches could contribute to a paradigm shift in psychiatry. The available evidence suggests that development of effective treatment alternatives to enhance cognition is critical for patients with psychiatric disorders. The purpose of this chapter is to review the cognition-enhancing properties of tDCS and TMS and the impact of these treatments on cognitive control processes, especially those related to emotion regulation in psychiatric disorders.

Keywords

TMS tDCS Neuromodulation Cognition Psychiatric disorders Paradigm shift 

References

  1. 1.
    Andrade J, Mota D, Ferreira S, Araújo A. Neuromodulation in Psychiatric disorders: recent findings and clinical implications;2017.Google Scholar
  2. 2.
    Demirtas-Tatlidede A, Vahabzadeh-Hagh AM, Pascual-Leone A. Can noninvasive brain stimulation enhance cognition in neuropsychiatric disorders? Neuropharmacology. 2013;64:566–78.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Mondino M, Bennabi D, Poulet E, Galvao F, Brunelin J, Haffen E. Can transcranial direct current stimulation (tDCS) alleviate symptoms and improve cognition in psychiatric disorders? World J Biol Psychiatry. 2014;15(4):261–75.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Barr MS, Farzan F, Rajji TK, Voineskos AN, Blumberger DM, Arenovich T, et al. Can repetitive magnetic stimulation improve cognition in schizophrenia? Pilot data from a randomized controlled trial. Biol Psychiat. 2013;73(6):510–7.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Guse B, Falkai P, Wobrock T. Cognitive effects of high-frequency repetitive transcranial magnetic stimulation: a systematic review. J Neural Transm. 2010;117(1):105–22.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Hill SK, Bishop JR, Palumbo D, Sweeney JA. Effect of second-generation antipsychotics on cognition: current issues and future challenges. Expert Rev Neurother. 2010;10(1):43–57.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Millan MJ. Multi-target strategies for the improved treatment of depressive states: conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther. 2006;110(2):135–370.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Lantrip C, Gunning FM, Flashman L, Roth RM, Holtzheimer PE. Effects of transcranial magnetic stimulation on the cognitive control of emotion: potential antidepressant mechanisms. J ECT. 2017;33(2):73–80.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Niendam TA, Laird AR, Ray KL, Dean YM, Glahn DC, Carter CS. Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn Affect Behav Neurosci. 2012;12(2):241–68.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Koole SL. The psychology of emotion regulation: an integrative review. Cogn Emot. 2009;23(1):4–41.CrossRefGoogle Scholar
  11. 11.
    Gross JJ. Handbook of emotion regulation. Guilford Publications;2013.Google Scholar
  12. 12.
    Ochsner KN, Silvers JA, Buhle JT. Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Ann N Y Acad Sci. 2012;1251(1):E1–24.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Dennis TA. Interactions between emotion regulation strategies and affective style: implications for trait anxiety versus depressed mood. Motiv Emotion. 2007;31(3):200–7.CrossRefGoogle Scholar
  14. 14.
    Gross JJ, John OP. Individual differences in two emotion regulation processes: implications for affect, relationships, and well-being. J Pers Soc Psychol. 2003;85(2):348.CrossRefGoogle Scholar
  15. 15.
    Bradley SJ. Affect regulation and the development of psychopathology. Guilford Press;2003.Google Scholar
  16. 16.
    Flack WF, Laird JD. Emotions in psychopathology: theory and research. Oxford University Press on Demand;1998.Google Scholar
  17. 17.
    Gratz KL, Roemer L. Multidimensional assessment of emotion regulation and dysregulation: Development, factor structure, and initial validation of the difficulties in emotion regulation scale. J Psychopathol Behav Assess. 2004;26(1):41–54.CrossRefGoogle Scholar
  18. 18.
    Martel MM. Research review: a new perspective on attention-deficit/hyperactivity disorder: emotion dysregulation and trait models. J Child Psychol Psychiatry. 2009;50(9):1042–51.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Rottenberg JE, Johnson SL. Emotion and psychopathology: bridging affective and clinical science. Am Psycholog Assoc. 2007.Google Scholar
  20. 20.
    Samson AC, Phillips JM, Parker KJ, Shah S, Gross JJ, Hardan AY. Emotion dysregulation and the core features of autism spectrum disorder. J Autism Dev Disord. 2014;44(7):1766–72.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Miller EK. The prefontral cortex and cognitive control. Nat Rev Neurosci. 2000;1(1):59.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Ochsner KN, Bunge SA, Gross JJ, Gabrieli JD. Rethinking feelings: an FMRI study of the cognitive regulation of emotion. J Cogn Neurosci. 2002;14(8):1215–29.CrossRefGoogle Scholar
  23. 23.
    Adolphs R. The neurobiology of social cognition. Curr Opin Neurobiol. 2001;11(2):231–9.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Davidson RJ, Irwin W. The functional neuroanatomy of emotion and affective style. Trends Cogn Sci. 1999;3(1):11–21.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Gross JJ. Emotion regulation: affective, cognitive, and social consequences. Psychophysiology. 2002;39(3):281–91.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24(1):167–202.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Richards JM, Gross JJ. Emotion regulation and memory: the cognitive costs of keeping one’s cool. J Pers Soc Psychol. 2000;79(3):410.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Rolls ET. Emotion explained. USA: Oxford University Press;2005.Google Scholar
  29. 29.
    Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9(1):357–81.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Cabeza R, Nyberg L. Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci. 2000;12(1):1–47.PubMedCrossRefGoogle Scholar
  31. 31.
    Courtney SM, Petit L, Maisog JM, Ungerleider LG, Haxby JV. An area specialized for spatial working memory in human frontal cortex. Science. 1998;279(5355):1347–51.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Knight RT, Staines WR, Swick D, Chao LL. Prefrontal cortex regulates inhibition and excitation in distributed neural networks. Acta Physiol (Oxf). 1999;101(2–3):159–78.Google Scholar
  33. 33.
    Ochsner KN, Feldman Barrett L. A multiprocess perspective on the neuroscience of emotion. Emotion: current issues and future directions. 2001. p. 38–81.Google Scholar
  34. 34.
    Petit L, Courtney SM, Ungerleider LG, Haxby JV. Sustained activity in the medial wall during working memory delays. J Neurosci. 1998;18(22):9429–37.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Smith EE, Jonides J. Storage and executive processes in the frontal lobes. Science. 1999;283(5408):1657–61.PubMedCrossRefGoogle Scholar
  36. 36.
    Gershon AA, Dannon PN, Grunhaus L. Transcranial magnetic stimulation in the treatment of depression. Am J Psychiatry. 2003;160(5):835–45.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, et al. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45(5):651–60.PubMedCrossRefGoogle Scholar
  38. 38.
    Taylor SF, Liberzon I. Neural correlates of emotion regulation in psychopathology. Trends Cogn Sci. 2007;11(10):413–8.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Pessoa L. On the relationship between emotion and cognition. Nat Rev Neurosci. 2008;9(2):148.PubMedCrossRefGoogle Scholar
  40. 40.
    Etkin A, Gyurak A, O’Hara R. A neurobiological approach to the cognitive deficits of psychiatric disorders. Dialogues Clin Neurosci. 2013;15(4):419.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, et al. Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci. 2007;104(26):11073–8.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Dosenbach NU, Visscher KM, Palmer ED, Miezin FM, Wenger KK, Kang HC, et al. A core system for the implementation of task sets. Neuron. 2006;50(5):799–812.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Holroyd CB, Coles MG. The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol Rev. 2002;109(4):679.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD. Conflict monitoring and cognitive control. Psychol Rev. 2001;108(3):624.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3(3):201.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Davidson RJ, Pizzagalli D, Nitschke JB, Kalin NH. Parsing the subcomponents of emotion and disorders of emotion: perspectives from affective neuroscience. Handb Affect Sci. 2003;2:8–24.Google Scholar
  47. 47.
    Heller W, Nitscke JB. Regional brain activity in emotion: a framework for understanding cognition in depresion. Cogn Emot. 1997;11(5–6):637–61.CrossRefGoogle Scholar
  48. 48.
    Mitchell RL, Phillips LH. The psychological, neurochemical and functional neuroanatomical mediators of the effects of positive and negative mood on executive functions. Neuropsychologia. 2007;45(4):617–29.PubMedCrossRefGoogle Scholar
  49. 49.
    Krain AL, Wilson AM, Arbuckle R, Castellanos FX, Milham MP. Distinct neural mechanisms of risk and ambiguity: a meta-analysis of decision-making. Neuroimage. 2006;32(1):477–84.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Damasio AR. The feeling of what happens: body and emotion in the making of consciousness. New York Times Book Review. 1999;104:8-.Google Scholar
  51. 51.
    Brody AL, Barsom MW, Bota RG, Saxena S, editors. Prefrontal-subcortical and limbic circuit mediation of major depressive disorder. Semin Clin Neuropsychiatry. 2001.Google Scholar
  52. 52.
    Liberzon I, Martis B. Neuroimaging studies of emotional responses in PTSD. Ann N Y Acad Sci. 2006;1071(1):87–109.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    George MS, Post RM. Daily left prefrontal repetitive transcranial magnetic stimulation for acute treatment of medication-resistant depression. Am J Psychiatry. 2011;168(4):356–64.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Rosa MA, Lisanby SH. Somatic treatments for mood disorders. Neuropsychopharmacology. 2012;37(1):102.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Lan MJ, Chhetry BT, Liston C, Mann JJ, Dubin M. Transcranial magnetic stimulation of left dorsolateral prefrontal cortex induces brain morphological changes in regions associated with a treatment resistant major depressive episode: an exploratory analysis. Brain Stimul. 2016;9(4):577–83.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Noda Y, Silverstein W, Barr M, Vila-Rodriguez F, Downar J, Rajji T, et al. Neurobiological mechanisms of repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex in depression: a systematic review. Psychol Med. 2015;45(16):3411–32.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Berlim M, Van den Eynde F, Tovar-Perdomo S, Daskalakis Z. Response, remission and drop-out rates following high-frequency repetitive transcranial magnetic stimulation (rTMS) for treating major depression: a systematic review and meta-analysis of randomized, double-blind and sham-controlled trials. Psychol Med. 2014;44(2):225–39.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Chen J, Zhou C, Wu B, Wang Y, Li Q, Wei Y, et al. Left versus right repetitive transcranial magnetic stimulation in treating major depression: a meta-analysis of randomised controlled trials. Psychiatry Res. 2013;210(3):1260–4.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Osoegawa C, Gomes JS, Grigolon RB, Brietzke E, Gadelha A, Lacerda AL, et al. Non-invasive brain stimulation for negative symptoms in schizophrenia: an updated systematic review and meta-analysis. Schizophr Res. 2018.Google Scholar
  60. 60.
    Shi C, Yu X, Cheung EF, Shum DH, Chan RC. Revisiting the therapeutic effect of rTMS on negative symptoms in schizophrenia: a meta-analysis. Psychiatry Res. 2014;215(3):505–13.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Hovington CL, McGirr A, Lepage M, Berlim MT. Repetitive transcranial magnetic stimulation (rTMS) for treating major depression and schizophrenia: a systematic review of recent meta-analyses. Ann Med. 2013;45(4):308–21.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Berlim MT, Neufeld NH, Van den Eynde F. Repetitive transcranial magnetic stimulation (rTMS) for obsessive–compulsive disorder (OCD): an exploratory meta-analysis of randomized and sham-controlled trials. J Psychiatr Res. 2013;47(8):999–1006.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Berlim MT, Van den Eynde F. Repetitive transcranial magnetic stimulation over the dorsolateral prefrontal cortex for treating posttraumatic stress disorder: an exploratory meta-analysis of randomized, double-blind and sham-controlled trials. Can J Psychiatry. 2014;59(9):487–96.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Yan T, Xie Q, Zheng Z, Zou K, Wang L. Different frequency repetitive transcranial magnetic stimulation (rTMS) for posttraumatic stress disorder (PTSD): a systematic review and meta-analysis. J Psychiatr Res. 2017;89:125–35.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Camprodon JA, Martínez-Raga J, Alonso-Alonso M, Shih M-C, Pascual-Leone A. One session of high frequency repetitive transcranial magnetic stimulation (rTMS) to the right prefrontal cortex transiently reduces cocaine craving. Drug Alcohol Depend. 2007;86(1):91–4.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Politi E, Fauci E, Santoro A, Smeraldi E. Daily sessions of transcranial magnetic stimulation to the left prefrontal cortex gradually reduce cocaine craving. Am J Addict. 2008;17(4):345–6.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Mishra BR, Nizamie SH, Das B, Praharaj SK. Efficacy of repetitive transcranial magnetic stimulation in alcohol dependence: a sham-controlled study. Addiction. 2010;105(1):49–55.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Amiaz R, Levy D, Vainiger D, Grunhaus L, Zangen A. Repeated high-frequency transcranial magnetic stimulation over the dorsolateral prefrontal cortex reduces cigarette craving and consumption. Addiction. 2009;104(4):653–60.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Johann M, Wiegand R, Kharraz A, Bobbe G, Sommer G, Hajak G, et al. Repetitiv transcranial magnetic stimulation in nicotine dependence. Psychiatr Prax. 2003;30(Suppl 2):129–31.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Li X, Hartwell KJ, Owens M, LeMatty T, Borckardt JJ, Hanlon CA, et al. Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex reduces nicotine cue craving. Biol Psychiat. 2013;73(8):714–20.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Zangen A. T033 Right prefrontal rTMS for the treatment of ADHD: electrophysiological correlates and prognostic biomarkers. Clin Neurophysiol. 2017;128(3):e11.CrossRefGoogle Scholar
  72. 72.
    Oberman LM, Enticott PG, Casanova MF, Rotenberg A, Pascual-Leone A, McCracken JT, et al. Transcranial magnetic stimulation in autism spectrum disorder: challenges, promise, and roadmap for future research. Autism Res. 2016;9(2):184–203.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(3):633–9.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Priori A, Berardelli A, Rona S, Accornero N, Manfredi M. Polarization of the human motor cortex through the scalp. NeuroReport. 1998;9(10):2257–60.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Nitsche MA, Doemkes S, Karakose T, Antal A, Liebetanz D, Lang N, et al. Shaping the effects of transcranial direct current stimulation of the human motor cortex. J Neurophysiol. 2007;97(4):3109–17.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Shiozawa P, Fregni F, Benseñor IM, Lotufo PA, Berlim MT, Daskalakis JZ, et al. Transcranial direct current stimulation for major depression: an updated systematic review and meta-analysis. Int J Neuropsychopharmacol. 2014;17(9):1443–52.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Dondé C, Neufeld NH, Geoffroy PA. The impact of transcranial direct current stimulation (tDCS) on bipolar depression, mania, and euthymia: a systematic review of preliminary data. Psychiatric Q. 2018:1–13.Google Scholar
  78. 78.
    Dondé C, Amad A, Nieto I, Brunoni AR, Neufeld NH, Bellivier F, et al. Transcranial direct-current stimulation (tDCS) for bipolar depression: a systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2017;78:123–31.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Schestatsky P, Janovik N, Lobato MI, Belmonte-de-Abreu P, Schestatsky S, Shiozawa P, et al. Rapid therapeutic response to anodal tDCS of right dorsolateral prefrontal cortex in acute mania. Brain Stimul Basic Transl Clin Res Neuromodulation. 2013;6(4):701–3.Google Scholar
  80. 80.
    Brunelin J, Mondino M, Bation R, Palm U, Saoud M, Poulet E. Transcranial direct current stimulation for obsessive-compulsive disorder: a systematic review. Brain Sci. 2018;8(2):37.PubMedCentralCrossRefGoogle Scholar
  81. 81.
    Kekic M, Boysen E, Campbell IC, Schmidt U. A systematic review of the clinical efficacy of transcranial direct current stimulation (tDCS) in psychiatric disorders. J Psychiatr Res. 2016;74:70–86.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Boggio PS, Liguori P, Sultani N, Rezende L, Fecteau S, Fregni F. Cumulative priming effects of cortical stimulation on smoking cue-induced craving. Neurosci Lett. 2009;463(1):82–6.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Fecteau S, Agosta S, Hone-Blanchet A, Fregni F, Boggio P, Ciraulo D, et al. Modulation of smoking and decision-making behaviors with transcranial direct current stimulation in tobacco smokers: a preliminary study. Drug Alcohol Depend. 2014;140:78–84.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Fregni F, Liguori P, Fecteau S, Nitsche MA, Pascual-Leone A, Boggio PS. Cortical stimulation of the prefrontal cortex with transcranial direct current stimulation reduces cue-provoked smoking craving: a randomized, sham-controlled study. J Clin Psychiatry. 2008;69(1):32–40.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Boggio PS, Sultani N, Fecteau S, Merabet L, Mecca T, Pascual-Leone A, et al. Prefrontal cortex modulation using transcranial DC stimulation reduces alcohol craving: a double-blind, sham-controlled study. Drug Alcohol Depend. 2008;92(1–3):55–60.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Boggio PS, Zaghi S, Villani AB, Fecteau S, Pascual-Leone A, Fregni F. Modulation of risk-taking in marijuana users by transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC). Drug Alcohol Depend. 2010;112(3):220–5.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Gorini A, Lucchiari C, Russell-Edu W, Pravettoni G. Modulation of risky choices in recently abstinent dependent cocaine users: a transcranial direct-current stimulation study. Front Hum Neurosci. 2014;8:661.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Fregni F, Orsati F, Pedrosa W, Fecteau S, Tome FA, Nitsche MA, et al. Transcranial direct current stimulation of the prefrontal cortex modulates the desire for specific foods. Appetite. 2008;51(1):34–41.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Lupi M, Martinotti G, Santacroce R, Cinosi E, Carlucci M, Marini S, et al. Transcranial direct current stimulation in substance use disorders: a systematic review of scientific literature. J ECT. 2017;33(3):203–9.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Cachoeira CT, Leffa DT, Mittelstadt SD, Mendes LST, Brunoni AR, Pinto JV, et al. Positive effects of transcranial direct current stimulation in adult patients with attention-deficit/hyperactivity disorder a pilot randomized controlled study. Psychiatry Res. 2017;247:28–32.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Amatachaya A, Auvichayapat N, Patjanasoontorn N, Suphakunpinyo C, Ngernyam N, Aree-uea B, et al. Effect of anodal transcranial direct current stimulation on autism: a randomized double-blind crossover trial. Behav Neurol. 2014;2014.CrossRefGoogle Scholar
  92. 92.
    Gómez L, Vidal B, Maragoto C, Morales LM, Berrillo S, Vera Cuesta H, et al. Non-invasive brain stimulation for children with autism spectrum disorders: a short-term outcome study. Behav Sci. 2017;7(3):63.CrossRefGoogle Scholar
  93. 93.
    Schneider HD, Hopp JP. The use of the Bilingual Aphasia Test for assessment and transcranial direct current stimulation to modulate language acquisition in minimally verbal children with autism. Clin Linguist Phon. 2011;25(6–7):640–54.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Davidson RJ, Pizzagalli D, Nitschke JB, Putnam K. Depression: perspectives from affective neuroscience. Annu Rev Psychol. 2002;53(1):545–74.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Marazziti D, Consoli G, Picchetti M, Carlini M, Faravelli L. Cognitive impairment in major depression. Eur J Pharmacol. 2010;626(1):83–6.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Rock P, Roiser J, Riedel W, Blackwell A. Cognitive impairment in depression: a systematic review and meta-analysis. Psychol Med. 2014;44(10):2029–40.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Wagner S, Doering B, Helmreich I, Lieb K, Tadić A. A meta-analysis of executive dysfunctions in unipolar major depressive disorder without psychotic symptoms and their changes during antidepressant treatment. Acta Psychiatr Scand. 2012;125(4):281–92.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Wolkenstein L, Plewnia C. Amelioration of cognitive control in depression by transcranial direct current stimulation. Biol Psychiat. 2013;73(7):646–51.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Mogg A, Pluck G, Eranti S, Landau S, Purvis R, Brown R, et al. A randomized controlled trial with 4-month follow-up of adjunctive repetitive transcranial magnetic stimulation of the left prefrontal cortex for depression. Psychol Med. 2008;38(3):323–33.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Moreines JL, McClintock SM, Holtzheimer PE. Neuropsychologic effects of neuromodulation techniques for treatment-resistant depression: a review. Brain Stimul. 2011;4(1):17–27.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Green MF. Cognitive impairment and functional outcome in schizophrenia and bipolar disorder. J Clin Psychiatry. 2006;67:3–8 Discussion 36–42.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Smith RC, Boules S, Mattiuz S, Youssef M, Tobe RH, Sershen H, et al. Effects of transcranial direct current stimulation (tDCS) on cognition, symptoms, and smoking in schizophrenia: a randomized controlled study. Schizophr Res. 2015;168(1):260–6.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Martin DM, McClintock SM, Forster J, Loo CK. Does therapeutic repetitive transcranial magnetic stimulation cause cognitive enhancing effects in patients with neuropsychiatric conditions? A systematic review and meta-analysis of randomised controlled trials. Neuropsychol Rev. 2016;26(3):295–309.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Menzies L, Chamberlain SR, Laird AR, Thelen SM, Sahakian BJ, Bullmore ET. Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neurosci Biobehav Rev. 2008;32(3):525–49.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Jaafari N, Rachid F, Rotge J-Y, Polosan M, El-Hage W, Belin D, et al. Safety and efficacy of repetitive transcranial magnetic stimulation in the treatment of obsessive-compulsive disorder: a review. World J Biol Psychiatry. 2012;13(3):164–77.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Clark C, Cole J, Winter C, Williams K, Grammer G. A review of transcranial magnetic stimulation as a treatment for post-traumatic stress disorder. Curr Psychiatry Rep. 2015;17(10):83.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    D’Urso G, Mantovani A, Patti S, Toscano E, de Bartolomeis A. Transcranial direct current stimulation in obsessive-compulsive disorder, posttraumatic stress disorder, and anxiety disorders. J ECT. 2018;34(3):172–81.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Saunders N, Downham R, Turman B, Kropotov J, Clark R, Yumash R, et al. Working memory training with tDCS improves behavioral and neurophysiological symptoms in pilot group with post-traumatic stress disorder (PTSD) and with poor working memory. Neurocase. 2015;21(3):271–8.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    van ‘t Wout M, Longo SM, Reddy MK, Philip NS, Bowker MT, Greenberg BD. Transcranial direct current stimulation may modulate extinction memory in posttraumatic stress disorder. Brain Behav. 2017;7(5):e00681.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Boggio PS, Rocha M, Oliveira MO, Fecteau S, Cohen RB, Campanhã C, et al. Noninvasive brain stimulation with high-frequency and low-intensity repetitive transcranial magnetic stimulation treatment for posttraumatic stress disorder. J Clin Psychiatry. 2010;71(8):992.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Kalivas PW, Volkow ND. The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry. 2005;162(8):1403–13.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Hanlon CA, Jones EM, Li X, Hartwell KJ, Brady KT, George MS. Individual variability in the locus of prefrontal craving for nicotine: implications for brain stimulation studies and treatments. Drug Alcohol Depend. 2012;125(3):239–43.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Fishbein DH, Eldreth DL, Hyde C, Matochik JA, London ED, Contoreggi C, et al. Risky decision making and the anterior cingulate cortex in abstinent drug abusers and nonusers. Cogn Brain Res. 2005;23(1):119–36.CrossRefGoogle Scholar
  114. 114.
    Garavan H, Stout JC. Neurocognitive insights into substance abuse. Trends Cogn Sci. 2005;9(4):195–201.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Fecteau S, Fregni F, Boggio PS, Camprodon JA, Pascual-Leone A. Neuromodulation of decision-making in the addictive brain. Subst Use Misuse. 2010;45(11):1766–86.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Bechara A. Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nat Neurosci. 2005;8(11):1458.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Houben K, Nederkoorn C, Wiers RW, Jansen A. Resisting temptation: decreasing alcohol-related affect and drinking behavior by training response inhibition. Drug Alcohol Depend. 2011;116(1–3):132–6.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Epstein JN, Casey B, Tonev ST, Davidson MC, Reiss AL, Garrett A, et al. ADHD-and medication-related brain activation effects in concordantly affected parent–child dyads with ADHD. J Child Psychol Psychiatry. 2007;48(9):899–913.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Allenby C, Falcone M, Bernardo L, Wileyto EP, Rostain A, Ramsay JR, et al. Transcranial direct current brain stimulation decreases impulsivity in ADHD. Brain Stimul. 2018.Google Scholar
  120. 120.
    Cortese S, Kelly C, Chabernaud C, Proal E, Di Martino A, Milham MP, et al. Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies. Am J Psychiatry. 2012;169(10):1038–55.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Francx W, Oldehinkel M, Oosterlaan J, Heslenfeld D, Hartman CA, Hoekstra PJ, et al. The executive control network and symptomatic improvement in attention-deficit/hyperactivity disorder. Cortex. 2015;73:62–72.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Ortiz N, Parsons A, Whelan R, Brennan K, Agan ML, O’Connell R, et al. Decreased frontal, striatal and cerebellar activation in adults with ADHD during an adaptive delay discounting task. Acta Neurobiol Exp(Wars). 2015;75(3):326–38.Google Scholar
  123. 123.
    Salavert J, Ramos-Quiroga JA, Moreno-Alcázar A, Caseras X, Palomar G, Radua J, et al. Functional imaging changes in the medial prefrontal cortex in adult ADHD. J Atten Disord. 2018;22(7):679–93.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Bloch Y, Harel E, Aviram S, Govezensky J, Ratzoni G, Levkovitz Y. Positive effects of repetitive transcranial magnetic stimulation on attention in ADHD Subjects: a randomized controlled pilot study. World J Biolog Psychiatry. 2010;11(5):755–8.CrossRefGoogle Scholar
  125. 125.
    Myers SM, Johnson CP. Management of children with autism spectrum disorders. Pediatrics. 2007;120(5):1162–82.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Oswald DP, Sonenklar NA. Medication use among children with autism spectrum disorders. J Child Adolesc Psychopharmacology. 2007;17(3):348–55.CrossRefGoogle Scholar
  127. 127.
    Joseph RM, McGrath LM, Tager-Flusberg H. Executive dysfunction and its relation to language ability in verbal school-age children with autism. Dev Neuropsychol. 2005;27(3):361–78.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Kane MJ, Hambrick DZ, Tuholski SW, Wilhelm O, Payne TW, Engle RW. The generality of working memory capacity: a latent-variable approach to verbal and visuospatial memory span and reasoning. J Exp Psychol Gen. 2004;133(2):189.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Wang Y, Zhang Y-b, Liu L-l, Cui J-f, Wang J, Shum DH, et al. A meta-analysis of working memory impairments in autism spectrum disorders. Neuropsychol Rev. 2017;27(1):46–61.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    D’Esposito M, Postle BR, Rypma B. Prefrontal cortical contributions to working memory: evidence from event-related fMRI studies. Executive control and the frontal lobe: Current issues: Springer; 2000. p. 3–11.Google Scholar
  131. 131.
    Koshino H, Kana RK, Keller TA, Cherkassky VL, Minshew NJ, Just MA. fMRI investigation of working memory for faces in autism: visual coding and underconnectivity with frontal areas. Cereb Cortex. 2007;18(2):289–300.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Luna B, Minshew N, Garver K, Lazar N, Thulborn K, Eddy W, et al. Neocortical system abnormalities in autism an fMRI study of spatial working memory. Neurology. 2002;59(6):834–40.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Vogan VM, Morgan BR, Lee W, Powell TL, Smith ML, Taylor MJ. The neural correlates of visuo-spatial working memory in children with autism spectrum disorder: effects of cognitive load. J Neurodev Disord. 2014;6(1):19.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Van Steenburgh JJ, Varvaris M, Schretlen DJ, Vannorsdall TD, Gordon B. Balanced bifrontal transcranial direct current stimulation enhances working memory in adults with high-functioning autism: a sham-controlled crossover study. Mol Autism. 2017;8(1):40.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Ameis SH, Daskalakis ZJ, Blumberger DM, Desarkar P, Drmic I, Mabbott DJ, et al. Repetitive transcranial magnetic stimulation for the treatment of executive function deficits in autism spectrum disorder: clinical trial approach. J Child Adolesc Psychopharmacol. 2017;27(5):413–21.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Shiraz Neuroscience Research Center, Shiraz University of Medical SciencesShirazIran
  2. 2.Department of PsychiatryCollege of Medicine, Korea UniversitySeoulSouth Korea

Personalised recommendations