Advertisement

Interventions Addressing the Telomere-Telomerase System

  • Ather MuneerEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1192)

Abstract

Major psychiatric disorders are linked to early mortality and patients afflicted with these ailments demonstrate an increased risk of developing physical diseases that are characteristically seen in the elderly. Psychiatric conditions like major depressive disorder, bipolar disorder, and schizophrenia may be associated with accelerated cellular aging, indicated by shortened leukocyte telomere length (LTL), which could underlie this connection. Telomere shortening occurs with repeated cell division and is reflective of a cell’s mitotic history. It is also influenced by cumulative exposure to inflammation and oxidative stress as well as the availability of telomerase, the telomere-lengthening enzyme. Precariously short telomeres can cause cells to undergo senescence, apoptosis, or genomic instability; shorter LTL correlates with compromised general health and foretells mortality. Important data specify that LTL may be reduced in principal psychiatric illnesses, possibly in proportion to exposure to the ailment. Telomerase, as measured in peripheral blood monocytes, has been less well characterized in psychiatric illnesses, but a role in mood disorder has been suggested by preclinical and clinical studies. In this manuscript, the most recent studies on LTL and telomerase activity in mood disorders are comprehensively reviewed, potential mediators are discussed, and future directions are suggested. An enhanced comprehension of cellular aging in psychiatric illnesses could lead to their re-conceptualizing as systemic ailments with manifestations both inside and outside the brain. At the same time, this paradigm shift could identify new treatment targets, helpful in bringing about lasting cures to innumerable sufferers across the globe.

Keywords

Mood disorders Leukocyte telomere length Telomerase activity Aging Mortality 

References

  1. 1.
    Liu MY, Nemes A, Zhou QG. The emerging roles for telomerase in the central nervous system. Front Mol Neurosci. 2018;11:160.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Manoliu A, Bosch OG, Brakowski J, Brühl AB, Seifritz E. The potential impact of biochemical mediators on telomere attrition in major depressive disorder and implications for future study designs: a narrative review. J Affect Disord. 2018;225:630–46.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Xie X, Chen Y, Ma L, Shen Q, Huang L, Zhao B, et al. Major depressive disorder mediates accelerated aging in rats subjected to chronic mild stress. Behav Brain Res. 2017;329:96–103.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Maurya PK, Rizzo LB, Xavier G, Tempaku PF, Zeni-Graiff M, Santoro ML, et al. Shorter leukocyte telomere length in patients at ultra high risk for psychosis. Eur Neuropsychopharmacol. 2017;27:538–42.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Zhu Y, Liu X, Ding X, Wang F, Geng X. Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology. 2018 Epub ahead of print.Google Scholar
  6. 6.
    Barnes RP, Fouquerel E, Opresko PL. The impact of oxidative DNA damage and stress on telomere homeostasis. Mech Ageing Dev. 2018 Epub ahead of print.Google Scholar
  7. 7.
    Sui B, Hu C, Jin Y. Mitochondrial metabolic failure in telomere attrition-provoked aging of bone marrow mesenchymal stem cells. Biogerontology. 2016;17:267–79.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Bertuch AA. The molecular genetics of the telomere biology disorders. RNA Biol. 2016;13:696–706.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Révész D, Milaneschi Y, Terpstra EM, Penninx BW. Baseline biopsychosocial determinants of telomere length and 6-year attrition rate. Psychoneuroendocrinology. 2016;67:153–62.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Müezzinler A, Zaineddin AK, Brenner H. A systematic review of leukocyte telomere length and age in adults. Ageing Res Rev. 2013;12:509–19.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Schmidt JC, Cech TR. Human telomerase: biogenesis, trafficking, recruitment, and activation. Genes Dev. 2015;29:1095–105.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bhattacharyya J, Mihara K, Bhattacharjee D, Mukherjee M. Telomere length as a potential biomarker of coronary artery disease. Indian J Med Res. 2017;145:730–7.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Epel ES, Merkin SS, Cawthon R, Blackburn EH, Adler NE, Pletcher MJ, et al. The rate of leukocyte telomere shortening predicts mortality from cardiovascular disease in elderly men. Aging. 2008;1:81–8 Albany NY.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Nilsson PM, Tufvesson H, Leosdottir M, Melander O. Telomeres and cardiovascular disease risk: an update 2013. Transl Res. 2013;162:371–80.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Codd V, Nelson CP, Albrecht E, Mangino M, Deelen J, Buxton JL, et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet. 2013;45:422–7.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Zhang J, Rane G, Dai X, Shanmugam MK, Arfuso F, Samy RP, et al. Ageing and the telomere connection: an intimate relationship with inflammation. Ageing Res Rev. 2016;25:55–69.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Liu L. Linking telomere regulation to stem cell pluripotency. Trends Genet. 2017;33:16–33.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Cai Z, Yan LJ, Ratka A. Telomere shortening and Alzheimer’s disease. Neuromolecular Med. 2013;15:25–48.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Huang YC, Wang LJ, Tseng PT, Hung CF, Lin PY. Leukocyte telomere length in patients with bipolar disorder: an updated meta-analysis and subgroup analysis by mood status. Psychiatry Res. 2018;270:41–9.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Darrow SM, Verhoeven JE, Révész D, Lindqvist D, Penninx BW, Delucchi KL, et al. The association between psychiatric disorders and telomere length: a meta-analysis involving 14,827 persons. Psychosom Med. 2016;78:776–87.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Ten Have M, de Graaf R, van Dorsselaer S, Tuithof M, Kleinjan M, Penninx BWJH. Recurrence and chronicity of major depressive disorder and their risk indicators in a population cohort. Acta Psychiatr Scand. 2018;137:503–15.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Nunes PV, Nascimento CF, Kim HK, Andreazza AC, Brentani HP, Suemoto CK, et al. Low brain-derived neurotrophic factor levels in post-mortem brains of older adults with depression and dementia in a large clinicopathological sample. J Affect Disord. 2018;241:176–81.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Simon NM, Smoller JW, McNamara KL, Maser RS, Zalta AK, Pollack MH, et al. Telomere shortening and mood disorders: preliminary support for a chronic stress model of accelerated aging. Biol Psychiatry. 2006;60:432–5.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Verhoeven JE, Revesz D, Epel ES, Lin J, Wolkowitz OM, Penninx BW. Major depressive disorder and accelerated cellular aging: results from a large psychiatric cohort study. Mol Psychiatry. 2014;19:895–901.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Gotlib IH, LeMoult J, Colich NL, Foland-Ross LC, Hallmayer J, Joormann J, et al. Telomere length and cortisol reactivity in children of depressed mothers. Mol Psychiatry. 2015;20:615–20.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Shalev I, Moffitt TE, Braithwaite AW, Danese A, Fleming NI, Goldman-Mellor S, et al. Internalizing disorders and leukocyte telomere erosion: a prospective study of depression, generalized anxiety disorder and post-traumatic stress disorder. Mol Psychiatry. 2014;19:1163–70.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Jodczyk S, Fergusson DM, Horwood LJ, Pearson JF, Kennedy MA. No association between mean telomere length and life stress observed in a 30 year birth cohort. PLoS One. 2014;9:e97102.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Hoen PW, de Jonge P, Na BY, Farzaneh-Far R, Epel E, Lin J, et al. Depression and leukocyte telomere length in patients with coronary heart disease: data from the Heart and Soul Study. Psychosom Med. 2011;73:541–7.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Hoen PW, Rosmalen JG, Schoevers RA, Huzen J, van der Harst P, de Jonge P. Association between anxiety but not depressive disorders and leukocyte telomere length after 2 years of follow-up in a population-based sample. Psychol Med. 2013;43:689–97.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Schaakxs R, Verhoeven JE, Oude Voshaar RC, Comijs HC, Penninx BW. Leukocyte telomere length and late-life depression. Am J Geriatr Psychiatry. 2015;23:423–32.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Kananen L, Surakka I, Pirkola S, Suvisaari J, Lonnqvist J, Peltonen L, et al. Childhood adversities are associated with shorter telomere length at adult age both in individuals with an anxiety disorder and controls. PLoS One. 2010;5:e10826.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Needham BL, Mezuk B, Bareis N, Lin J, Blackburn EH, Epel ES. Depression, anxiety and telomere length in young adults: evidence from the National Health and Nutrition Examination Survey. Mol Psychiatry. 2015;20:520–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Teyssier JR, Chauvet-Gelinier JC, Ragot S, Bonin B. Up-regulation of leucocytes genes implicated in telomere dysfunction and cellular senescence correlates with depression and anxiety severity scores. PLoS One. 2012;7:e49677.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Wolkowitz OM, Mellon SH, Epel ES, Lin J, Dhabhar FS, Su Y, et al. Leukocyte telomere length in major depression: correlations with chronicity, inflammation and oxidative stress–preliminary findings. PLoS One. 2011;6:e17837.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Lindqvist D, Epel ES, Mellon SH, Penninx BW, Révész D, Verhoeven JE, et al. Psychiatric disorders and leukocyte telomere length: underlying mechanisms linking mental illness with cellular aging. Neurosci Biobehav Rev. 2015;55:333–64.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Russo P, Prinzi G, Proietti S, Lamonaca P, Frustaci A, Boccia S, et al. Shorter telomere length in schizophrenia: evidence from a real-world population and meta-analysis of most recent literature. Schizophr Res. 2018 Epub ahead of print.Google Scholar
  37. 37.
    Elvsashagen T, Vera E, Boen E, Bratlie J, Andreassen OA, Josefsen D, et al. The load of short telomeres is increased and associated with lifetime number of depressive episodes in bipolar II disorder. J Affect Disord. 2011;135:43–50.PubMedCrossRefGoogle Scholar
  38. 38.
    Rizzo LB, Do Prado CH, Grassi-Oliveira R, Wieck A, Correa BL, Teixeira AL, et al. Immunosenescence is associated with human cytomegalovirus and shortened telomeres in type I bipolar disorder. Bipolar Disord. 2013;15:832–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Martinsson L, Wei Y, Xu D, Melas PA, Mathe AA, Schalling M, et al. Long-term lithium treatment in bipolar disorder is associated with longer leukocyte telomeres. Transl Psychiatry. 2013;3:e261.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Lima IM, Barros A, Rosa DV, Albuquerque M, Malloy-Diniz L, Neves FS, et al. Analysis of telomere attrition in bipolar disorder. J Affect Disord. 2015;172:43–7.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Barbé-Tuana FM, Parisi MM, Panizzutti BS, Fries GR, Grun LK, Guma FT, et al. Shortened telomere length in bipolar disorder: a comparison of the early and late stages of disease. Rev Bras Psiquiatr. 2016;38:281–6.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Verhoeven JE, van Oppen P, Révész D, Wolkowitz OM, Penninx BW. Depressive and anxiety disorders showing robust, but non-dynamic, 6-year longitudinal association with short leukocyte telomere length. Am J Psychiatry. 2016;173:617–24.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Hartmann N, Boehner M, Groenen F, Kalb R. Telomere length of patients with major depression is shortened but independent from therapy and severity of the disease. Depress Anxiety. 2010;27:1111–6.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Solana C, Pereira D, Tarazona R. Early senescence and leukocyte telomere shortening in schizophrenia: a role for cytomegalovirus infection? Brain Sci. 2018;8:E188.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Nguyen TT, Eyler LT, Jeste DV. Systemic biomarkers of accelerated aging in schizophrenia: a critical review and future directions. Schizophr Bull. 2018;44:398–408.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Osler M, Bendix L, Rask L, Rod NH. Stressful life events and leucocyte telomere length: do lifestyle factors, somatic and mental health, or low grade inflammation mediate this relationship? Results from a cohort of Danish men born in 1953. Brain Behav Immun. 2016;58:248–53.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Provenzi L, Scotto di Minico G, Giorda R, Montirosso R. Telomere length in preterm infants: a promising biomarker of early adversity and care in the neonatal intensive care unit? Front Endocrinol (Lausanne). 2017;8:295.Google Scholar
  48. 48.
    Wilson SJ, Woody A, Padin AC, Lin J, Malarkey WB, Kiecolt-Glaser JK. Loneliness and telomere length: immune and parasympathetic function in associations with accelerated aging. Ann Behav Med. 2018 Epub ahead of print.Google Scholar
  49. 49.
    Wolkowitz OM, Reus VI, Mellon SH. Of sound mind and body: depression, disease, and accelerated aging. Dialogues Clin Neurosci. 2011;13:25–39.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Wolkowitz OM, Epel ES, Reus VI, Mellon SH. Depression gets old fast: do stress and depression accelerate cell aging? Depress Anxiety. 2010;27:327–38.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Tolahunase M, Sagar R, Dada R. Impact of yoga and meditation on cellular aging in apparently healthy individuals: a prospective, open-label single-arm exploratory study. Oxid Med Cell Longev. 2017;2017:7928981.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Révész D, Verhoeven JE, Milaneschi Y, de Geus EJ, Wolkowitz OM, Penninx BW. Dysregulated physiological stress systems and accelerated cellular aging. Neurobiol Aging. 2014;35:1422–30.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Aulinas A, Ramírez MJ, Barahona MJ, Valassi E, Resmini E, Mato E, et al. Telomere length analysis in Cushing’s syndrome. Eur J Endocrinol. 2014;171:21–9.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Tomiyama AJ, O’Donovan A, Lin J, Puterman E, Lazaro A, Chan J, et al. Does cellular aging relate to patterns of allostasis? an examination of basal and stress reactive HPA axis activity and telomere length. Physiol Behav. 2012;106:40–5.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Drury SS, Shirtcliff EA, Shachet A, Phan J, Mabile E, Brett ZH, et al. Growing up or growing old? Cellular aging linked with testosterone reactivity to stress in youth. Am J Med Sci. 2014;348:92–100.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Vasunilashorn S, Cohen AA. Stress responsive biochemical anabolic/catabolic ratio and telomere length in older adults. Biodemography Soc Biol. 2014;60(2):174–84.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Savolainen K, Räikkönen K, Kananen L, Kajantie E, Hovatta I, Lahti M, et al. History of mental disorders and leukocyte telomere length in late adulthood: the Helsinki Birth Cohort Study (HBCS). J Psychiatr Res. 2012;46:1346–53.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Toriumi K, Miyashita M, Ichikawa T, Kobori A, Nohara I, Arai M, et al. JSNP excellent presentation award for CINP2014. Nihon Shinkei Seishin Yakurigaku Zasshi. 2015; 35: 61–62 Article in Japanese.Google Scholar
  59. 59.
    Boccardi V, Paolisso G. Telomerase activation: a potential key modulator for human healthspan and longevity. Ageing Res Rev. 2014;15:1–5.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Choudhary B, Karande AA, Raghavan SC. Telomere and telomerase in stem cells: relevance in ageing and disease. Front Biosci (Schol Ed). 2012;4:16–30.CrossRefGoogle Scholar
  61. 61.
    Ozturk MB, Li Y, Tergaonkar V. Current insights to regulation and role of telomerase in human diseases. Antioxidants (Basel). 2017;6:E17.CrossRefGoogle Scholar
  62. 62.
    Zalli A, Carvalho LA, Lin J, Hamer M, Erusalimsky JD, Blackburn EH, et al. Shorter telomeres with high telomerase activity are associated with raised allostatic load and impoverished psychosocial resources. Proc Natl Acad Sci USA. 2014;111(12):4519–24.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Vaváková M, Ďuračková Z, Trebatická J. Markers of oxidative stress and neuroprogression in depression disorder. Oxid Med Cell Longev. 2015;2015:898393.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Jaskelioff M, Muller FL, Paik JH, Thomas E, Jiang S, Adams AC, et al. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature. 2011;469:102–6.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Xie X, Chen Y, Wang Q, Shen Q, Ma L, Huang L, et al. Desipramine rescues age-related phenotypes in depression-like rats induced by chronic mild stress. Life Sci. 2017;188:96–100.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Zhou QG, Liu MY, Lee HW, Ishikawa F, Devkota S, Shen XR, et al. Hippocampal TERT regulates spatial memory formation through modulation of neural development. Stem Cell Rep. 2017;9:543–56.CrossRefGoogle Scholar
  67. 67.
    Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, et al. Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA. 2004;101:17312–5.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Epel ES, Lin J, Dhabhar FS, Wolkowitz OM, Puterman E, Karan L, et al. Dynamics of telomerase activity in response to acute psychological stress. Brain Behav Immun. 2010;244:531–9.CrossRefGoogle Scholar
  69. 69.
    Damjanovic AK, Yang Y, Glaser R, Kiecolt-Glaser JK, Nguyen H, Laskowski B, et al. Accelerated telomere erosion is associated with a declining immune function of caregivers of Alzheimer’s disease patients. J Immunol. 2007;179:4249–54.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Wolkowitz OM, Mellon SH, Epel ES, Lin J, Reus VI, Rosser R, et al. Resting leukocyte telomerase activity is elevated in major depression and predicts treatment response. Mol Psychiatry. 2012;17:164–72.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Porton B, Delisi LE, Bertisch HC, Ji F, Gordon D, Li P, et al. Telomerase levels in schizophrenia: a preliminary study. Schizophr Res. 2008;106:242–7.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Wang M, Chen J, He K, Wang Q, Li Z, Shen J, et al. The NVL gene confers risk for both major depressive disorder and schizophrenia in the Han Chinese population. Prog Neuropsychopharmacol Biol Psychiatry. 2015;62:7–13.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Wei YB, Martinsson L, Liu JJ, Forsell Y, Schalling M, Backlund L, et al. hTERT genetic variation in depression. J Affect Disord. 2016;189:62–9.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Tolahunase MR, Sagar R, Faiq M, Dada R. Yoga- and meditation-based lifestyle intervention increases neuroplasticity and reduces severity of major depressive disorder: a randomized controlled trial. Restor Neurol Neurosci. 2018;36:423–42.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Wei YB, Backlund L, Wegener G, Mathé AA, Lavebratt C. Telomerase dysregulation in the hippocampus of a rat model of depression: normalization by lithium. Int J Neuropsychopharmacol 2015;18:pyv002.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Köse Çinar R. Telomere length and hTERT in mania and subsequent remission. Rev Bras Psiquiatr. 2018;40:19–25.CrossRefGoogle Scholar
  77. 77.
    Squassina A, Pisanu C, Congiu D, Caria P, Frau D, Niola P, et al. Leukocyte telomere length positively correlates with duration of lithium treatment in bipolar disorder patients. Eur Neuropsychopharmacol. 2016;26:1241–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Daniali L, Benetos A, Susser E, Kark JD, Labat C, Kimura M, et al. Telomeres shorten at equivalent rates in somatic tissues of adults. Nat Commun. 2013;4:1597.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Dlouha D, Maluskova J, Kralova Lesna I, Lanska V, Hubacek JA. Comparison of the relative telomere length measured in leukocytes and eleven different human tissues. Physiol Res. 2014;63(Suppl 3):S343–50.PubMedGoogle Scholar
  80. 80.
    Teyssier JR, Ragot S, Donzel A, Chauvet-Gelinier JC. Telomeres in the brain cortex of depressive patients. Encephale. 2010; 36: 491–494 Article in French.Google Scholar
  81. 81.
    Zhang D, Cheng L, Craig DW, Redman M, Liu C. Cerebellar telomere length and psychiatric disorders. Behav Genet. 2010;40:250–4.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Szebeni A, Szebeni K, DiPeri T, Chandley MJ, Crawford JD, Stockmeier CA, et al. Shortened telomere length in white matter oligodendrocytes in major depression: potential role of oxidative stress. Int J Neuropsychopharmacol. 2014;17:1579–89.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Wikgren M, Karlsson T, Soderlund H, Nordin A, Roos G, et al. Shorter telomere length is linked to brain atrophy and white matter hyperintensities. Age Ageing. 2013;43:212–7.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Jacobs EG, Epel ES, Lin J, Blackburn EH, Rasgon NL. Relationship between leukocyte telomere length, TA and hippocampal volume in early aging. JAMA Neurol. 2014;71:921–3.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    King KS, Kozlitina J, Rosenberg RN, Peshock RM, McColl RW, Garcia CK. Effect of leukocyte telomere length on total and regional brain volumes in a large population-based cohort. JAMA Neurol. 2014;71:1247–54.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Wolkowitz OM, Mellon SH, Lindqvist D, Epel ES, Blackburn EH, Lin J, et al. PBMC telomerase activity, but not leukocyte telomere length, correlates with hippocampal volume in major depression. Psychiatry Res. 2015;232:58–64.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Deng W, Cheung ST, Tsao SW, Wang XM, Tiwari AF. Telomerase activity and its association with psychological stress, mental disorders, lifestyle factors and interventions: a systematic review. Psychoneuroendocrinology. 2016;64:150–63.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Schutte NS, Malouff JM. A meta-analytic review of the effects of mindfulness meditation on telomerase activity. Psychoneuroendocrinology. 2014;42:45–8.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Jacobs TL, Epel ES, Lin J, Blackburn EH, Wolkowitz OM, Bridwell DA, et al. Intensive meditation training, immune cell TA, and psychological mediators. Psychoneuroendocrinology. 2011;36:664–81.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Lengacher CA, Reich RR, Kip KE, Barta M, Ramesar S, Paterson CL, et al. Influence of mindfulness-based stress reduction (MBSR) on TA in women with breast cancer (BC). Biol Res Nurs. 2014; 16: 438–447.Google Scholar
  91. 91.
    Ornish D, Lin J, Daubenmier J, Weidner G, Epel E, Kemp C, et al. Increased TA and comprehensive lifestyle changes: a pilot study. Lancet Oncol. 2008;9:1048–57.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Ornish D, Lin J, Chan JM, Epel E, Kemp C, Weidner G, et al. Effect of comprehensive lifestyle changes on telomerase activity and telomere length in men with biopsy-proven low-risk prostate cancer: 5-year follow-up of a descriptive pilot study. Lancet Oncol. 2013;14:1112–20.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Arsenis NC, You T, Ogawa EF, Tinsley GM, Zuo L. Physical activity and telomere length: impact of aging and potential mechanisms of action. Oncotarget. 2017;8:45008–19.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Puterman E, Epel ES, Lin J, Blackburn EH, Gross JJ, Whooley MA, Cohen BE. Multisystem resiliency moderates the major depression-telomere length association: findings from the Heart and Soul Study. Brain Behav Immun. 2013;33:65–73.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Puterman E, Lin J, Blackburn E, O’Donovan A, Adler N, Epel E. The power of exercise: buffering the effect of chronic stress on telomere length. PLoS One. 2010;5:e10837.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Puterman E, Lin J, Krauss J, Blackburn EH, Epel ES. Determinants of telomere attrition over 1 year in healthy older women: stress and health behaviors matter. Mol Psychiatry. 2015;20:529–35.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Biegler KA, Anderson AK, Wenzel LB, Osann K, Nelson EL. Longitudinal change in telomere length and the chronic stress response in a randomized pilot biobehavioral clinical study: implications for cancer prevention. Cancer Prev Res (Phila). 2012;5:1173–82.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Islamic International Medical College, Riphah International UniversityRawalpindiPakistan

Personalised recommendations