Advertisement

Applications of Developmental Psychopathology

  • Gonzalo Salazar de Pablo
  • Julio David Vaquerizo Serrano
  • Sandra Gómez Vallejo
  • Javier Sánchez Cerezo
  • Carmen Moreno RuizEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1192)

Abstract

Developmental psychopathology studies the basic mechanisms, including not only biological factors but also environmental and social factors that may interact with them, by means of which developmental pathways deviate toward pathological or typical outcomes. Family studies conducted during the last century show substantial evidence of heritability among psychiatric disorders. Besides, a large number of genes implicated in shaping the development of the central nervous system have been related to psychiatric conditions. In addition, there is a wide range of stressors and harmful agents that, when acting on sensitive developmental periods, might damage brain function and generate or precipitate psychopathology over time. All these factors have the potential to change the way disorders with a neurodevelopmental origin are expressed, including their age of appearance and clinical manifestations. Both symptoms and social impairment need to be considered in clinical evaluations, as treatment is unlikely to be effective if the problem has not been characterized correctly or if the patients’ particular characteristics, which change throughout development, are not taken into consideration.

Keywords

Developmental psychopathology Neurodevelopmental disorders Genetic factors Environmental factors Psychiatric disorders 

References

  1. 1.
    Rutter M, Bishop DVM, Pine DS, Scott S, Stevenson J, Taylor E, et al. Rutter’s child and adolescent psychiatry, 5th ed. 2009.Google Scholar
  2. 2.
    Lewis M, Rudolph KD editors. Handbook of developmental psychopathology, 3rd ed. 2014.Google Scholar
  3. 3.
    Kiser DP, Rivero O, Lesch K. Annual research review: the (epi) genetics of neurodevelopmental disorders in the era of whole-genome sequencing–unveiling the dark matter. J Child Psychol Psychiatry. 2015;3:278–95.CrossRefGoogle Scholar
  4. 4.
    Cardno AG, Owen MJ. Genetic relationships between schizophrenia, bipolar disorder, and schizoaffective disorder. Schizophr Bull. 2014;40(3):504–15.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Group C, Consortium PG. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet. 2013;45(9):984–94.Google Scholar
  6. 6.
    Korte A, Farlow A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods. 2013;9:29.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169(7):1177–86.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Anttila V, Bulik-Sullivan B, Finucane HK, Walters RK, Bras J, Duncan L. Analysis of shared heritability in common disorders of the brain. Science. 2018;360(6395).Google Scholar
  9. 9.
    Smoller JW. Disorders and borders : psychiatric genetics and nosology. Am J Med Genet. 2013;162(B);559–78.CrossRefGoogle Scholar
  10. 10.
    Hu WF, Chahrour MH, Walsh CA. The diverse genetic landscape of neurodevelopmental disorders. Annu Rev Genomics Hum Genet. 2014;15:195–213.PubMedCrossRefGoogle Scholar
  11. 11.
    Parellada M, Penzol MJ, Pina L, Moreno C, González-Vioque E, Zalsman G, et al. The neurobiology of autism spectrum disorders. Eur Psychiatry. 2014;29(1):11–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Gaugler T, Klei L, Sanders SJ, Bodea CA, Goldberg AP, Lee AB, et al. Most genetic risk for autism resides with common variation. Nature. 2014;46(8):881–5.Google Scholar
  13. 13.
    Gilman SR, Iossifov I, Levy D, Ronemus M, Wigler MVD. Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron. 2011;70:898–907.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Abbott PW, Gumusoglu SB, Bittle J, Beversdorf DQ. Psychoneuroendocrinology Prenatal stress and genetic risk: how prenatal stress interacts with genetics to alter risk for psychiatric illness. Psychoneuroendocrinology. 2018;90:9–21.PubMedCrossRefGoogle Scholar
  15. 15.
    Buxbaum JDe Rubeis S HX. Synaptic, transcriptional, and chromatin genes disrupted in autism. Nature. 2014;515(7526):209–15.Google Scholar
  16. 16.
    State MW. The emerging biology of autism. Science. 2012;337:1301–4.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Lasalle JM, Powell WT, Yasui DH. Epigenetic layers and players underlying neurodevelopment. Trends Neurosci. 2013;36(8):460–70.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Winfree LT, Taylor TJ, He N, Esbensen FA. Self-control and variability over time: multivariate results using a 5-year, multisite panel of youths. Crime and Delinquency. 2006;52(2):253–86.CrossRefGoogle Scholar
  19. 19.
    Danese A, McEwen BS. Adverse childhood experiences, allostasis, allostatic load, and age-related disease. Physiol Behav. 2012;106(1):29–39.CrossRefGoogle Scholar
  20. 20.
    DeYoung CG, Cicchetti D, Rogosch FA. Moderation of the association between childhood maltreatment and neuroticism by the corticotropin-releasing hormone receptor 1 gene. J Child Psychol Psychiatry. 2011;52(8):898–906.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Andersen SL. Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci Biobehav Rev. 2003;27:3–18.CrossRefGoogle Scholar
  22. 22.
    Rees S, Harding R. Brain development during fetal life: influences of the intra-uterine environment. Neurosci Lett. 2004;361(6):111–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Adams Waldorf KM, McAdams RM. Influence of infection during pregnancy on fetal development. Reproduction. 2013;146(5):151–62.CrossRefGoogle Scholar
  24. 24.
    Pallarés ME, Antonelli MC. Prenatal stress and neurodevelopmental plasticity: relevance to psychopathology. Adv Exp Med Biol. 2017;1015:117–129.Google Scholar
  25. 25.
    Yan X, Zhao X, Li J, He L, Xu M. Effects of early-life malnutrition on neurodevelopment and neuropsychiatric disorders and the potential mechanisms. Prog Neuropsychopharmacol Biol Psychiatry. 2018;20(83):64–75.CrossRefGoogle Scholar
  26. 26.
    Lam LF, Lawlis TR. Feeding the brain–the effects of micronutrient interventions on cognitive performance among school-aged children: a systematic review of randomized controlled trials. Clin Nutr. 2017;36(4):1007–14.PubMedCrossRefGoogle Scholar
  27. 27.
    Perry BD. The neurodevelopmental impact of violence in childhood. Child Adolesc Forensic Psychiatry. 2001.Google Scholar
  28. 28.
    Danese A, Moffitt TE, Arseneault L, Bleiberg BA, Dinardo PB, Gandelman SB, et al. The origins of cognitive deficits in victimized children: implications for neuroscientists and clinicians. Am J Psychiatry. 2017;174(4):349–61.PubMedCrossRefGoogle Scholar
  29. 29.
    Schaefer JD, Moffitt TE, Arseneault L, Danese A, Fisher HL, Houts R, et al. Adolescent victimization and early-adult psychopathology: approaching causal inference using a longitudinal twin study to rule out noncausal explanations. Clin Psychol Sci. 2018;6(3):352–71.PubMedCrossRefGoogle Scholar
  30. 30.
    Kyzar EJ, Floreani C, Teppen TL, Pandey SC. Adolescent alcohol exposure: burden of epigenetic reprogramming, synaptic remodeling, and adult psychopathology. Front Neurosci. 2016;10.Google Scholar
  31. 31.
    Fearon P. Reimagining the environment in developmental psychopathology: from molecules to effective interventions. J Child Psychol Psychiatry. 2018;59(4):299–302.PubMedCrossRefGoogle Scholar
  32. 32.
    Humphreys KL, Zeanah CH. Deviations from the expectable environment in early childhood and emerging psychopathology. Neuropsychopharmacology. 2015;40(1):154–70.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Siller M, Sigman M. The behaviors of parents of children with autism predict the subsequent development of their children’s communication. J Autism Dev Disord. 2002;32(2):77–89.PubMedCrossRefGoogle Scholar
  34. 34.
    Fonagy P, Luyten P. Conduct problems in youth and the RDoC approach: a developmental, evolutionary-based view. Clin Psychol Rev. 2018;64:57–76.PubMedCrossRefGoogle Scholar
  35. 35.
    Silveri MM, Dager AD, Cohen-Gilbert JE, Sneider JT. Neurobiological signatures associated with alcohol and drug use in the human adolescent brain. Neurosci Biobehav Rev. 2016;70:244–59.CrossRefGoogle Scholar
  36. 36.
    Crews FT, Vetreno RP, Broadwater MA, Robinson DL. Adolescent alcohol exposure persistently impacts adult neurobiology and behavior. Pharmacol Rev. 2016;68(4):1074–109.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Crane NA, Schuster RM, Fusar-Poli P, Gonzalez R. Effects of cannabis on neurocognitive functioning: Recent advances, neurodevelopmental influences, and sex differences. Neuropsychology. 2013;23(2):117–37.CrossRefGoogle Scholar
  38. 38.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders, 5th ed. (DSM-5); 2013 Diagnostic Stat Man Ment Disord. 4th ed. TR.Google Scholar
  39. 39.
    Lord C, Bishop S. Recent advances in autism research as reflected in Dsm-5 criteria for autism spectrum disorder. SSRN. 2015.Google Scholar
  40. 40.
    Doernberg E, Hollander E. Neurodevelopmental disorders (ASD and ADHD): DSM-5, ICD-10, and ICD-11. CNS Spectr. 2016;21(4):295–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Hill P. Editorial: the rising prevalence of autism. J Child Psychol Psychiatry. 2018;7:717–20.Google Scholar
  42. 42.
    Sandin S, Lichtenstein P, Kuja-Halkola R, Hultman C, Larsson HRA. The heritability of autism spectrum disorder analysis method B. J Am Med Assoc. 2017;318(12):1182–4.CrossRefGoogle Scholar
  43. 43.
    Colvert E, Tick B, Mcewen F, Stewart C, Curran SR, Woodhouse E, et al. Heritability of autism spectrum disorder in a UK population-based twin sample. JAMA Psychiatry. 2015;72(5):415–23.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Chaste P, Leboyer M. Autism risk factors: genes, environment, and gene-environment interactions. Dialogues Clin Neurosci. 2012;14(3):281–92.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Beaudet AL. Autism: highly heritable but not inherited. Nat Med. 2007;13(5):534–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Gardener H, Spiegelman D, Buka SL. Perinatal and neonatal risk factors for autism: a comprehensive meta-analysis. Pediatrics. 2011;128(2):344–55.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Bittker SS, Bell KR. Acetaminophen, antibiotics, ear infection, breastfeeding, vitamin D drops and autism: an epidemiological study. Neuropsychiatr Dis Treat. 2018;14:1399–414.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Lai M-C, Lombardo MV, Baron-Cohen S. Autism. Lancet. 2014;383(9920):896–910.CrossRefGoogle Scholar
  49. 49.
    Mannion A, Leader G, Healy O. An investigation of comorbid psychological disorders, sleep problems, gastrointestinal symptoms and epilepsy in children and adolescents with Autism Spectrum Disorder. Res Autism Spectr Disord. 2013;7(1):35–42.CrossRefGoogle Scholar
  50. 50.
    Munesue T, Ono Y, Mutoh K, Shimoda K, Nakatani H, Kikuchi M. High prevalence of bipolar disorder comorbidity in adolescents and young adults with high-functioning autism spectrum disorder: a preliminary study of 44 outpatients. J Affect Disord. 2008;111(2–3):170–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Davis TE, Hess JA, Moree BN, Fodstad JC, Dempsey T, Jenkins WS, et al. Anxiety symptoms across the lifespan in people diagnosed with Autistic Disorder. Res Autism Spectr Disord. 2011;5(1):112–8.CrossRefGoogle Scholar
  52. 52.
    Tillmann J, Ashwood K, Absoud M, Bölte S, Bonnet-Brilhault F, Buitelaar JK, et al. Evaluating sex and age differences in ADI-R and ADOS scores in a large European multi-site sample of individuals with autism spectrum disorder. J Autism Dev Disord. 2018;48(7):2490–505.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Van Wijngaarden-Cremers PJM, Van Eeten E, Groen WB, Van Deurzen PA, Oosterling IJ, Van Der Gaag RJ. Gender and age differences in the core triad of impairments in autism spectrum disorders: a systematic review and meta-analysis. J Autism Dev Disord. 2014;44(3):627–35.PubMedCrossRefGoogle Scholar
  54. 54.
    Lai M, Lombardo M, Baron-Cohen S. Autism. Lancet. 2014;383(8):896–910.PubMedCrossRefGoogle Scholar
  55. 55.
    Sacrey LAR, Bennett JA, Zwaigenbaum L. Early infant development and intervention for autism spectrum disorder. J Child Neurol. 2015;30(14):1921–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Howlin P, Moss P, Savage S, Rutter M. Social outcomes in mid- to later adulthood among individuals diagnosed with autism and average nonverbal IQ as children. J Am Acad Child Adolesc Psychiatry. 2013;52(6):572–81.PubMedCrossRefGoogle Scholar
  57. 57.
    Ecker C, Andrews DS, Gudbrandsen CM, Marquand AF, Ginestet CE, Daly EM, et al. Association between the probability of autism spectrum disorder and normative sex-related phenotypic diversity in brain structure. JAMA Psychiatry. 2017;74(4):329–38.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Rynkiewicz A, Schuller B, Marchi E, Piana S, Camurri A, Lassalle A, et al. An investigation of the “female camouflage effect” in autism using a computerized ADOS-2 and a test of sex/gender differences. Mol Autism. 2016;21(7):10.CrossRefGoogle Scholar
  59. 59.
    Kirkovski M, Enticott PG, Fitzgerald PB. A review of the role of female gender in autism spectrum disorders. J Autism Dev Disord. 2013;43(11):2584–603.PubMedCrossRefGoogle Scholar
  60. 60.
    Ketelaars MP, Jansonius K, Cuperus J, Verhoeven L. Narrative competence in children with pragmatic language impairment: a longitudinal study. Int J Lang Commun Disord. 2016;51(2):162–73.PubMedCrossRefGoogle Scholar
  61. 61.
    Simms MD, Jin XM. Autism, language disorder, and social (Pragmatic) communication disorder: DSM-V and differential diagnoses. Pediatr Rev. 2015;36(8):355–63.PubMedCrossRefGoogle Scholar
  62. 62.
    McDonald S. Exploring the cognitive basis of right-hemisphere pragmatic language disorders. Brain Lang. 2000;75(1):82–107.PubMedCrossRefGoogle Scholar
  63. 63.
    Baird G, Norbury CF. Social (pragmatic) communication disorders and autism spectrum disorder. Arch Dis Child. 2016;101(8):745–51.PubMedCrossRefGoogle Scholar
  64. 64.
    Lord C, Risi S, Lambrecht L, Cook EH, Leventhal BL, DiLavore PC, et al. Autism diagnostic observation schedule (ADOS). J Autism Dev Disord. 2000;63(6):694–701.Google Scholar
  65. 65.
    Lord C, Rutter M, Le Couteur A. Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24(5):659–85.PubMedCrossRefGoogle Scholar
  66. 66.
    Brukner-Wertman Y, Laor N, Golan O. Social (Pragmatic) communication disorder and its relation to the autism spectrum: dilemmas arising from the DSM-5 classification. J Autism Dev Disord. 2016;46(8):2821–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Cicchetti D, Cohen DJ. Developmental psychopathology, Risk, disorder, and adaptation, vol. 3, 2nd ed. 2006.Google Scholar
  68. 68.
    Diepeveen FB, van Dommelen P, Oudesluys-Murphy AM, Verkerk PH. Specific language impairment is associated with maternal and family factors. Child Care Health Dev. 2017;43(3):401–5.PubMedCrossRefGoogle Scholar
  69. 69.
    Rice ML. Children with specific language impairment and their families: a future view of nature plus nurture and new technologies for comprehensive language intervention strategies. Semin Speech Lang. 2016;37(4):310–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Webster RI, Shevell MI. Neurobiology of specific language impairment. J Child Neurol. 2004;19(7):471–81.PubMedCrossRefGoogle Scholar
  71. 71.
    Pauls LJ, Archibald LMD. Executive functions in children with specific language impairment: a meta-analysis. Am J Speech Lang Pathol. 2016;59:1074–86.Google Scholar
  72. 72.
    Moriano-Gutierrez A, Colomer-Revuelta J, Sanjuan J, Carot-Sierra JM. Environmental and genetic variables related with alterations in language acquisition in early childhood. Rev Neurol. 2017;64(1):31–7.PubMedGoogle Scholar
  73. 73.
    Hodge SM, Makris N, Kennedy DN, Caviness VS, Howard J, McGrath L, et al. Cerebellum, language, and cognition in autism and specific language impairment. J Autism Dev Disord. 2010;40(3):300–16.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Helland WA, Helland T. Emotional and behavioural needs in children with specific language impairment and in children with autism spectrum disorder: The importance of pragmatic language impairment. Res Dev Disabil. 2017;70:33–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Plante E, Patterson D, Sandoval M, Vance CJ, Asbjørnsen AE. An fMRI study of implicit language learning in developmental language impairment. NeuroImage Clin. 2017;14:277–85.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    St Clair MC, Pickles A, Durkin K, Conti-Ramsden G. A longitudinal study of behavioral, emotional and social difficulties in individuals with a history of specific language impairment (SLI). J Commun Disord. 2011;44(2):186–99.PubMedCrossRefGoogle Scholar
  77. 77.
    Mattingly GW, Wilson J, Rostain AL. A clinician’s guide to ADHD treatment options. Postgrad Med. 2017;129(7):657–66.PubMedCrossRefGoogle Scholar
  78. 78.
    Gallo EF, Posner J. Moving towards causality in attention-deficit hyperactivity disorder: overview of neural and genetic mechanisms. Lancet Psychiatry. 2016;3(6):555–67.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Nigg JT, Goldsmith HH, Sachek J. Temperament and attention deficit hyperactivity disorder: the development of a multiple pathway model. J Clin Child. 2004;33(1):42–53.CrossRefGoogle Scholar
  80. 80.
    Moffitt TE, Houts R, Asherson P, Belsky DW, Corcoran DL, Hammerle M, et al. Is adult ADHD a childhood-onset neurodevelopmental disorder? Evidence from a four-decade longitudinal cohort study. Am J Psychiatry. 2015;172(10):967–77.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Li D, Sham PC, Owen MJ, He L. Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum Mol Genet. 2006;15(14):2276–84.PubMedCrossRefGoogle Scholar
  82. 82.
    Curatolo P, Paloscia C, D’Agati E, Moavero R, Pasini A. The neurobiology of attention deficit/hyperactivity disorder. Eur J Paediatr Neurol. 2009;13(4):299–304.PubMedCrossRefGoogle Scholar
  83. 83.
    Krain AL, Castellanos FX. Brain development and ADHD. Clin Psychol Rev. 2006;26(4):433–44.PubMedCrossRefGoogle Scholar
  84. 84.
    Thapar A, Cooper M, Jefferies R, Stergiakouli E. What causes attention deficit hyperactivity disorder? Arch Dis Child. 2012;97(3):260–5.PubMedCrossRefGoogle Scholar
  85. 85.
    Biederman J, Petty CR, Evans M, Small J, Faraone SV. How persistent is ADHD? a controlled 10-year follow-up study of boys with ADHD. Psychiatry Res. 2010;177(3):299–304.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Katzman MA, Bilkey TS, Chokka PR, Fallu A, Klassen LJ. Adult ADHD and comorbid disorders: clinical implications of a dimensional approach. BMC Psychiatry. 2017;17(1):302.Google Scholar
  87. 87.
    London AS, Landes SD. Attention deficit hyperactivity disorder and adult mortality. Prev Med (Baltim). 2016;90:8–10.CrossRefGoogle Scholar
  88. 88.
    Agnew-Blais JC, Polanczyk GV, Danese A, Wertz J, Moffitt TE, Arseneault L. Evaluation of the persistence, remission, and emergence of attention-deficit/hyperactivity disorder in young adulthood. JAMA Psychiatry. 2016;73(7):713–20.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Wilens TE, Biederman J, Faraone SV, Martelon M, Westerberg D, Spencer TJ. Presenting ADHD symptoms, subtypes, and comorbid disorders in clinically referred adults with ADHD. J Clin Psychiatry. 2009;70(11):1557–62.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Gaub M, Carlson CL. Gender differences in ADHD: a meta-analysis and critical review: The scientific study of child and adolescent psychopathology: the attention deficit disorder syndrome (English). J Am Acad Child Adolesc Psychiatry. 1997;36(8):1036–45.PubMedCrossRefGoogle Scholar
  91. 91.
    Arciniegas DB. Psychosis. Continuum (Minneap Minn). 2015;21(3):715–36.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Kelleher I, Connor D, Clarke MC, Devlin N, Harley M, Cannon M. Prevalence of psychotic symptoms in childhood and adolescence: a systematic review and meta-analysis of population-based studies. Psychol Med. 2012;42(9):1857–63.PubMedCrossRefGoogle Scholar
  93. 93.
    Thapar A, Pine DS, Leckman JF, Scott S, Snowling MJ, Taylor E. Rutter’s child and adolescent psychiatry, 6th ed. 2015.CrossRefGoogle Scholar
  94. 94.
    Castro-Fornieles J, Baeza I, De La Serna E, Gonzalez-Pinto A, Parellada M, Graell M, et al. Two-year diagnostic stability in early-onset first-episode psychosis. J Child Psychol Psychiatry Allied Discip. 2011;52(10):1089–98.CrossRefGoogle Scholar
  95. 95.
    Chen L, Selvendra A, Stewart A, Castle D. Risk factors in early and late onset schizophrenia. Compr Psychiatry. 2018;80:155–62.PubMedCrossRefGoogle Scholar
  96. 96.
    Shafee R, Nanda P, Padmanabhan JL, Tandon N, Alliey-Rodriguez N, Kalapurakkel S, et al. Polygenic risk for schizophrenia and measured domains of cognition in individuals with psychosis and controls. Transl Psychiatry. 2018;8(1):78.Google Scholar
  97. 97.
    Fernandez A, Dor E, Maurin T, Laure G, Menard ML, Drozd M, Poinso F, Bardoni B, Askenazy F, Thümmler S. Exploration and characterisation of the phenotypic and genetic profiles of patients with early onset schizophrenia associated with autism spectrum disorder and their first-degree relatives: a French multicentre case series study protocol (GenAuDiss). BMJ Open. 2018;8(7):e023330.Google Scholar
  98. 98.
    Gejman PV, Sanders AR, Kendler KS. Genetics of schizophrenia: new findings and challenges. Annu Rev Genomics Hum Genet. 2011;12:121–44.PubMedCrossRefGoogle Scholar
  99. 99.
    Sullivan PF, Daly MJ, O’Donovan M. Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet. 2012;13:537.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Wright C, Turner JA, Calhoun VD, Perrone-Bizzozero N. Potential impact of miR-137 and its targets in schizophrenia. Front Genet. 2013;26(4):58.Google Scholar
  101. 101.
    Smedemark-Margulies N, Brownstein CA, Vargas S, Tembulkar SK, Towne MC, Shi J, et al. A novel de novo mutation in ATP1A3 and childhood-onset schizophrenia. Mol Case Stud. 2016;2(5):a001008.CrossRefGoogle Scholar
  102. 102.
    Feigenson KA, Kusnecov AW, Silverstein SM. Inflammation and the two-hit hypothesis of schizophrenia. Neurosci Biobehav Rev. 2014;38:72–93.PubMedCrossRefGoogle Scholar
  103. 103.
    Cannon M, Caspi A, Moffitt TE, Harrington H, Taylor A, Murray RM, et al. Evidence for early-childhood, pan-developmental impairment specific to schizophreniform disorder: results from a longitudinal birth cohort. Arch Gen Psychiatry. 2002;59(5):449–56.PubMedCrossRefGoogle Scholar
  104. 104.
    Ordoñez AE, Bobb A, Greenstein D, Baker N, Sporn A, Lenane M, et al. Lack of evidence for elevated obstetric complications in childhood onset schizophrenia. Biol Psychiatry. 2005;58(1):10–5.PubMedCrossRefGoogle Scholar
  105. 105.
    Cantor-Graae E, Selten JP. Schizophrenia and migration: a meta-analysis and review. Am J Psychiatry. 2005;162(1):12–24.PubMedCrossRefGoogle Scholar
  106. 106.
    Arseneault L, Cannon M, Witton J, Murray RM. Causal association between cannabis and psychosis: examination of the evidence. Br J Psychiatry. 2004;184:110–7.PubMedCrossRefGoogle Scholar
  107. 107.
    Large M. Cannabis use and earlier onset of psychosi: a systematic meta-analysis cannabis use and earlier onset of psychosis. Arch Gen Psychiatry. 2011;68(6):555.PubMedCrossRefGoogle Scholar
  108. 108.
    Driver DI, Gogtay N, Rapoport JL. Childhood onset schizophrenia and early onset schizophrenia spectrum disorders. Child Adolesc Psychiatr Clin N Am. 2013;22(4):539–55.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Kodish I, McClellan JM. Early onset schizophrenia. Dulcan’s textbook of child and adolescent psychiatry, 2nd ed. 2016.Google Scholar
  110. 110.
    Fleischhaker C, Schulz E, Tepper K, Martin M, Hennighausen K, Remschmidt H. Long-term course of adolescent schizophrenia. Schizophr Bull. 2005;31(3):769–80.PubMedCrossRefGoogle Scholar
  111. 111.
    Nieman DH, McGorry PD. Detection and treatment of at-risk mental state for developing a first psychosis: making up the balance. Lancet Psychiatry. 2015;2(9):825–34.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Perlis RH, Miyahara S, Marangell LB, Wisniewski SR, Ostacher M, DelBello MP, et al. Long-term implications of early onset in bipolar disorder: data from the first 1000 participants in the systematic treatment enhancement program for bipolar disorder (STEP-BD). Biol Psychiatry. 2004;55(9):875–81.PubMedCrossRefGoogle Scholar
  113. 113.
    Duax JM, Youngstrom EA, Calabrese JR, Findling RL. Sex differences in pediatric bipolar disorder. J Clin Psychiatry. 2007;68(10):1565–73.PubMedCrossRefGoogle Scholar
  114. 114.
    Merikangas KR, Cui L, Kattan G, Carlson GA, Youngstrom EA, Angst J. Mania with and without depression in a community sample of US adolescents. Arch Gen Psychiatry. 2012;69(9):943–51.PubMedCrossRefGoogle Scholar
  115. 115.
    Moreno C, Laje G, Blanco C, Jiang H, Schmidt AB, Olfson M. National trends in the outpatient diagnosis and treatment of bipolar disorder in youth. Arch Gen Psychiatry. 2007;64(9):1032–9.CrossRefGoogle Scholar
  116. 116.
    Stringaris A, Santosh P, Leibenluft E, Goodman R. Youth meeting symptom and impairment criteria for mania-like episodes lasting less than four days: an epidemiological enquiry. J Child Psychol Psychiatry. 2010;51(1):31–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Van Meter AR, Moreira ALR, Youngstrom EA. Meta-analysis of epidemiologic studies of pediatric bipolar disorder. J Clin Psychiatry. 2011;72(9):1250–6.PubMedCrossRefGoogle Scholar
  118. 118.
    Petronis A. Epigenetics and bipolar disorder: new opportunities and challenges. Am J Med Genet C Semin Med Genet. 2003;123C(1):65–75.PubMedCrossRefGoogle Scholar
  119. 119.
    Craddock N, Sklar P. Bipolar disorder 1-genetics of bipolar disorder. Lancet. 2013;381(9878):1654–62.PubMedCrossRefGoogle Scholar
  120. 120.
    Lichtenstein P, Yip BH, Bjork C, Pawitan Y, Cannon TD, Sullivan PF, et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet. 2009;373(9659):234–9.CrossRefGoogle Scholar
  121. 121.
    Kieseppä T, Partonen T, Haukka J, Kaprio J, Lönnqvist J. High concordance of bipolar I disorder in a nationwide sample of twins. Am J Psychiatry. 2004;161(10):1814–21.PubMedCrossRefGoogle Scholar
  122. 122.
    Lau P, Hawes DJ, Hunt C, Frankland A, Roberts G, Mitchell PB. Prevalence of psychopathology in bipolar high-risk offspring and siblings: a meta-analysis. Eur Child Adolesc Psychiatry. 2017;27(7):823–37.PubMedCrossRefGoogle Scholar
  123. 123.
    Gottesman II, Laursen TM, Bertelsen A, Mortensen PB. Severe mental disorders in offspring with 2 psychiatrically ill parents. Arch Gen Psychiatry. 2010;67(3):252–7.PubMedCrossRefGoogle Scholar
  124. 124.
    Parellada M, Gomez-Vallejo S, Burdeus M, Arango C. Developmental differences between schizophrenia and bipolar disorder. Schizophr Bull. 2017;43(6):1176–1189.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Duffy A, Horrocks J, Doucette S, Keown-Stoneman C, McCloskey S, Grof P. The developmental trajectory of bipolar disorder. Br J Psychiatry. 2014;204(2):122–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Van Meter AR, Burke C, Kowatch RA, Findling RL, Youngstrom EA. Ten-year updated meta-analysis of the clinical characteristics of pediatric mania and hypomania. Bipolar Disord. 2016;18(1):19–32.PubMedCrossRefGoogle Scholar
  127. 127.
    Grande I, Berk M, Birmaher B, Vieta E. Bipolar disorder. Lancet. 2016;387(10027):1561–72.CrossRefGoogle Scholar
  128. 128.
    Axelson D, Goldstein B, Goldstein T, Monk K, Yu H, Hickey MB, et al. Diagnostic precursors to bipolar disorder in offspring of parents with bipolar disorder: a longitudinal study. Am J Psychiatry. 2015;172(7):638–46.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Mesman E, Nolen WA, Reichart CG, Wals M, Hillegers MHJ. The dutch bipolar offspring study: 12-year follow-up. Am J Psychiatry. 2013;170(5):542–9.PubMedCrossRefGoogle Scholar
  130. 130.
    Hafeman DM, Merranko J, Axelson D, Goldstein BI, Goldstein T, Monk K, et al. Toward the definition of a bipolar prodrome: dimensional predictors of bipolar spectrum disorders in at-risk youths. Am J Psychiatry. 2016;173(7):695–704.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Frías Á, Palma C, Farriols N. Comorbidity in pediatric bipolar disorder: prevalence, clinical impact, etiology and treatment. J Affect Disord. 2015;15(174):378–89.CrossRefGoogle Scholar
  132. 132.
    Duffy A, Alda M, Hajek T, Sherry SB, Grof P. Early stages in the development of bipolar disorder. J Affect Disord. 2010;121(1–2):127–35.PubMedCrossRefGoogle Scholar
  133. 133.
    Meier SM, Pavlova B, Dalsgaard S, Nordentoft M, Mors O, Mortensen PB, et al. Attention-deficit hyperactivity disorder and anxiety disorders as precursors of bipolar disorder onset in adulthood. Br J Psychiatry. 2018;213(3):555–60.PubMedCrossRefGoogle Scholar
  134. 134.
    Cannon TD, Van Erp TGM, Rosso IM, Huttunen M, Lönnqvist J, Pirkola T, et al. Fetal hypoxia and structural brain abnormalities in schizophrenic patients, their siblings, and controls. Arch Gen Psychiatry. 2002;59(1):35–41.PubMedCrossRefGoogle Scholar
  135. 135.
    World Health Organization. The ICD-10 classification of mental and behavioural disorders. Int Classif. 1992.Google Scholar
  136. 136.
    Min JA, Lee CU, Lee C. Mental health promotion and illness prevention: a challenge for psychiatrists. Psychiatry Investig. 2013;10(4):307–16.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    National Collaborating Centre for Mental Health (UK). The management and support of children and young people on the autism spectrum. NICE clinical guideline. 2013.Google Scholar
  138. 138.
    Datta SS, Kumar A, Wright SD, Furtado VA, Russell PS. Evidence base for using atypical antipsychotics for psychosis in adolescents. Schizophr Bull. 2014;40(2):252–4.PubMedCrossRefGoogle Scholar
  139. 139.
    Kornør H, Bergman H, Hanssen-Bauer K, Soares-Weiser K, Tollefsen TK, Bjørndal A. Client feedback in psychological therapy for children and adolescents with mental health problems. Cochrane Database Syst Rev. 2018;8:CD011729.Google Scholar
  140. 140.
    Correll CU. Assessing and maximizing the safety and tolerability of antipsychotics used in the treatment of children and adolescents. J Clin Psychiatry. 2008;69(Suppl 4):26–36.PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Gonzalo Salazar de Pablo
    • 1
  • Julio David Vaquerizo Serrano
    • 2
  • Sandra Gómez Vallejo
    • 1
  • Javier Sánchez Cerezo
    • 2
  • Carmen Moreno Ruiz
    • 3
    Email author
  1. 1.Institute of Psychiatry, Psychology, and NeuroscienceKing’s College LondonLondonUK
  2. 2.Psychiatry Department, School of MedicineHospital General Universitario Gregorio Marañón, Universidad Complutense (UCM)MadridSpain
  3. 3.Child and Adolescent Psychiatry Department, School of MedicineHospital General Universitario Gregorio Marañón, Universidad Complutense (UCM), IiSGM, CIBERSAMMadridSpain

Personalised recommendations