Advertisement

Modeling Psychiatric Diseases with Induced Pluripotent Stem Cells

  • Eline van Hugte
  • Nael Nadif KasriEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1192)

Abstract

Neuropsychiatric disorders are a heterogeneous group of disorders that are challenging to model and treat, due to their underlying complex genetic architecture and clinical variability. Presently, increasingly more studies are making use of induced pluripotent stem cell (iPSC)-derived neurons, reprogrammed from patient somatic cells, to model neuropsychiatric disorders. iPSC-derived neurons offer the possibility to recapitulate relevant disease biology in the context of the individual patient genetic background. In addition to disease modeling, iPSC-derived neurons offer unprecedented opportunities in drug screening. In this chapter, the current status of iPSC disease modeling for neuropsychiatric disorders is presented. Both 2D and 3D disease modeling approaches are discussed as well as the generation of different neuronal cell types that are relevant for studying neuropsychiatric disorders. Moreover, the advantages and limitations are highlighted in addition to the future perspectives of using iPSC-derived neurons in the uncovering of robust cellular phenotypes that consecutively have the potential to lead to clinical developments.

Keywords

Autism Bipolar disorder Disease modeling iPSCs Neuropsychiatric disorders Neuronal differentiation Schizophrenia Human-induced pluripotent stem cells 

References

  1. 1.
    Dawson TM, Golde TE, Lagier-Tourenne C. Animal models of neurodegenerative diseases. Nat Neurosci. 2018;21(10):1370–9.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Soldner F, Jaenisch R. Stem cells, genome editing, and the path to translational medicine. Cell. 2018;175(3):615–32.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Engle SJ, Blaha L, Kleiman RJ. Best practices for translational disease modeling using human iPSC-derived neurons. Neuron. 2018;100(4):783–97.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.CrossRefGoogle Scholar
  5. 5.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Murray CJ, Barber RM, Foreman KJ, Ozgoren AA, Abd-Allah F, Abera SF, et al. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition. The Lancet. 2015;386(10009):2145–91.CrossRefGoogle Scholar
  7. 7.
    Soliman M, Aboharb F, Zeltner N, Studer L. Pluripotent stem cells in neuropsychiatric disorders. Mol Psychiatry. 2017;22(9):1241.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry. 2003;60(12):1187–92.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Lander ES. Initial impact of the sequencing of the human genome. Nature. 2011;470(7333):187.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    McClellan J, King M-C. Genetic heterogeneity in human disease. Cell. 2010;141(2):210–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Ripke S, Neale BM, Corvin A, Walters JT, Farh K-H, Holmans PA, et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421.CrossRefGoogle Scholar
  12. 12.
    Dolmetsch R, Geschwind DH. The human brain in a dish: the promise of iPSC-derived neurons. Cell. 2011;145(6):831–4.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Geschwind DH. Autism: many genes, common pathways? Cell. 2008;135(3):391–5.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Wen Z, Christian KM, Song H, Ming G-l. Modeling psychiatric disorders with patient-derived iPSCs. Curr Opin Neurobiol. 2016;36:118–27.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Cooper GM, Shendure J. Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data. Nat Rev Genet. 2011;12(9):628.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Ward LD, Kellis M. Interpreting noncoding genetic variation in complex traits and human disease. Nat Biotechnol. 2012;30(11):1095.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA, et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet. 2000;9(9):1415–23.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Sachs N, Sawa A, Holmes S, Ross C, DeLisi L, Margolis R. A frameshift mutation in disrupted in schizophrenia 1 in an American family with schizophrenia and schizoaffective disorder. Mol Psychiatry. 2005;10(8):758.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Wen Z, Nguyen HN, Guo Z, Lalli MA, Wang X, Su Y, et al. Synaptic dysregulation in a human iPS cell model of mental disorders. Nature. 2014;515(7527):414.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23(2):185.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell. 2010;143(4):527–39.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Griesi-Oliveira K, Acab A, Gupta AR, Sunaga DY, Chailangkarn T, Nicol X, et al. Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons. Mol Psychiatry. 2015;20(11):1350.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Ben-Ari Y. Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci. 2002;3(9):728.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Tang X, Kim J, Zhou L, Wengert E, Zhang L, Wu Z, et al. KCC2 rescues functional deficits in human neurons derived from patients with Rett syndrome. Proc Natl Acad Sci. 2016;113(3):751–6.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    He Q, Nomura T, Xu J, Contractor A. The developmental switch in GABA polarity is delayed in fragile X mice. J Neurosci. 2014;34(2):446–50.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Hyde TM, Lipska BK, Ali T, Mathew SV, Law AJ, Metitiri OE, et al. Expression of GABA signaling molecules KCC2, NKCC1, and GAD1 in cortical development and schizophrenia. J Neurosci. 2011;31(30):11088–95.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Arion D, Lewis DA. Altered expression of regulators of the cortical chloride transporters NKCC1 and KCC2 in schizophrenia. Arch Gen Psychiatry. 2011;68(1):21–31.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Sun C, Zhang L, Chen G. An unexpected role of neuroligin-2 in regulating KCC2 and GABA functional switch. Mol Brain. 2013;6(1):23.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kim JY, Liu CY, Zhang F, Duan X, Wen Z, Song J, et al. Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell. 2012;148(5):1051–64.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Linda K, Fiuza C, Kasri NN. The promise of induced pluripotent stem cells for neurodevelopmental disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2018;84:382–91.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature. 2011;473(7346):221.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Madison JM, Zhou F, Nigam A, Hussain A, Barker DD, Nehme R, et al. Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities. Mol Psychiatry. 2015;20(6):703.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Hoffman GE, Schrode N, Flaherty E, Brennand KJ. New considerations for hiPSC-based models of neuropsychiatric disorders. Mol Psychiatry. 2018:1.Google Scholar
  34. 34.
    Doherty JL, Owen MJ. Genomic insights into the overlap between psychiatric disorders: implications for research and clinical practice. Genome Med. 2014;6(4):29.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hoekstra SD, Stringer S, Heine VM, Posthuma D. Genetically-informed patient selection for iPSC studies of complex diseases may aid in reducing cellular heterogeneity. Front Cell Neurosci. 2017;11:164.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Mariani J, Coppola G, Zhang P, Abyzov A, Provini L, Tomasini L, et al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell. 2015;162(2):375–90.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Byrne SM, Mali P, Church GM. Genome editing in human stem cells. Methods Enzym. 2014;546. p. 119–38.Google Scholar
  39. 39.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013:1231143.Google Scholar
  40. 40.
    Redies C, Hertel N, Hübner CA. Cadherins and neuropsychiatric disorders. Brain Res. 2012;1470:130–44.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Hinz L, Hoekstra SD, Watanabe K, Posthuma D, Heine VM. Generation of isogenic controls for in vitro disease modelling of X-chromosomal disorders. Stem Cell Rev Rep. 2018:1–10.Google Scholar
  42. 42.
    Srivastava R, Faust T, Ramos A, Ishizuka K, Sawa A. Dynamic changes of the mitochondria in psychiatric illnesses: new mechanistic insights from human neuronal models. Biol Psychiatry. 2018.Google Scholar
  43. 43.
    Fujikura J, Nakao K, Sone M, Noguchi M, Mori E, Naito M, et al. Induced pluripotent stem cells generated from diabetic patients with mitochondrial DNA A3243G mutation. Diabetologia. 2012;55(6):1689–98.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Prigione A, Lichtner B, Kuhl H, Struys EA, Wamelink M, Lehrach H, et al. Human induced pluripotent stem cells harbor homoplasmic and heteroplasmic mitochondrial DNA mutations while maintaining human embryonic stem cell-like metabolic reprogramming. Stem Cells. 2011;29(9):1338–48.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Hämäläinen RH, Manninen T, Koivumäki H, Kislin M, Otonkoski T, Suomalainen A. Tissue-and cell-type-specific manifestations of heteroplasmic mtDNA 3243A > G mutation in human induced pluripotent stem cell-derived disease model. Proc Natl Acad Sci. 2013;110(38):E3622–30.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Watmuff B, Berkovitch SS, Huang JH, Iaconelli J, Toffel S, Karmacharya R. Disease signatures for schizophrenia and bipolar disorder using patient-derived induced pluripotent stem cells. Mol Cell Neurosci. 2016;73:96–103.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012;489(7416):391.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Steen RG, Mull C, Mcclure R, Hamer RM, Lieberman JA. Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. Br J Psychiatry. 2006;188(6):510–8.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Arnone D, Cavanagh J, Gerber D, Lawrie S, Ebmeier K, McIntosh A. Magnetic resonance imaging studies in bipolar disorder and schizophrenia: meta-analysis. Br J Psychiatry. 2009;195(3):194–201.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Reif A, Fritzen S, Finger M, Strobel A, Lauer M, Schmitt A, et al. Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry. 2006;11(5):514.PubMedCrossRefGoogle Scholar
  51. 51.
    Glantz LA, Lewis DA. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry. 2000;57(1):65–73.PubMedCrossRefGoogle Scholar
  52. 52.
    Song J, Hou X, Hu X, Lu C, Liu C, Wang J, et al. Not only serotonergic system, but also dopaminergic system involved in albiflorin against chronic unpredictable mild stress-induced depression-like behavior in rats. Chem Biol Interact. 2015;242:211–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Javitt D. Negative schizophrenic symptomatology and the PCP (phencyclidine) model of schizophrenia. Hillside J Clin Psychiatry. 1987;9(1):12–35.PubMedGoogle Scholar
  54. 54.
    Engel J. Excitation and inhibition in epilepsy. Can J Neurol Sci. 1996;23(3):167–74.PubMedCrossRefGoogle Scholar
  55. 55.
    Selten M, van Bokhoven H, Kasri NN. Inhibitory control of the excitatory/inhibitory balance in psychiatric disorders. F1000Research. 2018;7.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Fatemi SH, Halt AR, Stary JM, Kanodia R, Schulz SC, Realmuto GR. Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol Psychiat. 2002;52(8):805–10.PubMedCrossRefGoogle Scholar
  57. 57.
    Enwright JF, Sanapala S, Foglio A, Berry R, Fish KN, Lewis DA. Reduced labeling of parvalbumin neurons and perineuronal nets in the dorsolateral prefrontal cortex of subjects with schizophrenia. Neuropsychopharmacology. 2016;41(9):2206.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Cooper O, Hargus G, Deleidi M, Blak A, Osborn T, Marlow E, et al. Differentiation of human ES and Parkinson’s disease iPS cells into ventral midbrain dopaminergic neurons requires a high activity form of SHH, FGF8a and specific regionalization by retinoic acid. Mol Cell Neurosci. 2010;45(3):258–66.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Yu DX, Di Giorgio FP, Yao J, Marchetto MC, Brennand K, Wright R, et al. Modeling hippocampal neurogenesis using human pluripotent stem cells. Stem Cell Rep. 2014;2(3):295–310.CrossRefGoogle Scholar
  60. 60.
    Shi Y, Kirwan P, Livesey FJ. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc. 2012;7(10):1836.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Lu J, Zhong X, Liu H, Hao L, Huang CT-L, Sherafat MA, et al. Generation of serotonin neurons from human pluripotent stem cells. Nat Biotechnol. 2016;34(1):89.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Soldner F, Jaenisch R. iPSC disease modeling. Science. 2012;338(6111):1155–6.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Yang N, Chanda S, Marro S, Ng Y-H, Janas JA, Haag D, et al. Generation of pure GABAergic neurons by transcription factor programming. Nat Methods. 2017;14(6):621.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Zhang Y, Pak C, Han Y, Ahlenius H, Zhang Z, Chanda S, et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron. 2013;78(5):785–98.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Schafer ST, Paquola AC, Stern S, Gosselin D, Ku M, Pena M, et al. Pathological priming causes developmental gene network heterochronicity in autistic subject-derived neurons. Nat Neurosci. 2019:1.Google Scholar
  66. 66.
    Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, et al. Induction of human neuronal cells by defined transcription factors. Nature. 2011;476(7359):220.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, et al. Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci. 2011;108(25):10343–8.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Victor MB, Richner M, Hermanstyne TO, Ransdell JL, Sobieski C, Deng P-Y, et al. Generation of human striatal neurons by microRNA-dependent direct conversion of fibroblasts. Neuron. 2014;84(2):311–23.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Son EY, Ichida JK, Wainger BJ, Toma JS, Rafuse VF, Woolf CJ, et al. Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell. 2011;9(3):205–18.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Salter MW, Stevens B. Microglia emerge as central players in brain disease. Nat Med. 2017;23(9):1018.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Barbosa IG, Machado-Vieira R, Soares JC, Teixeira AL. The immunology of bipolar disorder. NeuroImmunomodulation. 2014;21(2–3):117–22.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Khandaker GM, Cousins L, Deakin J, Lennox BR, Yolken R, Jones PB. Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry. 2015;2(3):258–70.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Petanjek Z, Judaš M, Šimić G, Rašin MR, Uylings HB, Rakic P, et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci. 2011;108(32):13281–6.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Feinberg I. Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiatr Res. 1982;17(4):319–34.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Sellgren CM, Gracias J, Watmuff B, Biag JD, Thanos JM, Whittredge PB, et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat Neurosci. 2019:1.Google Scholar
  76. 76.
    Radewicz K, Garey LJ, Gentleman SM, Reynolds R. Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. J Neuropathol Exp Neurol. 2000;59(2):137–50.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E, et al. Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C] PK11195 positron emission tomography study. Biol Psychiat. 2008;64(9):820–2.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Ohgidani M, Kato TA, Kanba S. Introducing directly induced microglia-like (iMG) cells from fresh human monocytes: a novel translational research tool for psychiatric disorders. Front Cell Neurosci. 2015;9:184.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Espuny-Camacho I, Michelsen KA, Gall D, Linaro D, Hasche A, Bonnefont J, et al. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron. 2013;77(3):440–56.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Windrem MS, Osipovitch M, Liu Z, Bates J, Chandler-Militello D, Zou L, et al. Human iPSC glial mouse chimeras reveal glial contributions to schizophrenia. Cell Stem Cell. 2017;21(2):195–208. e6.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Kadoshima T, Sakaguchi H, Nakano T, Soen M, Ando S, Eiraku M, et al. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc Natl Acad Sci. 2013;110(50):20284–9.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Quadrato G, Brown J, Arlotta P. The promises and challenges of human brain organoids as models of neuropsychiatric disease. Nat Med. 2016;22(11):1220.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Paşca SP. Assembling human brain organoids. Science. 2019;363(6423):126–7.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Birey F, Andersen J, Makinson CD, Islam S, Wei W, Huber N, et al. Assembly of functionally integrated human forebrain spheroids. Nature. 2017;545(7652):54.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Ormel PR, de Sá RV, van Bodegraven EJ, Karst H, Harschnitz O, Sneeboer MA, et al. Microglia innately develop within cerebral organoids. Nat Commun. 2018;9(1):4167.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Park J, Wetzel I, Marriott I, Dréau D, D’Avanzo C, Kim DY, et al. A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease. Nat Neurosci. 2018;21(7):941.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Rubenstein J, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes, Brain Behav. 2003;2(5):255–67.CrossRefGoogle Scholar
  88. 88.
    Mertens J, Wang Q-W, Kim Y, Diana XY, Pham S, Yang B, et al. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature. 2015;527(7576):95.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Vadodaria KC, Ji Y, Skime M, Paquola A, Nelson T, Hall-Flavin D, et al. Serotonin-induced hyperactivity in SSRI-resistant major depressive disorder patient-derived neurons. Mol Psychiatry. 2019:1.Google Scholar
  90. 90.
    Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, et al. Epigenetic memory in induced pluripotent stem cells. Nature. 2010;467(7313):285.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Yang N, Ng YH, Pang ZP, Südhof TC, Wernig M. Induced neuronal cells: how to make and define a neuron. Cell Stem Cell. 2011;9(6):517–25.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Vadodaria KC, Amatya DN, Marchetto MC, Gage FH. Modeling psychiatric disorders using patient stem cell-derived neurons: a way forward. Genome Med. 2018;10(1):1.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Studer L, Vera E, Cornacchia D. Programming and reprogramming cellular age in the era of induced pluripotency. Cell Stem Cell. 2015;16(6):591–600.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Human GeneticsRadboudumc, Donders Institute for Brain, Cognition, and BehaviourNijmegenThe Netherlands
  2. 2.Academic Center for Epileptology KempenhaegheHeezeThe Netherlands
  3. 3.Department of Cognitive NeuroscienceRadboudumc, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands

Personalised recommendations