Advertisement

Big Data and Discovery Sciences in Psychiatry

  • Kyoung-Sae Na
  • Changsu Han
  • Yong-Ku KimEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1192)

Abstract

The modern society is a so-called era of big data. Whereas nearly everybody recognizes the “era of big data”, no one can exactly define how big the data is a “big data”. The reason for the ambiguity of the term big data mainly arises from the widespread of using that term. Along the widespread application of the digital technology in the everyday life, a large amount of data is generated every second in relation with every human behavior (i.e., measuring body movements through sensors, texts sent and received via social networking services). In addition, nonhuman data such as weather and Global Positioning System signals has been cumulated and analyzed in perspectives of big data (Kan et al. in Int J Environ Res Public Health 15(4), 2018 [1]). The big data has also influenced the medical science, which includes the field of psychiatry (Monteith et al. in Int J Bipolar Disord 3(1):21, 2015 [2]). In this chapter, we first introduce the definition of the term “big data”. Then, we discuss researches which apply big data to solve problems in the clinical practice of psychiatry.

Keywords

Big data Psychiatry Electronic health records Suicide Delirium 

References

  1. 1.
    Kan Z, Tang L, Kwan MP, Zhang X. Estimating vehicle fuel consumption and emissions using GPS big data. Int J Environ Res Public Health. 2018;15(4).CrossRefGoogle Scholar
  2. 2.
    Monteith S, Glenn T, Geddes J, Bauer M. Big data are coming to psychiatry: a general introduction. Int J Bipolar Disord. 2015;3(1):21.CrossRefGoogle Scholar
  3. 3.
    Shneiderman B, editor. Extreme visualization: squeezing a billion records into a million pixels. In: Proceedings of the 2008 ACM SIGMOD international conference on management of data. ACM SIGMOD international conference on management of data. Canada, Vancouver: ACM; 2008.Google Scholar
  4. 4.
    Dumbill E. Making sense of big data. Big Data. 2013;1(1):1–2.CrossRefGoogle Scholar
  5. 5.
    SAS Institute Inc. Big data: what it is and why it matters; 2018. https://www.sas.com/en_us/insights/big-data/what-is-big-data.html#dmhistory.
  6. 6.
    Wolfe PJ. Making sense of big data. Proc Natl Acad Sci USA. 2013;110(45):18031–2.CrossRefGoogle Scholar
  7. 7.
    Westcott K. Netflix’s data-driven strategy strengthens claim for ‘Best Original Content’ in 2018. Forbes; 2018. Updated 28 May 2018. https://www.forbes.com/sites/kristinwestcottgrant/2018/05/28/netflixs-data-driven-strategy-strengthens-lead-for-best-original-content-in-2018/#83ea93d3a94e.
  8. 8.
    Jain A. The 5 Vs of big data. IBM; 2016. https://www.ibm.com/blogs/watson-health/the-5-vs-of-big-data/.
  9. 9.
    Borne K. Top 10 list—the Vs of big data: data science central; 2014. https://www.datasciencecentral.com/profiles/blogs/top-10-list-the-v-s-of-big-data.
  10. 10.
    Sharpened Productions. What units of measurement are used for data storage? Sharpened Productions; 2018. Updated 13 Oct 2012. https://techterms.com/help/data_storage_units_of_measurement.
  11. 11.
    IDC. The digital universe: driving data growth in healthcare. IDC; 2014. https://www.emc.com/analyst-report/digital-universe-healthcare-vertical-report-ar.pdf.
  12. 12.
    Hilbert M, Lopez P. The world’s technological capacity to store, communicate, and compute information. Science. 2011;332(6025):60–5.CrossRefGoogle Scholar
  13. 13.
    Tcheng JE. So just what is “Big Data”? In: 64th annual scientific session & expo. San Diego, CA, USA; 2015.Google Scholar
  14. 14.
    SINTEF. Big Data, for better or worse: 90% of world’s data generated over last two years. ScienceDaily; 2013. https://www.sciencedaily.com/releases/2013/05/130522085217.htm.
  15. 15.
  16. 16.
    Hassell J. Using big data for financial fraud prevention. Hortonworks; 2018. https://hortonworks.com/article/using-big-data-for-financial-fraud-prevention/.
  17. 17.
  18. 18.
    Fung K. Google Flu Trends’ failure shows good data > big data. Harvard Business Review; 2014. https://hbr.org/2014/03/google-flu-trends-failure-shows-good-data-big-data.
  19. 19.
    Lazer D, Kennedy R, King G, Vespignani A. Big data. The parable of Google Flu: traps in big data analysis. Science. 2014;343(6176):1203–5.CrossRefGoogle Scholar
  20. 20.
    Butler D. When Google got flu wrong. Nature. 2013;494(7436):155–6.CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Kim J-A, Yoon S, Kim L-Y, Kim D-S. Towards actualizing the value potential of Korea health insurance review and assessment (HIRA) data as a resource for health research: strengths, limitations, applications, and strategies for optimal use of HIRA data. J Korean Med Sci. 2017;32(5):718–28.CrossRefGoogle Scholar
  23. 23.
    Torous J, Staples P, Onnela JP. Realizing the potential of mobile mental health: new methods for new data in psychiatry. Curr Psychiatry Rep. 2015;17(8):602.CrossRefGoogle Scholar
  24. 24.
    Turnbaugh PJ, Gordon JI. An invitation to the marriage of metagenomics and metabolomics. Cell. 2008;134(5):708–13.CrossRefGoogle Scholar
  25. 25.
    Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18(1):83.CrossRefGoogle Scholar
  26. 26.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA: American Psychiatric Publishing; 2013.CrossRefGoogle Scholar
  27. 27.
    Goldberg D. Psychopathology and classification in psychiatry. Soc Psychiatry Psychiatr Epidemiol. 2015;50(1):1–5.CrossRefGoogle Scholar
  28. 28.
    Hoff P. Do social psychiatry and neurosciences need psychopathology-and if yes, what for? Int Rev Psychiatry. 2008;20(6):515–20.CrossRefGoogle Scholar
  29. 29.
    Fanous AH, Kendler KS. Genetic heterogeneity, modifier genes, and quantitative phenotypes in psychiatric illness: searching for a framework. Mol Psychiatry. 2005;10(1):6–13.CrossRefGoogle Scholar
  30. 30.
    Hodgson K, McGuffin P, Lewis CM. Advancing psychiatric genetics through dissecting heterogeneity. Hum Mol Genet. 2017;26(R2):R160–5.CrossRefGoogle Scholar
  31. 31.
    Hafner H. Descriptive psychopathology, phenomenology, and the legacy of Karl Jaspers. Dialogues Clin Neurosci. 2015;17(1):19–29.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, et al. The mini-international neuropsychiatric interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59 Suppl 20:22–33;quiz 4–57.Google Scholar
  33. 33.
    Cooper L, Peters L, Andrews G. Validity of the composite international diagnostic interview (CIDI) psychosis module in a psychiatric setting. J Psychiatr Res. 1998;32(6):361–8.CrossRefGoogle Scholar
  34. 34.
    OECD Data. Suicide rates 2018. OECD; 2018. https://data.oecd.org/healthstat/suicide-rates.htm
  35. 35.
    Han DG, Kang SG, Cho SJ, Cho SE, Na KS. Suicide methods according to age and sex: an analysis of data of 239,565 suicide victims in the Republic of Korea from 1991 to 2015. J Nerv Ment Dis. 2018;206(10):770–5.CrossRefGoogle Scholar
  36. 36.
    Pedersen CB. The danish civil registration system. Scand J Public Health. 2011;39(7 Suppl):22–5.CrossRefGoogle Scholar
  37. 37.
    Lin Y, Huang S, Simon GE, Liu S. Data-based decision rules to personalize depression follow-up. Sci Rep. 2018;8(1):5064.CrossRefGoogle Scholar
  38. 38.
    Malhi GS, Das P, Outhred T, Irwin L, Morris G, Hamilton A, et al. Understanding suicide: Focusing on its mechanisms through a lithium lens. J Affect Disord. 2018;241:338–47.CrossRefGoogle Scholar
  39. 39.
    Dwivedi Y. MicroRNAs in depression and suicide: recent insights and future perspectives. J Affect Disord. 2018;240:146–54.CrossRefGoogle Scholar
  40. 40.
    Nock MK, Dempsey CL, Aliaga PA, Brent DA, Heeringa SG, Kessler RC, et al. Psychological autopsy study comparing suicide decedents, suicide ideators, and propensity score matched controls: results from the study to assess risk and resilience in service members (Army STARRS). Psychol Med. 2017;47(15):2663–74.CrossRefGoogle Scholar
  41. 41.
    Barak-Corren Y, Castro VM, Javitt S, Hoffnagle AG, Dai Y, Perlis RH, et al. Predicting suicidal behavior from longitudinal electronic health records. Am J Psychiatry. 2017;174(2):154–62.CrossRefGoogle Scholar
  42. 42.
    McCoy TH Jr, Castro VM, Roberson AM, Snapper LA, Perlis RH. Improving prediction of suicide and accidental death after discharge from general hospitals with natural language processing. JAMA Psychiatry. 2016;73(10):1064–71.CrossRefGoogle Scholar
  43. 43.
    Choi SB, Lee W, Yoon JH, Won JU, Kim DW. Ten-year prediction of suicide death using Cox regression and machine learning in a nationwide retrospective cohort study in South Korea. J Affect Disord. 2018;231:8–14.CrossRefGoogle Scholar
  44. 44.
    Blagus R, Lusa L. SMOTE for high-dimensional class-imbalanced data. BMC Bioinform. 2013;14:106.CrossRefGoogle Scholar
  45. 45.
    Inc. F. How Facebook AI helps suicide prevention. Facebook Inc.; 2018. https://newsroom.fb.com/news/2018/09/inside-feed-suicide-prevention-and-ai/.
  46. 46.
    Inouye SK, Westendorp RG, Saczynski JS. Delirium in elderly people. Lancet. 2014;383(9920):911–22.CrossRefGoogle Scholar
  47. 47.
    Leslie DL, Marcantonio ER, Zhang Y, Leo-Summers L, Inouye SK. One-year health care costs associated with delirium in the elderly population. Arch Intern Med. 2008;168(1):27–32.CrossRefGoogle Scholar
  48. 48.
    Furukawa TA. Prognosis of delirium. Evid Based Ment Health. 2017;20(2):53–4.CrossRefGoogle Scholar
  49. 49.
    Ahmed S, Leurent B, Sampson EL. Risk factors for incident delirium among older people in acute hospital medical units: a systematic review and meta-analysis. Age Ageing. 2014;43(3):326–33.CrossRefGoogle Scholar
  50. 50.
    Halladay CW, Sillner A, Rudolph JL. Performance of electronic prediction rules for prevalent delirium at hospital admission. JAMA Netw Open. 2018;1(4):e181405.CrossRefGoogle Scholar
  51. 51.
    Wong A, Young AT, Liang AS, Gonzales R, Douglas VC, Hadley D. Development and validation of an electronic health record-based machine learning model to estimate delirium risk in newly hospitalized patients without known cognitive impairment. JAMA Netw Open. 2018;1(4):e181018.CrossRefGoogle Scholar
  52. 52.
    Pang KY. Hwabyung: the construction of a Korean popular illness among Korean elderly immigrant women in the United States. Cult Med Psychiatry. 1990;14(4):495–512.CrossRefGoogle Scholar
  53. 53.
    Tonai S, Maezawa M, Kamei M, Satoh T, Fukui T. Illness behavior of housewives in a rural area in Japan: a health diary study. Cult Med Psychiatry. 1989;13(4):405–17.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of PsychiatryGachon University Gil Medical CenterIncheonRepublic of Korea
  2. 2.Department of Psychiatry, College of MedicineKorea UniversitySeoulRepublic of Korea

Personalised recommendations