Advertisement

Molecular Dynamics of Co-signal Molecules in T-Cell Activation

  • Takashi SaitoEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1189)

Abstract

T-cell activation is induced through the TCR microcluster (TCR-MC), which is generated by dynamically recruiting the TCR, kinases, and adaptors to trigger the full activation signal. Co-stimulation receptors also accumulate, mostly at the TCR-MC, and induce signals that positively and negatively modulate the direction and magnitude of T-cell activation. CD28 initially colocalizes with the TCR-MC but then migrates to a distinct region of the cSMAC called the signaling cSMAC, where it recruits and associates with PKCθ, CARMA1, and Rltpr to induce sustained co-stimulation signals leading to NF-kB activation. Although CTLA-4 and PD-1 mediate inhibitory functions in T-cell activation, their molecular dynamics are quite different. Both are expressed only after activation, when they function as feedback inhibition of T-cell activation. Whereas PD-1 initially accumulates in the TCR-MC and then moves to the cSMAC, CTLA-4 directly accumulates at the cSMAC. PD-1 inhibits activation by inducing dephosphorylation of TCR-upstream signaling molecules by transiently recruiting SHP2, whereas CTLA-4 competes with CD28 for CD80/86 binding within the signaling cSMAC. In general, for both positive and negative co-stimulation, these co-stimulation receptors are also clustered in a ligand-dependent fashion, and their colocalization with the TCR-MC is required to mediate co-stimulation signals.

Keywords

Imaging TCR signaling Microclusters Immune synapse Co-stimulation CD28 CTLA-4 PD-1 

Notes

Acknowledgments

We thank M.L. Dustin, M. Tokunaga, H. Yagita, M. Azuma, and T. Honjo for the collaboration; T. Yokosuka and A. Hashimoto-Tane for the main study; W. Kobayashi, M. Takamatsu, M. Sakuma, and M. Unno for the technical help; and M. Yoshioka and H. Yamaguchi for the secretarial help.

References

  1. Aguado E, Richelme S, Nuñez-Cruz S, Miazek A, Mura AM, Richelme M, Guo XJ, Sainty D, He HT, Malissen B, Malissen M (2002) Induction of T helper type 2 immunity by a point mutation in the LAT adaptor. Science 296:2036–2040PubMedCrossRefGoogle Scholar
  2. Au-Yeung BB, Deindl S, Hwu LY, Palacios EH, Levin SE, Kuriyan J, Weiss A (2009 Mar) The structure, regulation and function of ZAP-70. Immunol Rev 228:41–57PubMedCrossRefGoogle Scholar
  3. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682–687PubMedCrossRefGoogle Scholar
  4. Bunnell SC, Hong DI, Kardon JR, Yamazaki T, McGlade CJ, Bar VA, Samelson LE (2002) T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J Cell Biol 158:1263–1275PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bunnell SC, Singer AL, Hong DI, Jacque BH, Jordan MS, Seminario MC, Barr VA, Koretzky GA, Samelson LE (2006) Persistence of cooperatively stabilized signaling clusters derives T-cell activation. Mol Cell Biol 26:7155–7166PubMedPubMedCentralCrossRefGoogle Scholar
  6. Chuang E, Fisher TS, Morgan RW, Robbins MD, Duerr JM, Vander Heiden MG, Gardner JP, Hambor JE, Neveu MJ, Thompson CB (2000) The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 13:313–322PubMedCrossRefPubMedCentralGoogle Scholar
  7. Egan JG, Allison JP (2002) Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity 16:23–35CrossRefGoogle Scholar
  8. Fos C, Salles A, Lang V, Carrette F, Audebert S, Pastor S, Ghiotto M, Olive D, Bismuth G, Nunès JA (2008) ICOS ligation recruits the p50alpha PI3K regulatory subunit to the immunological synapse. J Immunol 181:1969–1977PubMedCrossRefGoogle Scholar
  9. Good MC, Zalatan JG, Lim WA (2011) Scaffold proteins: hubs for controlling the flow of cellular information. Science 332:680–686PubMedPubMedCentralCrossRefGoogle Scholar
  10. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227PubMedCrossRefGoogle Scholar
  11. Hara H, Saito T (2009) CARD9 vs. CARMA1 in innate and adaptive immunities. Trends Immunol 30:234–242PubMedCrossRefGoogle Scholar
  12. Hara H, Yokosuka T, Hirakawa H, Ishihara C, Yasukawa S, Yamazaki M, Koseki H, Yoshida H, Saito T (2015) Clustering of CARMA1 through SH3-GUK domain interactions is required for its activation of NF-kB signaling. Nat Commun 6:5555PubMedCrossRefGoogle Scholar
  13. Harada Y, Ohgai D, Watanabe R, Okano K, Koiwai O, Tanabe K, Toma H, Altman A, Abe R (2003) A single amino acid alteration in cytoplasmic domain determines IL-2 promoter activation by ligation of CD28 but not inducible costimulator (ICOS). J Exp Med 197:257–162PubMedPubMedCentralCrossRefGoogle Scholar
  14. Harding FA, McArthur JG, Gross JA, Raulet DH, Allison JP (1992) CD28-mediated signaling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 356:607–609PubMedCrossRefPubMedCentralGoogle Scholar
  15. Hashimoto-Tane A, Sakuma M, Ike H, Yokosuka T, Kimura Y, Ohara O, Saito T (2016) Micro adhesion-ring surrounding TCR microclusters are essential for T cell activation. J Exp Med 213:1609–1625PubMedPubMedCentralCrossRefGoogle Scholar
  16. Hutloff A, Dittrich AM, Beier KC, Eljaschewitsch B, Kraft R, Anagnostopoulos I, Kroczek RA (1999) ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397:263–266PubMedCrossRefGoogle Scholar
  17. Iida T, Ohno H, Nakaseko C, Sakuma M, Takeda-Ezaki M, Arase H, Kominami E, Fujisawa T, Saito T (2000) Regulation of cell surface expression of CTLA-4 by secretion of CTLA-4-containing lysosomes upon activation of CD4+ T cells. J Immunol 165:5062–5068PubMedCrossRefGoogle Scholar
  18. Jordan MS, Singer AL, Koretzky GA (2003) Adaptors as central mediators of signal transduction in immune cells. Nat Immunol 4:110–116PubMedCrossRefGoogle Scholar
  19. Krummel MF, Sjaastad MD, Wulfin D, Davis MM (2000) Differential clustering of CD4 and CD3zeta during T cell recognition. Science 289:1349–1352PubMedCrossRefGoogle Scholar
  20. Lee KH, Dinner AR, Tu C, Campi F, Rachaudhuri S, Verma R, Sims TN, Burack WR, Wu H, Wang J, Kanagawa O, Markiewicz M, Allen PM, Dustin ML, Chakraborty AK, Shaw AS (2003) The immunological synapse balances T cell receptor signaling and degradation. Science 302:1218–1222PubMedCrossRefGoogle Scholar
  21. Lenz G, Davis RE, Ngo VN, Lam L, George TC, Wright GW, Dave SS, Zhao H, Xu W, Rosenwald A, Ott G, Muller-Hermelink HK, Gascoyne RD, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smeland EB, Fisher RI, Chan WC, Staudt LM (2008) Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science 319:1676–1679PubMedCrossRefGoogle Scholar
  22. Liang Y, Cucchetti M, Roncagalli R, Yokosuka T, Malzac A, Bertosio E, Imbert J, Nijman IJ, Suchanek M, Saito T, Wülfing C, Malissen B, Malissen M (2013) The lymphoid lineage-specific actin-uncapping protein Rltpr is essential for costimulation via CD28 and the development of regulatory T cells. Nat Immunol 14:858–866PubMedCrossRefGoogle Scholar
  23. Linsley PS, Bradshaw J, Greene J, Peach R, Bennett KL, Mittler RS (1996) Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity 4:535–543PubMedCrossRefGoogle Scholar
  24. Lui Y, Davis SJ (2018) LAG-3: a very singular immune checkpoint. Nat Immunol 19:1278–1279PubMedCrossRefGoogle Scholar
  25. Monks CR, Freiburg BA, Kupfer H, Sciaky N, Kupfer A (1998) Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395:82–86PubMedCrossRefGoogle Scholar
  26. Nguyen LT, Ohashi PS (2015) Clinical blockage of PD1 and LAG3 – potential mechanisms of action. Nat Rev Immunol 15:45–56PubMedCrossRefPubMedCentralGoogle Scholar
  27. Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, Sasayama S, Mizoguchi A, Hiai H, Minato N, Honjo T (2001) Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291:319–322PubMedCrossRefPubMedCentralGoogle Scholar
  28. Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T (2001) PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci U S A 98:13866–13871PubMedPubMedCentralCrossRefGoogle Scholar
  29. Pages F, Ragueneau M, Rottapel R, Truneh A, Nunes J, Imbert J, Olive D (1994) Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T cell signaling. Nature 369:327–329PubMedCrossRefGoogle Scholar
  30. Raab M, Cai YC, Bunnell SC, Heyeck SD, Berg LJ, Rudd CE (1995) p56Lck and p59Fyn regulate CD28 binding to phosphatidylinositol-3-kinase, growth factor receptor-bound protein GRB-2, and T cell-specific protein-tyrosine kinase ITK: implications for T cell costimulation. Proc Natl Acad Sci U S A 92:8891–8895PubMedPubMedCentralCrossRefGoogle Scholar
  31. Roncagalli R, Cucchetti M, Jarmuzynski N, Grégoire C, Bergot E, Audebert S, Baudelet E, Menoita MG, Joachim A, Durand S, Suchanek M, Fiore F, Zhang L, Liang Y, Camoin L, Malissen M, Malissen B (2016) The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells. J Exp Med 213:2437–2457PubMedPubMedCentralCrossRefGoogle Scholar
  32. Rudd CE, Schneider H (2003) Unifying concepts in CD28, ICOS and CTLA4 co-receptor signaling. Nat Rev Immunol 3:544–556PubMedCrossRefGoogle Scholar
  33. Saito T (1998) Negative regulation of T cell activation. Curr Opin Immunol 10:313–321PubMedCrossRefGoogle Scholar
  34. Saito T, Yokosuka T, Hashimoto-Tane A (2010) Dynamic regulation of T cell activation and co-stimulation through TCR-microclusters. FEBS Lett 584:4865–4871PubMedCrossRefGoogle Scholar
  35. Samelson LE (2002) Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu Rev Immunol 20:371–394PubMedCrossRefGoogle Scholar
  36. Schwartz RH (2003) T cell anergy. Annu Rev Immunol 21:305–334PubMedCrossRefGoogle Scholar
  37. Sharpe AH, Freeman GJ (2002) The B7-CD28 superfamily. Nat Rev Immunol 2:116–126PubMedCrossRefGoogle Scholar
  38. Shiratori T, Miyatake S, Ohno H, Nakaseko C, Isono K, Bonifatino JS, Saito T (1997) Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity 6:583–589PubMedCrossRefPubMedCentralGoogle Scholar
  39. Sommers CL, Park CS, Lee J, Feng C, Fuller CL, Grinberg A, Hildebrand JA, Lacaná E, Menon RK, Shores EW, Samelson LE, Love PE (2002) A LAT mutation that inhibits T cell development yet induces lymphoproliferation. Science 296:2040–2043PubMedCrossRefGoogle Scholar
  40. Thome M (2004) CARMA1, BCL-10 and MALT1 in lymphocyte development and activation. Nat Rev Immunol 4:348–359PubMedCrossRefGoogle Scholar
  41. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454PubMedPubMedCentralCrossRefGoogle Scholar
  42. Triebel F, Jitsukawa S, Baixeras E, Roman-Roman S, Genevee C, Viegas-Pequignot E, Hercend T (1990) LAG-3, a novel lymphocyte activation gene closely related to CD4. J Exp Med 171:1393–1405PubMedCrossRefGoogle Scholar
  43. Villalba M, Coudronniere N, Deckert M, Teixeiro E, Mas P, Altman A (2000) A novel functional interaction between Vav and PKCtheta is required for TCR-induced T cell activation. Immunity 12:151–160PubMedCrossRefGoogle Scholar
  44. Watanabe R, Harada Y, Takeda K, Takahashi J, Ohnuki K, Ogawa S, Ohgai D, Kaibara N, Koiwai O, Tanabe K et al (2006) Grb2 and Gads exhibit different interactions with CD28 and play distinct roles in CD28-medaited costimulation. J Immunol 177:1085–1091PubMedCrossRefGoogle Scholar
  45. Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, Thompson CB, Griesser H, Mak TW (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270:985–988PubMedCrossRefPubMedCentralGoogle Scholar
  46. Yokosuka T, Saito T (2010) The immunological synapse, TCR microclusters, and T cell activation. Curr Top Microbiol Immunol 340:81–108PubMedGoogle Scholar
  47. Yokosuka T, Sakata-Sogawa K, Kobayashi W, Hiroshima M, Hashimoto-Tane A, Tokunaga M, Dustin ML, Saito T (2005) Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat Immunol 6:1253–1262PubMedCrossRefGoogle Scholar
  48. Yokosuka T, Kobayashi W, Sakata-Sogawa K, Takamatsu M, Hashimoto-Tane A, Dustin M, Tokunaga M, Saito T (2008) Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase c-θ translocation. Immunity 29:589–601PubMedPubMedCentralCrossRefGoogle Scholar
  49. Yokosuka T, Kobayashi W, Takamatsu M, Sakata-Sogawa K, Zeng H, Yagita H, Takunaga M, Saito T (2010) Spatiotemporal basis of CTLA-4 costimulatory molecule-mediated negative regulation of T cell activation. Immunity 33:1–14CrossRefGoogle Scholar
  50. Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T (2012) Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med 209:1201–1217PubMedPubMedCentralCrossRefGoogle Scholar
  51. Zhang Y, Allison JP (1997) Interaction of CTLA-4 with AP50, a clathrin-coated pit adaptor protein. Proc Natl Acad Sci U S A 94:9273–9278PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Laboratory for Cell SignalingRIKEN Center for Integrative Medical SciencesYokohamaJapan

Personalised recommendations