Central Auditory Processing

  • Harunori Ohmori


How sensation is created in the brain is still one of the greatest mysteries of neuroscience. Perhaps, the sensation is not formed in the telencephalon alone, but it should be created in a more dynamic manner through the interaction of ascending and descending signals in the subcortical nuclei. The integrated sensory signals in the telencephalon are transmitted back to the subcortical nuclei through the descending cortico-fugal pathways and will modulate the processing of ascending signals. Through the feedback activity, sensation will be formed as a refined neural activity. All these processes of neural activity would make even the adult cortex plastic, ultimately.


Auditory signal processing Auditory cortical plasticity Song learning in song birds Cortico-fugal projection Photometric patch electrode 


  1. Aamodt SM, Kozlowski MR, Nordeen EJ, Nordeen KW (1992) Distribution and developmental change in [3H]MK-801 binding within zebra finch song nuclei. J Neurobiol 23(8):997–1005PubMedCrossRefPubMedCentralGoogle Scholar
  2. Akerboom J, Chen TW, Wardill TJ, Tian L, Marvin JS, Mutlu S, Calderón NC, Esposti F, Borghuis BG, Sun XR, Gordus A, Orger MB, Portugues R, Engert F, Macklin JJ, Filosa A, Aggarwal A, Kerr RA, Takagi R, Kracun S, Shigetomi E, Khakh BS, Baier H, Lagnado L, Wang SS, Bargmann CI, Kimmel BE, Jayaraman V, Svoboda K, Kim DS, Schreiter ER, Looger LL (2012) Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci 32(40):13819–13840PubMedPubMedCentralCrossRefGoogle Scholar
  3. Akutagawa E, Konishi M (2010) New brain pathways found in the vocal control system of a songbird. J Comp Neurol 518(15):3086–3100PubMedCrossRefPubMedCentralGoogle Scholar
  4. Arnold AP, Bottjer SW, Brenowitz EA, Nordeen EJ, Nordeen KW (1986) Sexual dimorphisms in the neural vocal control system in song birds: ontogeny and phylogeny. Brain Behav Evol 28(1–3):22–31PubMedCrossRefPubMedCentralGoogle Scholar
  5. Aronov D, Andalman AS, Fee MS (2008) A specialized forebrain circuit for vocal babbling in the juvenile songbird. Science 320(5876):630–634PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bakin JS, Weinberger NM (1996) Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis. Proc Natl Acad Sci U S A 93(20):11219–11224PubMedPubMedCentralCrossRefGoogle Scholar
  7. Basham ME, Nordeen EJ, Nordeen KW (1996) Blockade of NMDA receptors in the anterior forebrain impairs sensory acquisition in the zebra finch (Poephila guttata). Neurobiol Learn Mem 66(3):295–304PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bauer EE, Coleman MJ, Roberts TF, Roy A, Prather JF, Mooney R (2008) A synaptic basis for auditory-vocal integration in the songbird. J Neurosci 28(6):1509–1522PubMedPubMedCentralCrossRefGoogle Scholar
  9. Berardi N, Pizzorusso T, Maffei L (2000) Critical periods during sensory development. Curr Opin Neurobiol 10(1):138–145PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bjordahl TS, Dimyan MA, Weinberger NM (1998) Induction of long-term receptive field plasticity in the auditory cortex of the waking guinea pig by stimulation of the nucleus basalis. Behav Neurosci 112(3):467–479PubMedCrossRefPubMedCentralGoogle Scholar
  11. Boettiger CA, Doupe AJ (2001) Developmentally restricted synaptic plasticity in a songbird nucleus required for song learning. Neuron 31(5):809–818PubMedCrossRefGoogle Scholar
  12. Bottjer SW, Johnson F (1997) Circuits, hormones, and learning: vocal behavior in songbirds. J Neurobiol 33(5):602–618PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bottjer SW, Miesner EA, Arnold AP (1984) Forebrain lesions disrupt development but not maintenance of song in passerine birds. Science 224(4651):901–903PubMedCrossRefGoogle Scholar
  14. Brainard MS, Doupe AJ (2002) What songbirds teach us about learning. Nature 417(6886):351–358PubMedCrossRefGoogle Scholar
  15. Brainard MS, Knudsen EI (1998) Sensitive periods for visual calibration of the auditory space map in the barn owl optic tectum. J Neurosci 18(10):3929–3942PubMedPubMedCentralCrossRefGoogle Scholar
  16. Buller RM, Janik JE, Sebring ED, Rose JA (1981) Herpes simplex virus types 1 and 2 completely help adenovirus-associated virus replication. J Virol 40(1):241–247PubMedPubMedCentralGoogle Scholar
  17. Bullock TH, Hagiwara S (1957) Intracellular recording from the giant synapse of the squid. J Gen Physiol 40(4):565–577PubMedPubMedCentralCrossRefGoogle Scholar
  18. Buonomano DV, Merzenich MM (1998) Cortical plasticity: from synapses to maps. Annu Rev Neurosci 21:149–186PubMedCrossRefGoogle Scholar
  19. Casamenti F, Deffenu G, Abbamondi AL, Pepeu G (1986) Changes in cortical acetylcholine output induced by modulation of the nucleus basalis. Brain Res Bull 6(5):689–695CrossRefGoogle Scholar
  20. Chuhma N, Koyano K, Ohmori H (2001) Synchronisation of neurotransmitter release during postnatal development in a calyceal presynaptic terminal of rat. J Physiol 530(Pt 1):93–104PubMedPubMedCentralCrossRefGoogle Scholar
  21. DeVoogd T, Nottebohm F (1981) Gonadal hormones induce dendritic growth in the adult avian brain. Science 214(4517):202–204PubMedCrossRefGoogle Scholar
  22. Doupe AJ, Solis MM, Kimpo R, Boettiger CA (2004) Cellular, circuit, and synaptic mechanisms in song learning. Ann N Y Acad Sci 1016:495–523PubMedCrossRefGoogle Scholar
  23. Elliott TM, Theunissen FE (2011) Chapter 20: The avian auditory pallium. In: Winer JA, Schreier CE (eds) The auditory cortex. Springer, New York, pp 429–442CrossRefGoogle Scholar
  24. Fagiolini M, Hensch TK (2000) Inhibitory threshold for critical-period activation in primary visual cortex. Nature 404(6774):183–186PubMedCrossRefGoogle Scholar
  25. Fagiolini M, Fritschy JM, Löw K, Möhler H, Rudolph U, Hensch TK (2004) Specific GABAA circuits for visual cortical plasticity. Science 303(5664):1681–1683PubMedCrossRefGoogle Scholar
  26. Feldman DE, Knudsen EI (1994) NMDA and non-NMDA glutamate receptors in auditory transmission in the barn owl inferior colliculus. J Neurosci 14(10):5939–5958PubMedPubMedCentralCrossRefGoogle Scholar
  27. Froemke RC, Merzenich MM, Schreiner CE (2007) A synaptic memory trace for cortical receptive field plasticity. Nature 450(7168):425–429PubMedCrossRefGoogle Scholar
  28. Furukawa T (1981) Effects of efferent stimulation on the saccule of goldfish. J Physiol 315:203–215PubMedPubMedCentralCrossRefGoogle Scholar
  29. Galambos R (1956) Suppression of auditory nerve activity by stimulation of efferent fibers to cochlea. J Neurophysiol 19(5):424–437PubMedCrossRefGoogle Scholar
  30. Gao E, Suga N (2000) Experience-dependent plasticity in the auditory cortex and the inferior colliculus of bats: role of the corticofugal system. Proc Natl Acad Sci U S A 97(14):8081–8086PubMedPubMedCentralCrossRefGoogle Scholar
  31. Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73:862–885PubMedCrossRefGoogle Scholar
  32. Helmchem F, Borst JG, Sakmann B (1997) Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. Biophys J 72(3):1458–1471CrossRefGoogle Scholar
  33. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2(12):932–940PubMedCrossRefGoogle Scholar
  34. Hirai Y, Nishino E, Ohmori H (2015) Simultaneous recording of fluorescence and electrical signals by photometric patch electrode in deep brain regions in vivo. J Neurophysiol 113(10):3930–3942PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hodgkin AL, Huxley AF, Katz B (1952) Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol 116(4):424–448PubMedPubMedCentralCrossRefGoogle Scholar
  36. Huang ZJ, Kirkwood A, Pizzorusso T, Porciatti V, Morales B, Bear MF, Maffei L, Tonegawa S (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98(6):739–755PubMedCrossRefGoogle Scholar
  37. Hyde PS, Knudsen EI (2002) The optic tectum controls visually guided adaptive plasticity in the owl’s auditory space map. Nature 415(6867):73–76PubMedCrossRefGoogle Scholar
  38. Iyengar S, Viswanathan SS, Bottjer SW (1999) Development of topography within song control circuitry of zebra finches during the sensitive period for song learning. J Neurosci 19(14):6037–6057PubMedPubMedCentralCrossRefGoogle Scholar
  39. Jen PH, Zhou X (2003) Corticofugal modulation of amplitude domain processing in the midbrain of the big brown bat, Eptesicus fuscus. Hear Res 184(1–2):91–106PubMedCrossRefPubMedCentralGoogle Scholar
  40. Keller GB, Hahnloser RH (2009) Neural processing of auditory feedback during vocal practice in a songbird. Nature 457(7226):187–190PubMedCrossRefPubMedCentralGoogle Scholar
  41. Knudsen EI (2002) Instructed learning in the auditory localization pathway of the barn owl. Nature 417(6886):322–328PubMedCrossRefPubMedCentralGoogle Scholar
  42. Knudsen EI, Konishi M (1978) Space and frequency are represented separately in auditory midbrain of the owl. J Neurophysiol 41(4):870–884PubMedCrossRefPubMedCentralGoogle Scholar
  43. Knudsen EI, Konishi M (1979) Mechanisms of sound localization in the barn owl (Tyto alba). J Comp Physiol 133:13–21CrossRefGoogle Scholar
  44. Knudsen EI, Knudsen PF, Esterly SD (1984) A critical period for the recovery of sound localization accuracy following monaural occlusion in the barn owl. J Neurosci 4(4):1012–1020PubMedPubMedCentralCrossRefGoogle Scholar
  45. Leonardo A, Konishi M (1999) Decrystallization of adult birdsong by perturbation of auditory feedback. Nature 399(6735):466–470PubMedCrossRefPubMedCentralGoogle Scholar
  46. Luo M, Perkel DJ (1999) A GABAergic, strongly inhibitory projection to a thalamic nucleus in the zebra finch song system. J Neurosci 19(15):6700–6711PubMedPubMedCentralCrossRefGoogle Scholar
  47. Luo M, Ding L, Perkel DJ (2001) An avian basal ganglia pathway essential for vocal learning forms a closed topographic loop. J Neurosci 21(17):6836–6845PubMedPubMedCentralCrossRefGoogle Scholar
  48. Ma X, Suga N (2001) Plasticity of bat’s central auditory system evoked by focal electric stimulation of auditory and/or somatosensory cortices. J Neurophysiol 85(3):1078–1087PubMedCrossRefPubMedCentralGoogle Scholar
  49. Malmierca MS, Ryugo DK (2011) Chapter 9: Descending connections of auditory cortex to the midbrain and brain stem. In: Winer JA, Schreier CE (eds) The auditory cortex. Springer, New York, pp 189–208CrossRefGoogle Scholar
  50. Marler P, Peters S, Ball GF, Dufty AM Jr, Wingfield JC (1988) The role of sex steroids in the acquisition and production of birdsong. Nature 336(6201):770–772PubMedCrossRefGoogle Scholar
  51. Matsui R, Tanabe Y, Watanabe D (2012) Avian adeno-associated virus vector efficiently transduces neurons in the embryonic and post-embryonic chicken brain. PLoS One 7(11):e48730PubMedPubMedCentralCrossRefGoogle Scholar
  52. Mittmann W, Wallace DJ, Czubayko U, Herb JT, Schaefer AT, Looger LL, Denk W, Kerr JN (2011) Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo. Nat Neurosci 14(8):1089–1093PubMedCrossRefGoogle Scholar
  53. Morrison RG, Nottebohm F (1993) Role of a telencephalic nucleus in the delayed song learning of socially isolated zebra finches. J Neurobiol 24(8):1045–1064PubMedCrossRefGoogle Scholar
  54. Murayama M, Pérez-Garci E, Lüscher HR, Larkum ME (2007) Fiberoptic system for recording dendritic calcium signals in layer 5 neocortical pyramidal cells in freely moving rats. J Neurophysiol 98(3):1791–1805PubMedCrossRefGoogle Scholar
  55. Nordeen KW, Nordeen EJ (1992) Auditory feedback is necessary for the maintenance of stereotyped song in adult zebra finches. Behav Neural Biol 57(1):58–66PubMedCrossRefGoogle Scholar
  56. Nottebohm F (1980) Testosterone triggers growth of brain vocal control nuclei in adult female canaries. Brain Res 189(2):429–436PubMedCrossRefPubMedCentralGoogle Scholar
  57. Nottebohm F (1981) A brain for all seasons: cyclical anatomical changes in song control nuclei of the canary brain. Science 214(4527):1368–1370PubMedCrossRefGoogle Scholar
  58. Nottebohm F, Kelley DB, Paton JA (1982) Connections of vocal control nuclei in the canary telencephalon. J Comp Neurol 207(4):344–357PubMedCrossRefGoogle Scholar
  59. Ono M, Oliver DL (2014) The balance of excitatory and inhibitory synaptic inputs for coding sound location. J Neurosci 34(10):3779–3792PubMedPubMedCentralCrossRefGoogle Scholar
  60. Polley DB, Steinberg EE, Merzenich MM (2006) Perceptual learning directs auditory cortical map reorganization through top-down influences. J Neurosci 26(18):4970–4982PubMedPubMedCentralCrossRefGoogle Scholar
  61. Rasmusson DD, Clow K, Szerb JC (1992) Frequency-dependent increase in cortical acetylcholine release evoked by stimulation of the nucleus basalis magnocellularis in the rat. Brain Res 594(1):150–154PubMedCrossRefGoogle Scholar
  62. Roberts TF, Tschida KA, Klein ME, Mooney R (2010) Rapid spine stabilization and synaptic enhancement at the onset of behavioural learning. Nature 463(7283):948–952PubMedPubMedCentralCrossRefGoogle Scholar
  63. Roberts TF, Gobes SM, Murugan M, Ölveczky BP, Mooney R (2012) Motor circuits are required to encode a sensory model for imitative learning. Nat Neurosci 15(10):1454–1459PubMedPubMedCentralCrossRefGoogle Scholar
  64. Saldaña E, Feliciano M, Mugnaini E (1996) Distribution of descending projections from primary auditory neocortex to inferior colliculus mimics the topography of intracollicular projections. J Comp Neurol 371(1):15–40PubMedCrossRefGoogle Scholar
  65. Scharff C, Nottebohm F (1991) A comparative study of the behavioral deficits following lesions of various parts of the zebra finch song system: implications for vocal learning. J Neurosci 11(9):2896–2913PubMedPubMedCentralCrossRefGoogle Scholar
  66. Schofield BR (2009) Projections to the inferior colliculus from layer VI cells of auditory cortex. Neuroscience 159(1):246–258PubMedCrossRefGoogle Scholar
  67. Sohrabji F, Nordeen EJ, Nordeen KW (1990) Selective impairment of song learning following lesions of a forebrain nucleus in the juvenile zebra finch. Behav Neural Biol 53(1):51–63PubMedCrossRefGoogle Scholar
  68. Steriade M, Nuñez A, Amzica F (1993) A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci 13(8):3252–3265PubMedPubMedCentralCrossRefGoogle Scholar
  69. Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci U S A 100(12):7319–7324PubMedPubMedCentralCrossRefGoogle Scholar
  70. Suga N, Ma X (2003) Multiparametric cortico-fugal modulation and plasticity in the auditory system. Nat Rev Neurosci 4(10):783–794PubMedCrossRefPubMedCentralGoogle Scholar
  71. Tanaka M, Sun F, Li Y, Mooney R (2018) A mesocortical dopamine circuit enables the cultural transmission of vocal behavior. Nature 563:117–120PubMedPubMedCentralCrossRefGoogle Scholar
  72. Vallentin D, Kosche G, Lipkind D, Long MA (2016) Neural circuits. Inhibition protects acquired song segments during vocal learning in zebra finches. Science 351(6270):267–271PubMedPubMedCentralCrossRefGoogle Scholar
  73. Vu ET, Mazurek ME, Kuo YC (1994) Identification of a forebrain motor programming network for the learned song of zebra finches. J Neurosci 14(11 Pt 2):6924–6934PubMedPubMedCentralCrossRefGoogle Scholar
  74. Wang Y, Brzozowska-Prechtl A, Karten HJ (2010) Laminar and columnar auditory cortex in avian brain. Proc Natl Acad Sci U S A 107(28):12676–12681PubMedPubMedCentralCrossRefGoogle Scholar
  75. Wang Y, Zorio DAR, Karten HJ (2017) Heterogeneous organization and connectivity of the chicken auditory thalamus (Gallus gallus). J Comp Neurol 525(14):3044–3071PubMedPubMedCentralCrossRefGoogle Scholar
  76. Weinberger NM (1995) Dynamic regulation of receptive fields and maps in the adult sensory cortex. Annu Rev Neurosci 18:129–158PubMedPubMedCentralCrossRefGoogle Scholar
  77. Whaling CS, Soha JA, Nelson DA, Lasley B, Marler P (1998) Photoperiod and tutor access affect the process of vocal learning. Anim Behav 56(5):1075–1082PubMedCrossRefGoogle Scholar
  78. Wild JM, Karten HJ, Frost BJ (1993) Connections of the auditory forebrain in the pigeon (Columba livia). J Comp Neurol 337(1):32–62PubMedCrossRefGoogle Scholar
  79. Winer JA, Larue DT, Diehl JJ, Hefti BJ (1998) Auditory cortical projections to the cat inferior colliculus. J Comp Neurol 400(2):147–174PubMedCrossRefGoogle Scholar
  80. Yan J, Ehret G (2002) Corticofugal modulation of midbrain sound processing in the house mouse. Eur J Neurosci 16(1):119–128PubMedCrossRefGoogle Scholar
  81. Yan W, Suga N (1998) Cortico-fugal modulation of the midbrain frequency map in the bat auditory system. Nat Neurosci 1(1):54–58PubMedCrossRefGoogle Scholar
  82. Yan J, Zhang Y, Ehret G (2005) Cortico-fugal shaping of frequency tuning curves in the central nucleus of the inferior colliculus of mice. J Neurophysiol 93(1):71–83PubMedCrossRefGoogle Scholar
  83. Zhang Y, Suga N (2000) Modulation of responses and frequency tuning of thalamic and collicular neurons by cortical activation in mustached bats. J Neurophysiol 84(1):325–333PubMedCrossRefGoogle Scholar
  84. Zheng W, Knudsen EI (1999) Functional selection of adaptive auditory space map by GABAA-mediated inhibition. Science 284(5416):962–965PubMedCrossRefPubMedCentralGoogle Scholar
  85. Zhou X, Jen PH (2000) Brief and short-term cortico-fugal modulation of subcortical auditory responses in the big brown bat, Eptesicus fuscus. J Neurophysiol 84(6):3083–3087PubMedCrossRefPubMedCentralGoogle Scholar
  86. Zhou X, Jen PH (2005) Cortico-fugal modulation of directional sensitivity in the midbrain of the big brown bat, Eptesicus fuscus. Hear Res 203(1–2):201–215PubMedCrossRefPubMedCentralGoogle Scholar
  87. Zhou X, Panizzutti R, de Villers-Sidani E, Madeira C, Merzenich MM (2011) Natural restoration of critical period plasticity in the juvenile and adult primary auditory cortex. J Neurosci 31(15):5625–5634PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Harunori Ohmori
    • 1
  1. 1.Faculty of MedicineEmeritus Professor of Kyoto UniversityKyotoJapan

Personalised recommendations