Advertisement

Myelin pp 123-144 | Cite as

Oligodendrocyte Physiology Modulating Axonal Excitability and Nerve Conduction

  • Yoshihiko YamazakiEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1190)

Abstract

Oligodendrocytes enable saltatory conduction by forming a myelin sheath around axons, dramatically boosts action potential conduction velocity. In addition to this canonical function of oligodendrocytes, it is now known that oligodendrocytes can respond to neuronal activity and regulate axonal conduction. Importantly, white matter plasticity, including adaptive responses by oligodendrocytes, has been shown to be involved in learning and memory. In this chapter, the role of oligodendrocytes in axonal conduction and axonal excitability will be reviewed. Focus will be paid to the mechanisms through which oligodendrocytes, including perineuronal oligodendrocytes, facilitate and suppress axonal conduction.

Keywords

Action potential Conduction velocity Hippocampus Myelin 

References

  1. Adriano E, Perasso L, Panfoli I, Ravera S, Gandolfo C, Mancardi G, Morelli A, Balestrino M (2011) A novel hypothesis about mechanisms affecting conduction velocity of central myelinated fibers. Neurochem Res 36:1732–1739PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ahmed Z (2014) Trans-spinal direct current stimulation modifies spinal cord excitability through synaptic and axonal mechanisms. Physiol Rep.  https://doi.org/10.14814/phy2.12157 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Andreasen M, Nedergaard S (2017) Furosemide depresses the presynaptic fiber volley and modifies frequency-dependent axonal excitability in rat hippocampus. J Neurophysiol 117:1512–1523PubMedPubMedCentralCrossRefGoogle Scholar
  4. Arancibia-Cárcamo IL, Ford MC, Cossell L, Ishida K, Tohyama K, Attwell D (2017) Node of Ranvier length as a potential regulator of myelinated axon conduction speed. elife.  https://doi.org/10.7554/eLife.23329
  5. Bagayogo IP, Dreyfus CF (2009) Regulated release of BDNF by cortical oligodendrocytes is mediated through metabotropic glutamate receptors and the PLC pathway. ASN Neuro.  https://doi.org/10.1042/AN20090006 CrossRefGoogle Scholar
  6. Bakkum DJ, Chao ZC, Potter SM (2008) Long-term activity-dependent plasticity of action potential propagation delay and amplitude in cortical networks. PLoS One.  https://doi.org/10.1371/journal.pone.0002088 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Battefeld A, Klooster J, Kole MH (2016) Myelinating satellite oligodendrocytes are integrated in a glial syncytium constraining neuronal high-frequency activity. Nat Commun.  https://doi.org/10.1038/ncomms11298
  8. Benarroch EE (2008) Adenosine and its receptors: multiple modulatory functions and potential therapeutic targets for neurologic disease. Neurology 70:231–236PubMedCrossRefPubMedCentralGoogle Scholar
  9. Berman S, O’Neill J, Fears S, Bartzokis G, London ED (2008) Abuse of amphetamines and structural abnormalities in the brain. Ann N Y Acad Sci 1141:195–220PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39PubMedCrossRefGoogle Scholar
  11. Bucher D (2016) Contribution of axons to short-term dynamics of neuronal communication. In: Rockland K (ed) Axons and brain architecture. Academic, Cambridge, pp 245–263CrossRefGoogle Scholar
  12. Bucher D, Goaillard JM (2011) Beyond faithful conduction: short-term dynamics, neuromodulation, and long-term regulation of spike propagation in the axon. Prog Neurobiol 94:307–346PubMedPubMedCentralCrossRefGoogle Scholar
  13. Butt AM, Tutton M (1992) Response of oligodendrocytes to glutamate and gamma-aminobutyric acid in the intact mouse optic nerve. Neurosci Lett 146:108–110PubMedCrossRefGoogle Scholar
  14. Chida K, Kaneko K, Fujii S, Yamazaki Y (2015) Activity-dependent modulation of the axonal conduction of action potentials along rat hippocampal mossy fibers. Eur J Neurosci 41:45–54PubMedCrossRefGoogle Scholar
  15. de Hoz L, Simons M (2014) The emerging functions of oligodendrocytes in regulating neuronal network behavior. BioEssays 37:60–69PubMedCrossRefGoogle Scholar
  16. Debanne D, Campanac E, Bialowas A, Carlier E, Alcaraz G (2011) Axon physiology. Physiol Rev 91:555–602PubMedCrossRefGoogle Scholar
  17. Del Río Hortega P (1928) Tercera aportación al conocimiento morfológico e interpretación funcional de la oligodendroglía. Mem R Soc Esp Hist Nat 14:5–122Google Scholar
  18. Dellal SS, Luo R, Otis TS (2012) GABAA receptors increase excitability and conduction velocity of cerebellar parallel fiber axons. J Neurophysiol 107:2958–2970PubMedPubMedCentralCrossRefGoogle Scholar
  19. Di Lazzaro V, Ranieri F, Profice P, Pilato F, Mazzone P, Capone F, Insola A, Oliviero A (2013) Transcranial direct current stimulation effects on the excitability of corticospinal axons of the human cerebral cortex. Brain Stimul 6:641–643PubMedCrossRefGoogle Scholar
  20. Domercq M, Perez-Samartin A, Aparicio D, Alberdi E, Pampliega O, Matute C (2010) P2X7 receptors mediate ischemic damage to oligodendrocytes. Glia 58:730–740PubMedPubMedCentralGoogle Scholar
  21. Fields RD (2010) Change in the brain’s white matter. Science 330:768–769PubMedPubMedCentralCrossRefGoogle Scholar
  22. Fields RD (2011) Nonsynaptic and nonvesicular ATP release from neurons and relevance to neuron–glia signaling. Semi Cell Devel Biol 22:214–219CrossRefGoogle Scholar
  23. Ford MC, Alexandrova O, Cossell L, Stange-Marten A, Sinclair J, Kopp-Scheinpflug C, Pecka M, Attwell D, Grothe B (2015) Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing. Nat Commun.  https://doi.org/10.1038/ncomms9073
  24. Frühbeis C, Fröhlich D, Kuo WP, Amphornrat J, Thilemann S, Saab AS, Kirchhoff F, Möbius W, Goebbels S, Nave KA, Schneider A, Simons M, Klugmann M, Trotter J, Krämer-Albers EM (2013) Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol.  https://doi.org/10.1371/journal.pbio.1001604 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Fujii S, Tanaka KF, Ikenaka K, Yamazaki Y (2014) Increased adenosine levels in mice expressing mutant glial fibrillary acidic protein in astrocytes result in failure of induction of LTP reversal (depotentiation) in hippocampal CA1 neurons. Brain Res 1578:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  26. Gilbert P, Kettenmann H, Schachner M (1984) Gamma-aminobutyric acid directly depolarizes cultured oligodendrocytes. J Neurosci 4:561–569PubMedPubMedCentralCrossRefGoogle Scholar
  27. Haas HL, Selbach O (2000) Functions of neuronal adenosine receptors. Naunyn Schmiedeberg’s Arch Pharmacol 362:375–381CrossRefGoogle Scholar
  28. Hirano A, Llena JE (1995). Morphology of central nervous system axons. In: Waxman SG, Kocsis JD, Stys PK (eds) The axon. Oxford University Press, New York, p49–67CrossRefGoogle Scholar
  29. Huff TB, Shi Y, Sun W, Wu W, Shi R, Cheng JX (2011) Real-time CARS imaging reveals a calpain-dependent pathway for paranodal myelin retraction during high-frequency stimulation. PLoS One.  https://doi.org/10.1371/journal.pone.0017176 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Jankowska E, Kaczmarek D, Bolzoni F, Hammar I (2017) Long-lasting increase in axonal excitability after epidurally applied DC. J Neurophysiol 118:1210–1220PubMedPubMedCentralCrossRefGoogle Scholar
  31. Jia Y, Yamazaki Y, Nakauchi S, Ito K, Sumikawa K (2010) Nicotine facilitates long-term potentiation induction in oriens-lacunosum moleculare cells via Ca2+ entry through non-alpha7 nicotinic acetylcholine receptors. Eur J Neurosci 31:463–476PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kettenmann H, Gilbert P, Schachner M (1984) Depolarization of cultured oligodendrocytes by glutamate and GABA. Neurosci Lett 47:271–276PubMedCrossRefPubMedCentralGoogle Scholar
  33. Kiernan MC, Kaji R (2013) Physiology and pathophysiology of myelinated nerve fibers. In: Said G, Krarup C (eds) Peripheral nerve disorders. Handbook of clinical neurology, vol 115. Elsevier, Amsterdam, pp 43–53CrossRefGoogle Scholar
  34. Kochunov P, Du X, Moran LV, Sampath H, Wijtenburg SA, Yang Y, Rowland LM, Stein EA, Hong LE (2013) Acute nicotine administration effects on fractional anisotropy of cerebral white matter and associated attention performance. Front Pharmacol.  https://doi.org/10.3389/fphar.2013.00117
  35. Kovalevich J, Corley G, Yen W, Rawls SM, Langford D (2012) Cocaine-induced loss of white matter proteins in the adult mouse nucleus accumbens is attenuated by administration of a β-lactam antibiotic during cocaine withdrawal. Am J Pathol 181:1921–1927PubMedPubMedCentralCrossRefGoogle Scholar
  36. Krause M, Dent EW, Bear JE, Loureiro JJ, Gertler FB (2003) Ena/VASP proteins: regulators of the actin cytoskeleton and cell migration. Annu Rev Cell Dev Biol 19:541–564PubMedCrossRefPubMedCentralGoogle Scholar
  37. Kukley M, Capetillo-Zarate E, Dietrich D (2007) Vesicular glutamate release from axons in white matter. Nat Neurosci 10:311–320CrossRefGoogle Scholar
  38. Lee HU, Yamazaki Y, Tanaka KF, Furuya K, Sokabe M, Hida H, Takao K, Miyakawa T, Fujii S, Ikenaka K (2013) Increased astrocytic ATP release results in enhanced excitability of the hippocampus. Glia 61:210–224PubMedCrossRefGoogle Scholar
  39. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21PubMedCrossRefGoogle Scholar
  40. Micu I, Plemel JR, Lachance C, Proft J, Jansen A, Cummins K, van Minnen J, Stys PK (2016) The molecular physiology of the axo-myelinic synapse. Exp Neurol 276:41–50PubMedCrossRefGoogle Scholar
  41. Monai H, Ohkura M, Tanaka M, Oe Y, Konno A, Hirai H, Mikoshiba K, Itohara S, Nakai J, Iwai Y, Hirase H (2016) Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nat Commun.  https://doi.org/10.1038/ncomms11100
  42. Ochiishi T, Chen L, Yukawa A, Saitoh Y, Sekino Y, Arai T, Nakata H, Miyamoto H (1999) Cellular localization of adenosine A1 receptors in rat forebrain: immunohistochemical analysis using adenosine A1 receptor-specific monoclonal antibody. J Comp Neurol 411:301–316PubMedCrossRefGoogle Scholar
  43. Osanai Y, Shimizu T, Mori T, Yoshimura Y, Hatanaka N, Nambu A, Kimori Y, Koyama S, Kobayashi K, Ikenaka K (2017) Rabies virus-mediated oligodendrocyte labeling reveals a single oligodendrocyte myelinates axons from distinct brain regions. Glia 65:93–105PubMedCrossRefGoogle Scholar
  44. Othman T, Yan H, Rivkees SA (2003) Oligodendrocytes express functional A1 adenosine receptors that stimulate cellular migration. Glia 44:166–172PubMedCrossRefGoogle Scholar
  45. Preston RJ, Waxman SG, Kocsis JD (1983) Effects of 4-aminopyridine on rapidly and slowly conducting axons of rat corpus callosum. Exp Neurol 79:808–820PubMedCrossRefPubMedCentralGoogle Scholar
  46. Ritchie JM (1995) Physiology of axon. In: Waxman SG, Kocsis JD, Stys PK (eds) The axon. Oxford University Press, New York, pp 68–96CrossRefGoogle Scholar
  47. Sakatani K, Chesler M, Hassan AZ (1991) GABAA receptors modulate axonal conduction in dorsal columns of neonatal rat spinal cord. Brain Res 542:273–279PubMedCrossRefPubMedCentralGoogle Scholar
  48. Seidl AH, Rubel EW, Barría A (2014) Differential conduction velocity regulation in ipsilateral and contralateral collaterals innervating brainstem coincidence detector neurons. J Neurosci 34:4914–4949PubMedPubMedCentralCrossRefGoogle Scholar
  49. Stevens B, Porta S, Haak LL, Gallo V, Fields RD (2002) Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36:855–868PubMedPubMedCentralCrossRefGoogle Scholar
  50. Swadlow HA (1982) Impulse conduction in the mammalian brain: physiological properties of individual axons monitored for several months. Science 218:911–913PubMedCrossRefPubMedCentralGoogle Scholar
  51. Swadlow HA (1985) Physiological properties of individual cerebral axons studied in vivo for as long as one year. J Neurophysiol 54:1346–1362PubMedCrossRefGoogle Scholar
  52. Swanson TH, Drazba JA, Rivkees SA (1995) Adenosine A1 receptors are located predominantly on axons in the rat hippocampal formation. J Comp Neurol 363:517–531PubMedCrossRefGoogle Scholar
  53. Swanson TH, Krahl SE, Liu YZ, Drazba JA, Rivkees SA (1998) Evidence for physiologically active axonal adenosine receptors in the rat corpus callosum. Brain Res 784:188–198PubMedCrossRefGoogle Scholar
  54. Tanaka H, Ma J, Tanaka KF, Takao K, Komada M, Tanda K, Suzuki A, Ishibashi T, Baba H, Isa T, Shigemoto R, Ono K, Miyakawa T, Ikenaka K (2009) Mice with altered myelin proteolipid protein gene expression display cognitive deficits accompanied by abnormal neuron-glia interactions and decreased conduction velocities. J Neurosci 29:8363–8371PubMedPubMedCentralCrossRefGoogle Scholar
  55. Tanaka KF, Matsui K, Sasaki T, Sano H, Sugio S, Fan K, Hen R, Nakai J, Yanagawa Y, Hasuwa H, Okabe M, Deisseroth K, Ikenaka K, Yamanaka A (2012) Expanding the repertoire of optogenetically targeted cells with an enhanced gene expression system. Cell Rep.  https://doi.org/10.1016/j.celrep.2012.06.011 PubMedCrossRefGoogle Scholar
  56. Tomassy GS, Berger DR, Chen HH, Kasthuri N, Hayworth KJ, Vercelli A, Seung HS, Lichtman JW, Arlotta P (2014) Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science 344:319–324PubMedPubMedCentralCrossRefGoogle Scholar
  57. Wurtz CC, Ellisman MH (1986) Alterations in the ultrastructure of peripheral nodes of Ranvier associated with repetitive action potential propagation. J Neurosci 6:3133–3143PubMedPubMedCentralCrossRefGoogle Scholar
  58. Yamazaki Y, Hozumi Y, Kaneko K, Li J, Fujii S, Miyakawa H, Kudo Y, Kato H (2005) Direct evidence for mutual interactions between perineuronal astrocytes and interneurons in the CA1 region of the rat hippocampus. Neurosci 134:791–802CrossRefGoogle Scholar
  59. Yamazaki Y, Hozumi Y, Kaneko K, Sugihara T, Fujii S, Goto K, Kato H (2007) Modulatory effects of oligodendrocytes on the conduction velocity of action potentials along axons in the alveus of the rat hippocampal CA1 region. Neuron Glia Biol 3:325–334PubMedCrossRefGoogle Scholar
  60. Yamazaki Y, Hozumi Y, Kaneko K, Fujii S, Goto K, Kato H (2010) Oligodendrocytes: facilitating axonal conduction by more than myelination. Neuroscientist 16:11–18PubMedCrossRefGoogle Scholar
  61. Yamazaki Y, Fujiwara H, Kaneko K, Hozumi Y, Xu M, Ikenaka K, Fujii S, Tanaka KF (2014) Short- and long-term functional plasticity of white matter induced by oligodendrocyte depolarization in the hippocampus. Glia 62:1299–1312PubMedCrossRefPubMedCentralGoogle Scholar
  62. Yamazaki Y, Hozumi Y, Kaneko K, Fujii S (2018) Modulatory effects of perineuronal oligodendrocytes on neuronal activity in the rat hippocampus. Neurochem Res 43:18–31Google Scholar
  63. Zhou W, Ge W, Zeng S, Duan S, Luo Q (2007) Identification and two-photon imaging of oligodendrocyte in CA1 region of hippocampal slices. Biochem Biophysi Res Comm 352:598–602CrossRefGoogle Scholar
  64. Ziskin JL, Nishiyama A, Rubio M, Fukaya M, Bergles DE (2007) Vesicular release of glutamate from unmyelinated axons in white matter. Nat Neurosci 10:321–330PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of PhysiologyYamagata University School of MedicineYamagataJapan

Personalised recommendations