Myelin pp 23-31 | Cite as

Regulatory Mechanism of Peripheral Nerve Myelination by Glutamate-Induced Signaling

  • Toshiyuki ArakiEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1190)


Regulation of differentiation and proliferation of Schwann cells is an essential part of the regulation of peripheral nerve development, degeneration, and regeneration. ZNRF1, a ubiquitin ligase, is expressed in undifferentiated/repair Schwann cells, directs glutamine synthetase to proteasomal degradation, and thereby increase glutamate levels in Schwann cell environment. Glutamate elicits subcellular signaling in Schwann cells via mGluR2 to modulate Neuregulin-1/ErbB2/3 signaling and thereby promote undifferentiated phenotype of Schwann cell.


ZNRF1 ubiquitin ligase Oxidative stress Neuregulin-1 ErbB2/3 Phosphorylation Differentiation Subcellular signaling Glutamate mGluR2 


  1. Ahmadinejad F, Geir Moller S, Hashemzadeh-Chaleshtori M, Bidkhori G, Jami MS (2017) Molecular mechanisms behind free radical scavengers function against oxidative stress. Antioxidants (Basel) 6(3)CrossRefGoogle Scholar
  2. Albrecht J, Sonnewald U, Waagepetersen HS, Schousboe A (2007) Glutamine in the central nervous system: function and dysfunction. Front Biosci 12:332–343CrossRefGoogle Scholar
  3. Araki T, Milbrandt J (2003) ZNRF proteins constitute a family of presynaptic E3 ubiquitin ligases. J Neurosci 23(28):9385–9394CrossRefGoogle Scholar
  4. Araki T, Nagarajan R, Milbrandt J (2001) Identification of genes induced in peripheral nerve after injury. Expression profiling and novel gene discovery. J Biol Chem 276(36):34131–34141CrossRefGoogle Scholar
  5. Boerboom A, Dion V, Chariot A, Franzen R (2017) Molecular mechanisms involved in Schwann cell plasticity. Front Mol Neurosci 10:38CrossRefGoogle Scholar
  6. Bunge MB, Williams AK, Wood PM, Uitto J, Jeffrey JJ (1980) Comparison of nerve cell and nerve cell plus Schwann cell cultures, with particular emphasis on basal lamina and collagen formation. J Cell Biol 84(1):184–202CrossRefGoogle Scholar
  7. Campana WM, Mantuano E, Azmoon P, Henry K, Banki MA, Kim JH et al (2017) Ionotropic glutamate receptors activate cell signaling in response to glutamate in Schwann cells. FASEB J 31(4):1744–1755CrossRefGoogle Scholar
  8. Chen S, Velardez MO, Warot X, Yu ZX, Miller SJ, Cros D et al (2006) Neuregulin 1-erbB signaling is necessary for normal myelination and sensory function. J Neurosci 26(12):3079–3086CrossRefGoogle Scholar
  9. Cooper A (1988) Glutamine synthetase. In: Kvamme E (ed) Glutamine and glutamate in mammals. CRC, Boca Raton, pp 7–31Google Scholar
  10. Coulter DA, Eid T (2012) Astrocytic regulation of glutamate homeostasis in epilepsy. Glia 60(8):1215–1226CrossRefGoogle Scholar
  11. Fawcett JW, Keynes RJ (1990) Peripheral nerve regeneration. Annu Rev Neurosci 13:43–60CrossRefGoogle Scholar
  12. Freidin M, Asche S, Bargiello TA, Bennett MV, Abrams CK (2009) Connexin 32 increases the proliferative response of Schwann cells to neuregulin-1 (Nrg1). Proc Natl Acad Sci U S A 106(9):3567–3572CrossRefGoogle Scholar
  13. Fricker FR, Lago N, Balarajah S, Tsantoulas C, Tanna S, Zhu N et al (2011) Axonally derived neuregulin-1 is required for remyelination and regeneration after nerve injury in adulthood. J Neurosci 31(9):3225–3233CrossRefGoogle Scholar
  14. Gess B, Baets J, De Jonghe P, Reilly MM, Pareyson D, Young P (2015) Ascorbic acid for the treatment of Charcot-Marie-Tooth disease. Cochrane Database Syst Rev (12):CD011952Google Scholar
  15. Grossmann KS, Wende H, Paul FE, Cheret C, Garratt AN, Zurborg S et al (2009) The tyrosine phosphatase Shp2 (PTPN11) directs Neuregulin-1/ErbB signaling throughout Schwann cell development. Proc Natl Acad Sci U S A 106(39):16704–16709CrossRefGoogle Scholar
  16. Hinder LM, Vincent AM, Burant CF, Pennathur S, Feldman EL (2012) Bioenergetics in diabetic neuropathy: what we need to know. J Peripher Nerv Syst 17(Suppl 2):10–14CrossRefGoogle Scholar
  17. Hyung S, Yoon Lee B, Park JC, Kim J, Hur EM, Francis Suh JK (2015) Coculture of primary motor neurons and Schwann cells as a model for in vitro myelination. Sci Rep 5:15122CrossRefGoogle Scholar
  18. Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6(9):671–682CrossRefGoogle Scholar
  19. Jessen KR, Mirsky R (2016) The repair Schwann cell and its function in regenerating nerves. J Physiol 594(13):3521–3531CrossRefGoogle Scholar
  20. Jessen KR, Mirsky R, Lloyd AC (2015) Schwann cells: development and role in nerve repair. Cold Spring Harb Perspect Biol 7(7):a020487CrossRefGoogle Scholar
  21. Kim CH, Lee J, Lee JY, Roche KW (2008) Metabotropic glutamate receptors: phosphorylation and receptor signaling. J Neurosci Res 86(1):1–10CrossRefGoogle Scholar
  22. Leimeroth R, Lobsiger C, Lussi A, Taylor V, Suter U, Sommer L (2002) Membrane-bound neuregulin1 type III actively promotes Schwann cell differentiation of multipotent progenitor cells. Dev Biol 246(2):245–258CrossRefGoogle Scholar
  23. Michailov GV, Sereda MW, Brinkmann BG, Fischer TM, Haug B, Birchmeier C et al (2004) Axonal neuregulin-1 regulates myelin sheath thickness. Science 304(5671):700–703CrossRefGoogle Scholar
  24. Miller KE, Richards BA, Kriebel RM (2002) Glutamine-, glutamine synthetase-, glutamate dehydrogenase- and pyruvate carboxylase-immunoreactivities in the rat dorsal root ganglion and peripheral nerve. Brain Res 945(2):202–211CrossRefGoogle Scholar
  25. Morris JK, Lin W, Hauser C, Marchuk Y, Getman D, Lee KF (1999) Rescue of the cardiac defect in ErbB2 mutant mice reveals essential roles of ErbB2 in peripheral nervous system development. Neuron 23(2):273–283CrossRefGoogle Scholar
  26. Nagarajan R, Le N, Mahoney H, Araki T, Milbrandt J (2002) Deciphering peripheral nerve myelination by using Schwann cell expression profiling. Proc Natl Acad Sci U S A 99(13):8998–9003CrossRefGoogle Scholar
  27. Napoli I, Noon LA, Ribeiro S, Kerai AP, Parrinello S, Rosenberg LH et al (2012) A central role for the ERK-signaling pathway in controlling Schwann cell plasticity and peripheral nerve regeneration in vivo. Neuron 73(4):729–742CrossRefGoogle Scholar
  28. Newbern J, Birchmeier C (2010) Nrg1/ErbB signaling networks in Schwann cell development and myelination. Semin Cell Dev Biol 21(9):922–928CrossRefGoogle Scholar
  29. Oliver CN, Starke-Reed PE, Stadtman ER, Liu GJ, Carney JM, Floyd RA (1990) Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc Natl Acad Sci U S A 87(13):5144–5147CrossRefGoogle Scholar
  30. Passage E, Norreel JC, Noack-Fraissignes P, Sanguedolce V, Pizant J, Thirion X et al (2004) Ascorbic acid treatment corrects the phenotype of a mouse model of Charcot-Marie-Tooth disease. Nat Med 10(4):396–401CrossRefGoogle Scholar
  31. Saifi GM, Szigeti K, Snipes GJ, Garcia CA, Lupski JR (2003) Molecular mechanisms, diagnosis, and rational approaches to management of and therapy for Charcot-Marie-Tooth disease and related peripheral neuropathies. J Investig Med 51(5):261–283CrossRefGoogle Scholar
  32. Saitoh F, Araki T (2010) Proteasomal degradation of glutamine synthetase regulates Schwann cell differentiation. J Neurosci 30(4):1204–1212CrossRefGoogle Scholar
  33. Saitoh F, Wakatsuki S, Tokunaga S, Fujieda H, Araki T (2016) Glutamate signals through mGluR2 to control Schwann cell differentiation and proliferation. Sci Rep 6:29856CrossRefGoogle Scholar
  34. Salzer JL (2008) Switching myelination on and off. J Cell Biol 181(4):575–577CrossRefGoogle Scholar
  35. Sekido H, Suzuki T, Jomori T, Takeuchi M, Yabe-Nishimura C, Yagihashi S (2004) Reduced cell replication and induction of apoptosis by advanced glycation end products in rat Schwann cells. Biochem Biophys Res Commun 320(1):241–248CrossRefGoogle Scholar
  36. Sherman DL, Brophy PJ (2005) Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 6(9):683–690CrossRefGoogle Scholar
  37. Syed N, Reddy K, Yang DP, Taveggia C, Salzer JL, Maurel P et al (2010) Soluble neuregulin-1 has bifunctional, concentration-dependent effects on Schwann cell myelination. J Neurosci 30(17):6122–6131CrossRefGoogle Scholar
  38. Syroid DE, Maycox PR, Burrola PG, Liu N, Wen D, Lee KF et al (1996) Cell death in the Schwann cell lineage and its regulation by neuregulin. Proc Natl Acad Sci U S A 93(17):9229–9234CrossRefGoogle Scholar
  39. Taveggia C, Zanazzi G, Petrylak A, Yano H, Rosenbluth J, Einheber S et al (2005) Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 47(5):681–694CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Peripheral Nervous System ResearchNational Institute of Neuroscience, National Center of Neurology and PsychiatryKodairaJapan

Personalised recommendations