Advertisement

Myelin pp 257-264 | Cite as

Roads to Formation of Normal Myelin Structure and Pathological Myelin Structure

  • Yoshio BandoEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1190)

Abstract

Demyelination and axonal damage are responsible for neurological deficits in demyelinating diseases including multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system. However, the pathology of demyelination and axonal damage in MS is not fully understood. While immunologists have accumulated evidence, which is involved in many immunological events in these diseases, neuroscientists and anatomists have also investigated morphological changes of myelin in these diseases. In this chapter, a new concept of demyelination will be described.

Keywords

MS EAE Demyelination Oligodendrocyte Myelin Axonal degeneration 

References

  1. Bando Y, Nomura T, Bochimoto H, Murakami K, Tanaka T, Watanabe T, Yoshida S (2015) Abnormal morphology of myelin and axonal pathology in murine models of multiple sclerosis. Neurochem Int 81:16–27CrossRefGoogle Scholar
  2. Bando Y, Hagiwara Y, Suzuki Y, Yoshida K, Aburakawa Y, Kimura T, Murakami C, Ono M, Tanaka T, Jiang YP, Mitrovi B, Bochimoto H, Yahara O, Yoshida S (2018) Kallikrein 6 secreted by oligodendrocytes regulates the progression of experimental autoimmune encephalomyelitis. Glia 66(2):359–378CrossRefGoogle Scholar
  3. Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–927CrossRefGoogle Scholar
  4. Blackmore WF (1972) Observations on oligodendrocyte degeneration, the resolution of status spongiosus and remyelination in cuprizone intoxication in mice. J Neuro-Oncol 1:413–426Google Scholar
  5. Campbell GR, Ohno N, Turnbull DM, Mahad DJ (2012) Mitochondrial changes within axons in multiple sclerosis: an update. Curr Opin Neurol 25:221–230CrossRefGoogle Scholar
  6. Denic A, Johnson AJ, Bieber AJ, Warrington AE, Rodriguez M, Pirko I (2011) The relevance of animal models in multiple sclerosis research. Pathophysiology 18:21–29CrossRefGoogle Scholar
  7. Dhib-Jalbut S (2007) Pathogenesis of myelin/oligodendrocyte damage in multiple sclerosis. Neurology 68:S13–S21CrossRefGoogle Scholar
  8. Dutta R, Trapp BD (2011) Mechanisms of neuronal dysfunction and degeneration in multiple sclerosis. Prog Neurobiol 93:1–12CrossRefGoogle Scholar
  9. Dutta R, McDonough J, Yin X, Peterson J, Chang A, Torres T, Gudz T, Macklin WB, Lewis DA, Fox RJ, Rudick R, Mirnics K, Trapp BD (2006) Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 59:478–489CrossRefGoogle Scholar
  10. Edgar JM, McLaughlin M, Yool D, Zhang SC, Fowler JH, Montague P, Barrie JA, McCulloch MC, Duncan ID, Garbern J, Nave KA, Griffiths IR (2004) Oligodendroglial modulation of fast axonal transport in a mouse model of hereditary spastic paraplegia. J Cell Biol 166:121–131CrossRefGoogle Scholar
  11. Greenstein JI (2007) Current concepts of the cellular and molecular pathophysiology of multiple sclerosis. Dev Neurobiol 67:1248–1265CrossRefGoogle Scholar
  12. Hafler DA (2004) Multiple sclerosis. J Clin Invest 113:788–794CrossRefGoogle Scholar
  13. Kiryu-Seo S, Ohno N, Kidd GJ, Komuro H, Trapp BD (2010) Demyelination increases axonal stationary mitochondrial size and the speed of axonal mitochondrial transport. J Neurosci 30:6658–6666CrossRefGoogle Scholar
  14. Koga D, Ushiki T (2006) Three-dimensional ultra-structure of the Golgi apparatus in different cells: high-resolution scanning electron microscopy of osmium-macerated tissues. Arch Histol Cytol 69(5):357–374CrossRefGoogle Scholar
  15. Krumbholz M, Meinl E (2014) B cells in MS and NMO: pathogenesis and therapy. Semin Immunopathol 36:339–350CrossRefGoogle Scholar
  16. Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, Griffiths IR, Nave KA (2003) Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet 33:366–374CrossRefGoogle Scholar
  17. Martin R, McFarland HF, McFarlin DE (1992) Immunological aspects of demyelinating diseases. Annu Rev Immunol 10:153–187CrossRefGoogle Scholar
  18. Mayo L, Quintana FJ, Weiner HL (2012) The innate immune system in demyelinating disease. Immunol Rev 248:170–187CrossRefGoogle Scholar
  19. Misko A, Jiang S, Wegorzewska I, Milbrandt J, Baloh RH (2010) Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J Neurosci 30:4232–4240CrossRefGoogle Scholar
  20. Nikić I, Merkler D, Sorbara C, Brinkoetter M, Kreutzfeldt M, Bareyre FM, Brück W, Bishop D, Misgeld T, Kerschensteiner M (2011) A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med 17:495–499CrossRefGoogle Scholar
  21. Nomura T, Bando Y, Bochimoto H, Koga D, Watanabe T, Yoshida S (2013) Three-dimensional ultra-structures of myelin and the axons in the spinal cord: application of SEM with the osmium maceration method to the central nervous system in two mouse models. Neurosci Res 75:190–197CrossRefGoogle Scholar
  22. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343:938–952CrossRefGoogle Scholar
  23. Ohno N, Kidd GJ, Mahad D, Kiryu-Seo S, Avishai A, Komuro H, Trapp BD (2011) Myelination and axonal electrical activity modulate the distribution and motility of mitochondria at CNS nodes of Ranvier. J Neurosci 31:7249–7258CrossRefGoogle Scholar
  24. Osawa T, Ishida K, Obodera M, Feng XY, Hayashi S, Nozaka Y (2002) Measurement of the repeat period of myelin sheath using ultrathin frozen sections. J Electron Microscopy 51(3):195–197CrossRefGoogle Scholar
  25. Schirmer L, Merkler D, König FB, Brück W, Stadelmann C (2013) Neuroaxonal regeneration is more pronounced in early multiple sclerosis than in traumatic brain injury lesions. Brain Pathol 23:2–12CrossRefGoogle Scholar
  26. Stadelmann C, Wegner C, Brück W (2011) Inflammation, demyelination, and degeneration - recent insights from MS pathology. Biochim Biophys Acta 1812:275–282CrossRefGoogle Scholar
  27. Stirling DP, Stys PK (2010) Mechanisms of axonal injury: internodal nanocomplexes and calcium deregulation. Trends Mol Med 16:160–170CrossRefGoogle Scholar
  28. Stirling DP, Cummins K, Wayne Chen SR, Stys P (2014) Axoplasmic reticulum ca(2+) release causes secondary degeneration of spinal axons. Ann Neurol 75:220–229CrossRefGoogle Scholar
  29. Tanaka K, Mitsushima A (1984) A preparation method for observing intracellular structures by scanning electron microscopy. J Microsc 133:213–222CrossRefGoogle Scholar
  30. Trapp BD, Stys PK (2009) Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol 8:280–291CrossRefGoogle Scholar
  31. Yin X, Crawford TO, Griffin JW, Tu P-H, Lee VMY, Li C, Roder J, Trapp BD (1998) Myelin-associated glycoprotein is a myelin signal that modulates the caliber of myelinated axons. J Neurosci 18:1953–1962CrossRefGoogle Scholar
  32. Zhang CL, Ho PL, Kintner DB, Sun D, Chiu SY (2010) Activity-dependent regulation of mitochondrial motility by calcium and Na/K-ATPase at nodes of Ranvier of myelinated nerves. J Neurosci 30:3555–3566CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Functional Anatomy and NeuroscienceAsahikawa Medical UniversityAsahikawaJapan
  2. 2.Department of AnatomyAkita University Graduate School of MedicineAkitaJapan

Personalised recommendations