Acousto-Optic Dispersion Applicability to Plastic Auto-Part Color Characterization

  • Jose Amilcar Rizzo SierraEmail author
  • Cesar Isaza
  • Ely Karina Anaya Rivera
  • Jonny Paul Zavala de Paz
  • Julio Mosquera
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 233)


Acousto-optic dispersion occurs when light interacts with a translucent material in which a sound-induced spatial distribution of its refractive index is present. That diffracted light can then be analyzed for different properties of the source. The experimental and theoretical basis of the phenomena were proposed in early twentieth century, mainly by Brillouin and Raman, respectively. Over time, acousto-optics has transited towards applied technology such as image processing in military applications. In this paper, we propose an acousto-optic image acquiring system to study plastic auto-parts color characterization via hyperspectral imaging. Current methodologies regarding the same subject use mainly colorimeters, which by default cannot provide the same amount of spectral information than an acousto-optic system could gather. Therefore, a distinctive potential of acousto-optic technology lies within the subject of plastic auto-parts cosmetic corrosion (PACC) characterization, term which would refer to the study of undesirable changes in color (in plastic auto-parts) due to time and exposure.



The authors would like to thank the support of this work by grant PN3967-2016 from Consejo Nacional de Ciencia y Tecnología (CONACYT), México, Sistema Nacional de Investigadores (SNI) program.


  1. 1.
    World Health Organization. Global status report on road safety 2013. Supporting a decade of action, Accessed in 1 December 2015Google Scholar
  2. 2.
    INE with data from INEGI & IHS MARKIT (2018)Google Scholar
  3. 3.
    M. Melgosa et al., Measuring color differences in automotive samples with lightness flop: a test of the AUDI2000 color-difference formula. Opt. Express 22(3), 3458–3467 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    O. Gómez et al., Visual and instrumental assessments of color differences in automotive coatings. Color Res. Appl. 41(4), 384–391 (2016)CrossRefGoogle Scholar
  5. 5.
    N.J. Berg, J.N. Lee, Acousto-optic signal processing: theory and implementation, in New York, Marcel Dekker, Inc. Optical Engineering. vol. 2 (1983), 496 pp. No individual items are abstracted in this volumeGoogle Scholar
  6. 6.
    W.T. Rhodes, Acousto-optic signal processing: convolution and correlation. Proc. IEEE 69(1), 65–79 (1981)ADSCrossRefGoogle Scholar
  7. 7.
    N. Gat, Imaging spectroscopy using tunable filters: a review, in Wavelet Applications VII. International Society for Optics and Photonics, vol. 4056 (2000), pp. 50–65Google Scholar
  8. 8.
    L.J. Denes, M.S. Gottlieb, B. Kaminsky, Acousto-optic tunable filters in imaging applications. Opt. Eng. 37(4), 1262–1267 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    L. Bei et al., Acousto-optic tunable filters: fundamentals and applications as applied to chemical analysis techniques. Prog. Quantum Electron. 28(2), 67–87 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    C.D. Tran, Principles and analytical applications of acousto-optic tunable filters, an overview. Talanta 45(2), 237–248 (1997)CrossRefGoogle Scholar
  11. 11.
    V.B. Voloshinov, V.Y. Molchanov, J.C. Mosquera, Spectral and polarization analysis of optical images by means of acousto-optics. Opt. Laser Technol. 28(2), 119–127 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    A. Korpel, Acousto-optics - a review of fundamentals. Proc. IEEE 69(1), 48–53 (1981)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    I.C. Chang, Tunable acousto-optic filters: an overview. Opt. Eng. 16(5), 455–460 (1977)ADSCrossRefGoogle Scholar
  14. 14.
    H. Zhao et al., Field imaging system for hyperspectral data, 3D structural data and panchromatic image data measurement based on acousto-optic tunable filter. Opt. Express 26(13), 17717–17730 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    L. Granero-Montagud, et al., SYDDARTA: new methodology for digitization of deterioration estimation in paintings, in Proceedings of SPIE, vol. 8790 (2013), p. 879011Google Scholar
  16. 16.
    R. Abdlaty, et al., High throughput AOTF hyperspectral imager for randomly polarized light, in Photonics, vol. 5, no. 1, p. 3. Multidisciplinary Digital Publishing Institute (2018)Google Scholar
  17. 17.
    B. Zagajewski et al., Intraspecific differences in spectral reflectance curves as indicators of reduced vitality in high-arctic plants. Remote Sens. 9(12), 1289 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    F. Zhao et al., Simulated impact of sensor field of view and distance on field measurements of bidirectional reflectance factors for row crops. Remote Sens. Environ. 156, 129–142 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    J.L. Widlowski et al., The fourth phase of the radiative transfer model intercomparison (RAMI) exercise: actual canopy scenarios and conformity testing. Remote Sens. Environ. 169, 418–437 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    J. Liang, et al., 3D plant modelling via hyperspectral imaging, in Proceedings of the IEEE International Conference on Computer Vision Workshops (2013)Google Scholar
  21. 21.
    S. Liang et al., A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies. Int. J. Digit. Earth 6(sup1), 5–33 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    S. Heist et al., 5D hyperspectral imaging: fast and accurate measurement of surface shape and spectral characteristics using structured light. Opt. Express 26(18), 23366–23379 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    W. Feng et al., 3D compressive spectral integral imaging. Opt. Express 24(22), 24859–24871 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    M. Kim et al., 3D imaging spectroscopy for measuring hyperspectral patterns on solid objects. ACM Trans. Graph. 31(4), 38 (2012)Google Scholar
  25. 25.
    Z. Cherfi et al., Case study: color control in the automotive industry. Qual. Eng. 15(1), 161–170 (2002)CrossRefGoogle Scholar
  26. 26.
    M.K. Chao, B.P. Hake, Colorimetry applications in the automotive industry, in Electro-Optical Instrumentation for Industrial Applications. International Society for Optics and Photonics vol. 411 (1983), pp. 47–49Google Scholar
  27. 27.
    B. Claudé et al., Consequences of photoageing on the durability of plastic glasses for automotive applications. Polym. Test. 20(7), 771–778 (2001)CrossRefGoogle Scholar
  28. 28.
    T.M. Kruse, O.S. Woo, L.J. Broadbelt, Detailed mechanistic modeling of polymer degradation: application to polystyrene. Chem. Eng. Sci. 56(3), 971–979 (2001)CrossRefGoogle Scholar
  29. 29.
    M. Day, et al., Thermal degradation of automotive plastics: a possible recycling opportunity, in Polymer Durability: Degradation, Stabilization, and Lifetime Prediction (1993), pp. 47–57Google Scholar
  30. 30.
    G. Luckeneder et al., Corrosion mechanisms and cosmetic corrosion aspects of zincaluminium-magnesium and zinc-chromium alloy coated steel strip. BHM Berg-und Hüttenmännische Monatshefte 157(3), 121–125 (2012)CrossRefGoogle Scholar
  31. 31.
    N. LeBozec, D. Thierry, Influence of climatic factors in cyclic accelerated corrosion test towards the development of a reliable and repeatable accelerated corrosion test for the automotive industry. Mater. Corros. 61(10), 845–851 (2010)CrossRefGoogle Scholar
  32. 32.
    T. Prosek et al., Corrosion performance of Zn-Al-Mg coatings in open and confined zones in conditions simulating automotive applications. Mater. Corros. 61(5), 412–420 (2010)Google Scholar
  33. 33.
    Y. Liu et al., Precipitation in an AA6111 aluminium alloy and cosmetic corrosion. Acta Mater. 55(1), 353–360 (2007)CrossRefGoogle Scholar
  34. 34.
    N. LeBozec, N. Blandin, D. Thierry, Accelerated corrosion tests in the automotive industry: a comparison of the performance towards cosmetic corrosion. Mater. Corros. 59(11), 889–894 (2008)CrossRefGoogle Scholar
  35. 35.
    B. Milligan, The degradation of automotive upholstery fabrics by light and heat. Color. Technol. 16(1), 1–7 (1986)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jose Amilcar Rizzo Sierra
    • 1
    Email author
  • Cesar Isaza
    • 1
  • Ely Karina Anaya Rivera
    • 1
  • Jonny Paul Zavala de Paz
    • 1
  • Julio Mosquera
    • 2
  1. 1.Universidad Politécnica de Querétaro. El MarquésQuerétaroMexico
  2. 2.Universidad del Quindío. ArmeniaQuindíoColombia

Personalised recommendations