Advertisement

Suppression of Kelly Sidebands and Compression of Soliton Spectrum Using a Polarization Imbalance Nonlinear Loop Mirror

  • Mahrokh AvazpourEmail author
  • Georgina Beltrán Pérez
  • Evgeny Kuzin
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 233)

Abstract

Cleaning and compressing soliton spectrum is an important part of the all-optical processing systems. In the present work, we report the suppression of Kelly sideband as well as compressing the soliton spectrum through a polarization-imbalanced nonlinear loop mirror (NOLM). The polarization-imbalanced NOLM has zero transmission at low power signals, which can make it a valuable mechanism for cleaning of soliton by elimination of noise and Kelly sidebands which are always present at the output of fiber soliton lasers. Polarization imbalance in the NOLM can be produced by inserting the quarter wave retarder (QWR) in the loop. Rotation of the angle of the QWR allows adjustment of the characteristics of the NOLM that can be used to choose the features that are most adequate to clean solitons with different pulse duration. As an input source, we used a mode-locked fiber ring laser with 0.6 ps duration and 1550 nm central wavelength. The results show more than 95% suppression of Kelly sidebands and two times compression of bandwidth. The maximum transmission of NOLM was 20%. Cleanup of soliton spectrum is possible using a NOLM as intensity filter without dependence of wavelength.

References

  1. 1.
    N. Pandit, D.U. Noske, S.M.J. Kelly, J.R. Taylor, Characteristic instability of fibre loop soliton lasers. Electron. Lett. 28(5), 455–457 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    N.J. Smith, K.J. Blow, I. Andonovic, Sideband generation through perturbations to the average soliton model. J. Light. Technol. 10(10), 1329–1333 (1992)ADSCrossRefGoogle Scholar
  3. 3.
    M.L. Dennis, I.N. Duling, Experimental study of sideband generation in femtosecond fiber lasers. IEEE J. Quantum Electron. 30(6), 1469–1477 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    R. Weill, A. Bekker, V. Smulakovsky, B. Fischer, O. Gat, Spectral sidebands and multipulse formation in passively mode-locked lasers. Phys. Rev. A 83(4), 43831 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    S. Boscolo, S.K. Turitsyn, K.J. Blow, Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications. Opt. Fiber Technol. 14(4), 299–316 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    J.D. Moores, K. Bergman, H.A. Haus, E.P. Ippen, Optical switching using fiber ring reflectors. JOSA B 8(3), 594–601 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    O. Pottiez, E.A. Kuzin, B. Ibarra-Escamilla, J.T. Camas-Anzueto, F. Gutierrez-Zainos, Experimental demonstration of NOLM switching based on nonlinear polarisation rotation. Electron. Lett. 40(14), 892–894 (2004)CrossRefGoogle Scholar
  8. 8.
    W. Cao, P.K.A. Wai, Comparison of fiber-based Sagnac interferometers for self-switching of optical pulses. Opt. Commun. 245(1–6), 177–186 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    H. Sotobayashi, C. Sawaguchi, Y. Koyamada, W. Chujo, Ultrafast walk-off-free nonlinear optical loop mirror by a simplified configuration for 320-Gbit/s time-division multiplexing signal demultiplexing. Opt. Lett. 27(17), 1555–1557 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    N.J. Doran, D. Wood, Nonlinear-optical loop mirror. Opt. Lett. 13(1), 56–58 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    M.D. Pelusi, Y. Matsui, A. Suzuki, Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror. IEEE J. Quantum Electron. 35(6), 867–874 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    N. Finlayson, B.K. Nayar, N.J. Doran, Switch inversion and polarization sensitivity of the nonlinear-optical loop mirror. Opt. Lett. 17(2), 112–114 (1992)ADSCrossRefGoogle Scholar
  13. 13.
    N. Nishizawa, K. Takahashi, Y. Ozeki, K. Itoh, Wideband spectral compression of wavelength-tunable ultrashort soliton pulse using comb-profile fiber. Opt. Express 18(11), 11700–11706 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    L. Sha, W. Jian-Ping, K. Zhe, Y. Chong-Xiu, Optimizational 6-bit all-optical quantization with soliton self-frequency shift and pre-chirp spectral compression techniques based on photonic crystal fiber. Chin. Phys. B 24(8), 84212 (2015)CrossRefGoogle Scholar
  15. 15.
    B. Ibarra-Escamilla et al., Fiber optical loop mirror with a symmetrical coupler and a quarter-wave retarder plate in the loop. Opt. Commun. 242(1–3), 191–197 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    E.A. Kuzin, N. Korneev, J.W. Haus, B. Ibarra-Escamilla, Theory of nonlinear loop mirrors with twisted low-birefringence fiber. JOSA B 18(7), 919–925 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    B. Ibarra-Escamilla et al., Experimental investigation of the nonlinear optical loop mirror with twisted fiber and birefringence bias. Opt. Express 13(26), 10760–10767 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    L.A. Rodriguez-Morales et al., Experimental investigation of polarization-imbalanced nonlinear loop mirror with double-sense twisted fiber as a filter to clean up solitons. J. Opt. 20(1), 15502 (2017)Google Scholar
  19. 19.
    G. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2001)Google Scholar
  20. 20.
    M. Sorokina, Design of multilevel amplitude regenerative system. Opt. Lett. 39(8), 2499–2502 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    O. Pottiez, E.A. Kuzin, B. Ibarra-Escamilla, J.T. Camas-Anzueto, F. Gutiérrez-Zainos, Easily tunable nonlinear optical loop mirror based on polarization asymmetry. Opt. Express 12(16), 3878–3887 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    I. Armas-Rivera et al., Experimental study of the polarization asymmetrical NOLM with adjustable switch power. Opt. Commun. 350, 165–169 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    O. Pottiez, E.A. Kuzin, B. Ibarra-Escamilla, F. Mendez-Martinez, Theoretical investigation of the NOLM with highly twisted fibre and a λ/4 birefringence bias. Opt. Commun. 254(1), 152–167 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Mahrokh Avazpour
    • 1
    Email author
  • Georgina Beltrán Pérez
    • 1
  • Evgeny Kuzin
    • 2
  1. 1.Facultad de Ciencias Físico MatemáticasBenemérita Universidad Autónoma de Puebla, Ciudad UniversitariaPueblaMexico
  2. 2.INAOEPueblaMexico

Personalised recommendations