Advertisement

An Overview of the Technological Applicability of Plasma Gasification Process

  • Spyridon AchinasEmail author
Chapter

Abstract

Recent increased environmental and political pressures, the unstable perspective of the fuel prices, and the fossil-resource-based energy have risen the industrial interest into the energy that can be produced from waste and have enhanced the technological findings in waste-to-energy sector. Sustainable waste treatment is an essential element in efforts to improve sustainability. Plasma gasification is considered an alternative for the abatement of municipal waste and has been demonstrated for the treatment of various wastes more in Japan, Canada, and the USA than in Europe. The goal of this mini-review is to brief the plasma-based gasification technology. This study includes a technological overview of the PG process, a survey of existing PG facilities, a comparison with other thermal techniques, and an identification of its environmental impacts.

Keywords

Plasma gasification Waste management Sustainability Green energy Thermal technology 

References

  1. Achinas S, Kapetanios E (2012) Basic design of an integrated plasma gasification combined cycle system for electricity generation from RDF. Int J Eng Res Technol 1(10):1–8Google Scholar
  2. Achinas S, Kapetanios E (2013) Efficiency evaluation of RDF plasma gasification process. Energy Environ Res 3(1):150–157CrossRefGoogle Scholar
  3. Advances Plasma Power official web site. http://www.advancedplasmapower.com
  4. Alter NRG, official web site. http://www.alternrg.com
  5. An’Shakov AS, Faleev VA, Danilenko AA, Urbakh EK, Urbakh AE (2007) Investigation of plasma gasification of carbonaceous technogeneous wastes. Thermophys Aeromech 14(4):607–616CrossRefGoogle Scholar
  6. Annamalai K, Puri IK (2006) Combustion science and engineering, 1st edn. CRC Press, Boca RatonGoogle Scholar
  7. Arazo RO, Genuino DAD, de Luna MDG, Capareda SC (2017) Bio-oil production from dry sewage sludge by fast pyrolysis in an electrically-heated fluidized bed reactor. Sustain Environ Res 27(1):7–14CrossRefGoogle Scholar
  8. Artemov AV, Bulba VA, Voshchinin SA, Krutyakov YA, Kudrinskii AA, Ostryi II, Pereslavtsev AV (2012) Technical and economic operation parameters of a high-temperature plasma plant for production and consumption waste conversion. Russ J Gen Chem 82(4):808–814CrossRefGoogle Scholar
  9. Basu P (2006) Combustion and gasification in fluidized beds, 1st edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  10. Basu P (2010) Biomass gasification and pyrolysis: practical design and theory, 1st edn. Academic, BurlingtonGoogle Scholar
  11. Bratsev AN, Popov VE, Rutberg AF, Shtengel SV (2006a) A facility for plasma gasification of waste of various types. High Temp 44:823CrossRefGoogle Scholar
  12. Bratsev AN, Popov VE, Shtengel SV, Rutberg AF (2006b) Some aspects of development and creation of plasma technology for solid waste gasification. High Temp Mater Processes 10:549–556CrossRefGoogle Scholar
  13. Bratsev AN, Kuznetsov VA, Popov VE, Rutberg AF, Ufimtsev AA, Shtengel SV (2009) Experimental development of methods on plasma gasification of coal as the basis for creation of liquid fuel technology. High Temp Mater Processes 13:147–154CrossRefGoogle Scholar
  14. C.H.O-Power, official web site. http://www.cho-power.com
  15. Chang JS, Gu BW, Looy PC, Chu FY, Simpson CJ (1996) Thermal plasma pyrolysis of used old tires for production of syngas. J Environ Sci Health A 31(7):1781–1799Google Scholar
  16. Clark BJ, Rogoff MJ (2010) Economic feasibility of a plasma arc gasification plant, city of Marion, Iowa. In: Proceedings of the 18th annual North American waste-to-energy conference, Orland, Florida, USA May 11–13, NAWTEC 18-3502Google Scholar
  17. Dave PN, Joshi AK (2010) Plasma pyrolysis and gasification of plastics waste – a review. J Sci Ind Res 69:177–179Google Scholar
  18. De Souza-Santos ML (2008) Solid fuels combustion and gasification: modeling, simulation, and equipment operations, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  19. Ducharme C, Themelis N (2010) Analysis of thermal plasma – assisted waste-to energy processes. In: Proceedings of the 18th annual North American waste-to-energy conference, Orland, Florida, USA May 11–13, NAWTEC 18-3582Google Scholar
  20. Europlama, official web site. http://www.europlasma.com
  21. Fauchais P (2007) Technologies plasma: applications au traitement des déchets. Techniques de l’Ingénieur G2055:1–11Google Scholar
  22. Fourcault A, Marias F, Michon U (2010) Modelling of thermal removal of tars in a high temperature stage fed by a plasma torch. Biomass Bioenergy 34:1363–1374CrossRefGoogle Scholar
  23. Ghofur A, Soemarno HA, Putra MD (2018) Potential fly ash waste as catalytic converter for reduction of HC and CO emissions. Sustain Environ Res 28(6):357–362CrossRefGoogle Scholar
  24. Higman C, Van Der Burgt M (2008) Gasification, 1st edn. Oxford Press, OxfordGoogle Scholar
  25. Hlína M, Hrabovský M, Kopecký V, Konrád M, Kavka T (2006) Plasma gasification of wood and production of gas with low content of tar. Czechoslov J Phys 56(B):179–1184Google Scholar
  26. Hrabovsky M (2009) Thermal plasma generators with water stabilized arc. Open Plasma Phys J 2:99–104CrossRefGoogle Scholar
  27. Hrabovsky M, Konrad M, Kopecky V, Hlina M, Kavka T (2006) Gasification of biomass in water/gas stabilized plasma for syngas production. Czechoslov J Phys 56(B):1199–1206CrossRefGoogle Scholar
  28. Huang YF, Chiueh PT, Lo SL (2016) A review on microwave pyrolysis of lignocellulosic biomass. Sustain Environ Res 26(3):103–109CrossRefGoogle Scholar
  29. InEnTe, official web site. http://www.inentec.com
  30. Kalinenko RA, Kuznetsov AP, Levitsky AA, Messerle VE, Mirokhin YA, Polak LS, Sakipov ZB, Ustimenko AB (1993) Pulverized coal plasma gasification. Plasma Chem Plasma Process 13(1):141–167CrossRefGoogle Scholar
  31. Leal-Quirós E (2004) Plasma processing of municipal solid waste. Braz J Phys 34:1587–1593CrossRefGoogle Scholar
  32. Loghin I (2008) Market barriers to the integrated plasma gasification combined cycle plant implementation – Romanian case. UPB Sci Bull Ser C 70(2):111–120Google Scholar
  33. Luche J, Falcoz Q, Bastien T, Leninger JP, Arabi K, Aubry O, Khacef A, Cormier JM, Lédé J (2012) Plasma treatments and biomass gasification. IOP Conf Ser Mater Sci Eng 29:012011CrossRefGoogle Scholar
  34. Mountouris A, Voutsas E, Tassios D (2006) Solid waste plasma gasification: equilibrium model development and exergy analysis. Energy Convers Manag 47:1723CrossRefGoogle Scholar
  35. Mountouris A, Voutsas E, Tassios D (2008) Plasma gasification of sewage sludge: process development and energy optimization. Energy Convers Manag 49(8):2264CrossRefGoogle Scholar
  36. Moustakas K, Fatta D, Malamis S, Haralambous K, Loizidou M (2005) Demonstration plasma gasification/vitrification system for effective hazardous waste treatment. J Hazard Mater B 123:120–126CrossRefGoogle Scholar
  37. Moustakas K, Xydis G, Malamis S, Haralambous KJ, Loizidou M (2008) Analysis of results from the operation of a pilot plasma gasification/vitrification unit for optimizing its performance. J Hazard Mater 151:473–480CrossRefGoogle Scholar
  38. Murphy AB, Farmer AJD, Horrigan EC, McAllister T (2002) Plasma destruction of ozone depleting substances. Plasma Chem Plasma Process 22(3):371–385CrossRefGoogle Scholar
  39. Nema SK, Ganeshprasad KS (2002) Plasma pyrolysis of medical waste. Curr Sci 83(3):271–278Google Scholar
  40. PEAT International, official web site. http://www.peat.com
  41. Plasco Energy Group, official web site. http://www.plascoenergygroup.com
  42. Plasma Arc Technologies, official web site. http://www.plasmaarctech.com
  43. Popov VE, Bratsev AN, Kuznetsov VA, Shtengel SV, Ufimtsev AA (2011) Plasma gasification of waste as a method of energy saving. J Phys Conf Ser 275:012015CrossRefGoogle Scholar
  44. Pyrogenesis Canada, official web site. http://www.pyrogenesis.com
  45. Rezaiyan J, Cheremisinoff NP (2005) Gasification technologies: a primer for engineers and scientists, 1st edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  46. Serbin SI, Matveev IB (2010) Theoretical investigations of the working processes in a plasma coal gasification system. IEEE Trans Plasma Sci 38(12):3300–3305CrossRefGoogle Scholar
  47. Tendler M, Rutberg P, Van Oost G (2005) Plasma based waste treatment and energy production. Plasma Phys Control Fusion 47:A219–A230CrossRefGoogle Scholar
  48. Tetronics International, official web site. http://www.tetronics.com
  49. Vaish B, Srivastava V, Singh P, Singh A, Singh PK, Singh RP (2016) Exploring untapped energy potential of urban solid waste. Energy Ecol Environ 1(5):323–342CrossRefGoogle Scholar
  50. Vaish B, Sharma B, Srivastava V, Singh P, Ibrahim MH, Singh RP (2019) Energy recovery potential and environmental impact of gasification for municipal solid waste. Biofuels 10:87–100CrossRefGoogle Scholar
  51. Westinghouse Plasma, official web site. http://www.westinghouse-plasma.com
  52. Yang L, Wang H, Wang H, Wang D, Wang Y (2011) Solid waste plasma disposal plant. J Electrost 69:411–413CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Faculty of Science and EngineeringUniversity of GroningenGroningenThe Netherlands

Personalised recommendations