Advertisement

Bioactive Compounds from Marine Sources

  • Saleena Mathew
  • Maya Raman
  • Manjusha Kalarikkathara Parameswaran
  • Dhanya Pulikkottil Rajan
Chapter

Abstract

This chapter discusses about the various bioactive components from marine resources that may have significant health benefits against various communicable and noncommunicable diseases. Several of these bioactive components need a detailed study to understand their possible potentialities and explore their mechanism of action.

References

  1. Abdul Khalil, H. P. S., Lai, T. K., Tye, Y. Y., Rizal, S., Chong, E. W. N., Yap, S. W., Hamzah, A. A., Nurul Fazita, M. R., & Paridah, M. T. (2018). A review of extractions of seaweed hydrocolloids: Properties and applications. eXPRESS Polymer Letters, 12(4), 296–317.CrossRefGoogle Scholar
  2. Addadi, L., Moradian, J., Shay, E., Maroudas, N. G., & Weiner, S. (1987). A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: Relevance to biomineralization. Proceedings of the National Academy of Sciences, 84, 2732–2736.CrossRefGoogle Scholar
  3. Ahmad, M., Benjakul, S., & Nalinanon, S. (2010). Compositional and physicochemical characteristics of acid solubilized collagen extracted from the skin of unicorn leatherjacket (Aluterus monoceros). Food Hydrocollids, 24, 588–594.CrossRefGoogle Scholar
  4. Aleman, A., Pérez-Santín, E., Bordenave-Juchereau, S., Arnaudin, I., Gómez-Guillén, M. C., & Montero, P. (2011). Squid gelatin hydrolysates with antihypertensive, anticancer and antioxidant activity. Food Research International, 44, 1044–1051.CrossRefGoogle Scholar
  5. Alvarez-Lloret, P., Rodríguez-Navarro, A. B., Falini, G., Fermani, S., & Ortega-Huertas, M. (2010). Crystallographic control of the hydrothermal conversion of calcitic sea urchin spine (Paracentrotus lividus) into apatite. Crystal Growth & Design, 10, 5227–5232.CrossRefGoogle Scholar
  6. Alves, A., Sousa, R. A., & Reis, R. L. (2013). Processing of degradable ulvan 3D porous structures for biomedical applications. Journal of Biomedical Materials Research. Part A, 101, 998–1006.  https://doi.org/10.1002/jbm.a.34403.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Amsler, C. D. (2008). Algal chemical ecology. Berlin: Springer.CrossRefGoogle Scholar
  8. Andrews-Pfannkoch, C., Fadrosh, D. W., Thorpe, J., & Williamson, S. J. (2010). Hydroxyapatite-mediated separation of double-stranded DNA, single-stranded DNA, and RNA genomes from natural viral assemblages. Applied and Environmental Microbiology, 76(15), 5039–5045.  https://doi.org/10.1128/AEM.00204-10.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Aquino, R. S., Landeira-Fernandez, A. M., Valente, A. P., Andrade, L. R., & Mourão, P. A. (2005). Occurrence of sulfated galactans in marine angiosperms: Evolutionary implications. Glycobiology, 15, 11–20.  https://doi.org/10.1093/glycob/cwh138.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Arias, J. L., & Fernandez, M. S. (2008). Polysaccharides and proteins in calcium carbonate based biomineralization. Chemical Reviews, 108, 4475–4482.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Arief, E. M., Siddiqui, Y. D., Yusoff, A., Suzina, A. H., & Abdullah, S. Y. (2013). Isolation of pepsin- solubilized collagen (PSC) from crude collagen extracted from body wall of sea cucumber (Bohadschia spp.). International Journal of Pharmacy and Pharmaceutical Sciences, 5, 555–559.Google Scholar
  12. Azizi, S., Mohamad, R., Abdul Rahim, R., Mohammadinejad, R., & Bin Ariff, A. (2017). Hydrogel beads bio-nanocomposite based on kappa-carrageenan and green synthesized silver nanoparticles for biomedical applications. International Journal of Biological Macromolecules, 104, 423–431.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Azumi, K., Yokosawa, H., & Ishi, S. (1990). Haolcyamines: Novel antimicrobial tetrapeptide-like substances isolated from the hemocytes of the solitary ascidian Halocynthia roretzi. Biochemistry, 29, 156–165.CrossRefGoogle Scholar
  14. Bagni, M., Archetti, L., Amadori, M., & Marino, G. (2000). Effect of long-term oral administration of an immunostimulant diet on innate immunity in sea bass (Dicentrarchus labrax). Journal of Veterinary Medicine, Series B, 47, 745–751.CrossRefGoogle Scholar
  15. Balian, G., & Bowes, J. H. (1977). The structure and properties of collagen. In A. Ward & A. Courts (Eds.), The science and technology of gelatin (pp. 1–27). London: Academic.Google Scholar
  16. Balseiro, P., Falcó, A., Romero, A., Dios, S., Martínez-López, A., Figueras, A., Estepa, A., & Novoa, B. (2011). Mytilus galloprovincialis Myticin C: A chemotactic molecule with antiviral activity and immunoregulatory properties. PLoS One, 6(8), e23140.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Balti, R., Nedjar-Arroume, N., Bougatef, A., Guillochon, D., & Nasri, M. (2010). Three novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) using digestive proteases. Food Research International, 43, 1136–1143.CrossRefGoogle Scholar
  18. Bao, L., Yang, W., Mao, X., Mou, S., & Tang, S. (2008). Agar/collagen membrane as skin dressing for wounds. Biomedical Materials, 3, 1–7.CrossRefGoogle Scholar
  19. Barbaglio, A., Benedetto, C. D., Martinello, T., Alongi, V., Fassini, D., Cullora, E., Patruno, M., Bonasoro, F., Barbosa, M. A., Carnevali, M. D. C., & Sugni, M. (2014). Production, characterization and biocompatibility of marine collagen matrices from an alternative and sustainable source: The sea urchin Paracentrotus lividus. Marine Drugs, 12(9), 4912–4933.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bareil, R. P., Gauvin, R., & Berthod, F. (2010). Collagen-based biomaterials for tissue engineering applications. Materials, 3, 1863–1887.CrossRefGoogle Scholar
  21. Barros, A., Alves, A., Nunes, C., Coimbra, M. A., Pires, R. A., & Reis, R. L. (2013). Carboxymethylation of ulvan and chitosan and their use as polymeric components of bone cements. Acta Biomaterialia, 9, 9086–9097.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Bartlett, T., Cuthbertson, B. J., Shepard, E., Chapman, R., Gross, P., & Warr, G. (2002). Crustins, homologues of an 11.5-kDa antibacterial peptide, from two species of penaeid shrimp, Litopenaeus vannamei and Litopenaeus setiferus. Marine Biotechnology, 4, 278–293.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Battison, A. L., Summerfield, R., & Patrzykat, A. (2008). Isolation and characterisation of two antimicrobial peptides from haemocytes of the American lobster Homarus americanus. Fish & Shellfish Immunology, 25(1–2), 181–187.CrossRefGoogle Scholar
  24. Beckloff, N., & Diamond, G. (2008). Computational analysis suggests beta-defensins are processed to mature peptides by signal peptidase. Protein and Peptide Letters, 15, 536–540.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Benjakul, S., Yarnpakdee, S., Senphan, T., Halldorsdottir, S., & Kristinsson, H. (2014). Fish protein hydrolysates: Production, bioactivities, and applications. In Antioxidants and functional components in aquatic foods (pp. 237–282). New York: Wiley.CrossRefGoogle Scholar
  26. Bernardi, G., & Springer, G. F. (1962). Properties of highly purified fucan. The Journal of Biological Chemistry, 237, 75–80.PubMedPubMedCentralGoogle Scholar
  27. Bernhardt, R. R., & Schachner, M. (2000). Chondroitin sulfates affect the formation of the segmental motor nerves in zebrafish embryos. Developmental Biology, 221, 206–219.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Bewley, C. A., He, H. Y., Williams, D. H., & Faulkner, D. J. (1996). Aciculitins A-C: Cytotoxic and antifungal cyclic peptides from the lithistid sponge Aciculites orientalis. Journal of the American Chemical Society, 118(18), 4314–4321.CrossRefGoogle Scholar
  29. Bink, R. J., Habuchi, H., Lele, Z., Dolk, E., Joore, J., Rauch, G. J., Geisler, R., Wilson, S. W., Hertog, J., Kimata, K., & Zivkovica, D. (2003). Heparan sulfate 6-O-sulfotransferase is essential for muscle development in zebrafish. Journal of Biological Chemistry, 278, 31118–31127.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Borai, I. H., Ezz, M. K., Rizk, M. Z., El-Sherbiny, M., Matloub, A. A., Aly, H. F., Farrag, A. E. R., & Fouad, G. I. (2015). Hypolipidemic and anti-atherogenic effect of sulphated polysaccharides from the green alga Ulva fasciata. International Journal of Pharmaceutical Sciences and Research, 31(1), 1–12.Google Scholar
  31. Bougatef, A., Nedjar-Arroume, N., Ravallec-Ple, R., Leroy, Y., Guillochon, D., Barkia, A., & Nasri, M. (2008). Angiotensin I- convertising enzyme (ACE) inhibitory activities of sardinella (Sardinella aurita) by-products protein hydrolysates obtained by treatment with microbial and visceral fish serine proteases. Food Chemistry, 111, 350–356.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Bougatef, A., Nedjar-Arroume, N., Manni, L., Ravallec, R., Barkia, A., Guillochon, D., & Nasri, M. (2010). Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinella (Sardinella aurita) by-products proteins. Food Chemistry, 118, 559–565.CrossRefGoogle Scholar
  33. Bourgougnon, N., Lahaye, M., Quemener, B., Chermann, J. C., Rimbert, M., Cormaci, M., Furnari, G., & Komprobst, J. M. (1996). Annual variation in composition and in vitro anti-HIV-1 activity of the sulfated glucuronogalactan from Schizymenia dubyi (Rhodophyta, Gigartinales). Journal of Applied Phycology, 8, 155–161.CrossRefGoogle Scholar
  34. Boutinguiza, M., Pou, J., Comesana, R., Lusquinos, F., Carlos, A., & Leon, B. (2012). Biological hydroxyapatite obtained from fish bones. Materials Science and Engineering C Materials for Biological Applications, 32, 478–486.CrossRefGoogle Scholar
  35. Bridle, A., Nosworthy, E., Polinski, M., & Nowak, B. (2011). Evidence of an antimicrobial-immunomodulatory role of Atlantic salmon cathelicidins during infection with Yersinia ruckeri. PLoS One, 6, e23417.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Broekman, D. C., Zenz, A., Gudmundsdottir, B. K., Lohner, K., Maier, V. H., & Gudmundsson, G. H. (2011). Functional characterization of codCath, the mature cathelicidin antimicrobial peptide from Atlantic cod (Gadus morhua). Peptides, 32, 2044–2051.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Brzezińska-Miecznik, J., Haberko, K., Sitarz, M., Bućko, M. M., & Macherzyńska, B. (2015). Hydroxyapatite from animal bones—Extraction and properties. Ceramics International, 41(3, Part B), 4841–4846.CrossRefGoogle Scholar
  38. Bulet, P., Stocklin, R., & Menin, L. (2004). Anti-microbial peptides: From invertebrates to vertebrates. Immunological Reviews, 198, 169–184.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Bulow, H. E., & Hobert, O. (2006). The molecular diversity of glycosaminoglycans shapes animal development. Annual Review of Cell and Developmental Biology, 22, 375–407.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Byun, H. G., & Kim, S. K. (2001). Purification and characterization of angiotensin I-converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin. Process Biochemistry, 36, 1155–1162.CrossRefGoogle Scholar
  41. Capon, R. J., Ford, J., Lacey, E., Gill, J. H., Heiland, K., & Friedel, T. (2002). Phoriospongin A and B: Two new nematocidal depsipeptides from the Australian marine sponges Phoriospongia sp. and Callyspongia bilamellata. Journal of Natural Products, 65(3), 358–363.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Cardozo, K. H. M., Guaratini, T., Barros, M. P., Falcao, V. R., Tonon, A. P., Lopes, N. P., Campos, S., Torres, M. A., Souza, A. O., Colepicolo, P., & Pinto, E. (2007). Metabolites from algae with economical impact. Comparative Biochemistry and Physiology Part C, Toxicology and Pharmacology, 146, 60–78.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Casadei, E., Wang, T., Zou, J., Gonzalez Vecino, J. L., Wadsworth, S., & Secombes, C. J. (2009). Characterization of three novel beta-defensin antimicrobial peptides in rainbow trout (Oncorhynchus mykiss). Molecular Immunology, 46, 3358–3366.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Cesaretti, M., Luppi, E., Maccari, F., & Volpi, N. (2004). Isolation and characterization of a heparin with high anticoagulant activity from the clam Tapes phylippinarum: Evidence for the presence of a high content of antithrombin III binding site. Glycobiology, 14, 1275–1284.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Charlet, M., Chernysh, S., Philippe, H., Hetru, C., Hoffmann, J. A., & Bulet, P. (1996). Innate immunity: Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. The Journal of Biological Chemistry, 271, 21808–21813.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Chattopadhyay, S., & Raines, R. T. (2014). Review collagen-based biomaterials for wound healing. Biopolymers, 101, 821–833.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Checa, A. G., Cartwright, J. H., Sánchez-Almazo, I., Andrade, J. P., & Ruiz-Raya, F. (2015). The cuttlefish Sepia officinalis (Sepiidae, Cephalopoda) constructs cuttlebone from a liquid-crystal precursor. Scientific Reports, 5, 11513.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Chen, C. L., Ritch, R., Ming, S. L., Hui, M. N., Chung, Y. C., & Lung, Y. C. (2010). A new fish scale derived scaffold for corneal regeneration. European Cells and Materials, 19, 50–57.CrossRefGoogle Scholar
  49. Chengkui, Z., & Junfu, Z. (1984). Chinese seaweeds in herbal medicine. In Developments in hydrobiology eleventh international seaweed symposium (Vol. 22, pp. 152–154). Dordrecht: Springer.  https://doi.org/10.1007/978-94-009-6560-7_24.CrossRefGoogle Scholar
  50. Cheung Randy Chi Fai, Tzi Bun Ng, & Jack Ho Wong. (2015). Marine peptides: Bioactivities and applications. Marine Drugs, 13, 4006–4043.  https://doi.org/10.3390/md13074006.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Cheung, I. W. Y., Liceaga, A. M., & Li-Chan, E. C. Y. (2009). Pacific hake (Merluccius productus) hydrolysates as a cryoprotective agents in frozen Pacific cod fillet mince. Journal of Food Science, 74, 588–594.CrossRefGoogle Scholar
  52. Chevolot, L., Mulloy, B., Ratiskol, J., Foucault, A., & Colliec-Jouault, S. (2001). A disaccharide repeat unit is the major structure in fucoidans from two species of brown algae. Carbohydrate Research, 330, 529–535.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Cho, J., & Lee, D. G. (2011). Oxidative stress by antimicrobial peptide pleurocidin triggers apoptosis in Candida albicans. Biochimie, 93, 1873–1879.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Clark, D. P., Carroll, J., Naylor, S., & Crews, P. (1998). An antifungal cyclodepsipeptide, cyclolithistide A, from the sponge Theonella swinhoei. The Journal of Organic Chemistry, 63(24), 8757–8764.CrossRefGoogle Scholar
  55. Coelho, T. M., Nogueira, E. S., Steimacher, A., Medina, A. N., Weinand, W. R., Lima, W. M., Baesso, M. L., & Bento, A. C. (2006). Characterization of natural nanostructured hydroxyapatite obtained from the bones of Brazilian river fish. Journal of Applied Physics, 100, 094312–094316.CrossRefGoogle Scholar
  56. Cole, A. M. (2005). Antimicrobial peptide microbicides targeting HIV. Protein and Peptide Letters, 12, 41–47.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Cole, A. M., Weis, P., & Diamond, G. (1997). Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. The Journal of Biological Chemistry, 272, 12008–12013.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Costa, L. S., Fidelis, G. P., Cordeiro, S. L., Oliveira, R. M., Sabry, D. A., Câmara, R. B., Nobre, L. T., Costa, M. S., Almeida-Lima, J., Farias, E. H., Leite, E. L., & Rocha, H. A. (2010). Biological activities of sulfated polysaccharides from tropical seaweeds. Biomedicine & Pharmacotherapy, 64, 21–28.CrossRefGoogle Scholar
  59. Cudennec, B., & Ravallec, R. (2013). Biological active peptides from marine sources related to gut hormones. Current Protein & Peptide Science, 14, 231–234.CrossRefGoogle Scholar
  60. Cuthbertson, B. J., Shepard, E., Chapman, R., & Gross, P. (2002). Diversity of penaeidin antimicrobial peptides in two shrimp species. Immunogenetics, 54, 442–445.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Dahiya, R., Singh, R., Sharma, A., Chennupati, S., & Maharaj, S. (2016). First total synthesis and biological screening of a proline-rich cyclopeptide from a Caribbean marine sponge. Marine Drugs, 14(12), E228.  https://doi.org/10.3390/md14120228.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Damodaran, S. (2007). Inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate. Journal of Agricultural and Food Chemistry, 55, 10918–10923.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Dash, M., Samal, S. K., Bartoli, C., Morelli, A., Philippe, F. S., Peter, D., & Federica, C. (2014). Biofunctionalization of ulvan scaffolds for bone tissue engineering. ACS Applied Materials & Interfaces, 6(5), 3211–3218.CrossRefGoogle Scholar
  64. David, G., & Bernfield, M. (1998). The emerging roles of cell surface heparan sulfate proteoglycans. Matrix Biology, 17, 461–463.PubMedCrossRefPubMedCentralGoogle Scholar
  65. de Jesus Raposo, M. F., de Morais, A. M. B., & de Morais, R. M. S. C. (2015). Marine polysaccharides from algae with potential biomedical applications. Marine Drugs, 13, 2967–3028.  https://doi.org/10.3390/md13052967.CrossRefPubMedPubMedCentralGoogle Scholar
  66. De Lisa, E., Carella, F., De Vico, G., & Di Cosmo, A. (2013). The gonadotropin releasing hormone (GNRH)-like molecule in prosobranch Patella caerulea: Potential biomarker of endocrine – Disrupting compounds in marine environments. Zoological Science, 30, 135–140.PubMedCrossRefPubMedCentralGoogle Scholar
  67. De Morais, M. G., Stillings, C., Dersch, R., Rudisile, M., Pranke, P., Costa, J. A. V., & Wendorff, J. (2010). Preparation of nanofibers containing the microalga Spirulina (Arthrospira). Bioresource Technology, 101, 2872–2876.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Delalat, B., Sheppard, V. C., Ghaemi, S. R., Rao, S., Prestidge, C. A., McPhee, G., & Voelcker, N. (2015). Targeted drug delivery using genetically engineered diatom biosilica. Nature Communications, 6(8791), 1–11.  https://doi.org/10.1038/ncomms9791.CrossRefGoogle Scholar
  69. Delatte, S. J., Evans, J., Hebra, A., Adamson, W., Othersen, H. B., & Tagge, E. P. (2001). Effectiveness of beta-glucan collagen for treatment of partial-thickness burns in children. Journal of Pediatric Surgery, 36, 113–118.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Destoumieux-Garzon, D., Bulet, P., Loew, D., VanDorsselaer, A., Rodriguez, J., & Bachere, E. (1997). Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei. The Journal of Biological Chemistry, 272, 28398–28406.CrossRefGoogle Scholar
  71. Destoumieux-Garzon, D., Saulnier, D., Garnier, J., Jouffrey, C., Bulet, P., & Bachere, E. (2001). Crustacean immunity: Antifungal peptides are generated from the C terminus of shrimp hemocyanin in response to microbial challenge. The Journal of Biological Chemistry, 275, 47070–47077.CrossRefGoogle Scholar
  72. Doege, K., Sasaki, M., Horigan, E., Hassell, J. R., & Yamada, Y. (1987). Complete primary structure of the rat cartilage proteoglycans core protein deduced from cDNA clones. The Journal of Biological Chemistry, 262, 17757–17767.PubMedPubMedCentralGoogle Scholar
  73. Dong, S., Zeng, M., Wang, D., Liu, Z., Zhao, Y., & Yang, H. (2008). Antioxidant and biochemical properties of protein hydrolysates repared from silver carp. (Hypophthalmichthys molitrix). Food Chemistry, 107, 1485–1493.CrossRefGoogle Scholar
  74. Dorozhkin, S. V. (2010). Calcium orthophosphates as bioceramics: State of the art. Journal of Functional Biomaterials, 1, 22–107.  https://doi.org/10.3390/jfb1010022.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Doyen, A., Saucier, L., Beaulieu, L., Pouliot, Y., & Bazinet, L. (2012). Electroseparation of an antibacterial peptide fraction from snow crab by-products hydrolysate by electrodialysis with ultrafiltration membranes. Food Chemistry, 132, 1177–1184.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Ebada, S. S., Wray, V., De Voogd, N. J., Deng, Z., Lin, W., & Proksch, P. (2009). Two new jaspamide derivatives from the marine sponge Jaspis splendens. Marine Drugs, 7, 435–444.CrossRefGoogle Scholar
  77. Ermakova, S., Sokolova, R., Kim, S. M., Um, B. H., Isakov, V., & Zvyagintseva, T. (2011). Fucoidans from brown seaweeds Sargassum hornery, Ecklonia cava, Costaria costata: Structural characteristics and anticancer activity. Applied Biochemistry and Biotechnology, 164, 841–850.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Falshaw, R., Hubl, U., Ofman, D., Slim, G. C., Tariq, M. A., Watt, D. K., & Yorke, S. C. (2000). Comparison of the glycosaminoglycans isolated from the skin and head cartilage of Gould’s arrow squid (Nototodarus gouldi). Carbohydrate Polymers, 41, 357–364.CrossRefGoogle Scholar
  79. Fedders, H., Michalek, M., Grotzinger, J., & Leippe, M. (2008). An exceptional salt-tolerant antimicrobial peptide derived from a novel gene family of haemocytes of the marine invertebrate Ciona intestinalis. The Biochemical Journal, 416(1), 65–75.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Feki, H. C., Rey, C., & Vignoles, M. (1991). Carbonate ions in apatites: Infrared investigations in the ly 4 CO3 domain. Calcified Tissue International, 49, 269–274.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Felício-Fernandes, G., & Laranjeira Mauro, C. M. (2000). Calcium phosphate biomaterials from marine algae. Hydrothermal synthesis and characterization. Química Nova, 23(4), 441–446.CrossRefGoogle Scholar
  82. Feng, Y., Carroll, A. R., Pass, D. M., Archbold, J. K., Avery, V. M., & Quinn, R. J. (2008). Polydiscamides B-D from a marine sponge Ircinia sp. as potent human sensory neuron-specific G protein coupled receptor agonists. Journal of Natural Products, 71(1), 8–11.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Fernandez-Diaz, M. D., Montero, P., & Gomez-Guillen, M. C. (2001). Gel properties of collagens from skins of cod (Gadus morhua) and hake (Merluccius merluccius) and their modification by the co-enhancers magnesium sulphate, glycerol and transglutaminase. Food Chemistry, 74, 161–167.CrossRefGoogle Scholar
  84. Ferrara, M. A., Dardano, P., De Stefano, L., Rea, I., Coppola, G., Rendina, I., Congestri, R., Antonucci, A., De Stefano, M., & De Tommasi, E. (2014). Optical properties of diatom nanostructured biosilica in Arachnoidiscus sp.: Micro-optics from mother nature. PLoS One, 9(7), e103750.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Fertah, M., Belfkira, A., Dahmane, E. M., Taourirte, M., & Brouillette, F. (2017). Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed. Arabian Journal of Chemistry, 10, S3707–S3714.  https://doi.org/10.1016/j.arabjc.2014.05.003.CrossRefGoogle Scholar
  86. Fontana, J. D., Chocial, M. B., Baron, M., Guimaraes, M. F., Maraschin, M., Ulhoa, C., Florencio, J. A., & Bonfim, T. M. (1997). Astaxanthinogenesis in the yeast Phaffia rhodozyma: Optimization of low-cost culture media and yeast cell-wall lysis. Applied Biochemistry and Biotechnology, 63-65, 305–314.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Gale, D. K., Gutu, T., Jiao, J., Chang, C.-H., & Rorrer, G. L. (2009). Photoluminescence detection of biomolecules by antibody-functionalized diatom biosilica. Advances Functional Materials, 19(6), 926–933.  https://doi.org/10.1002/adfm.200801137.CrossRefGoogle Scholar
  88. Garima, K., Anne-Sophie, B., Christel, M., Alan, C., Jeff, H., Gilles, B., Nathalie, B., & Balakrishnan, P. (2015). Enzyme-assisted extraction of bioactive material from Chondrus crispus and Codium fragile and its effect on Herpes simplex virus (HSV-1). Marine Drugs, 13, 558–580.  https://doi.org/10.3390/md13010558.CrossRefGoogle Scholar
  89. Gathercole, L. J., & Keller, A. (1991). Crimp morphology in the fibre-forming collagens. Matrix, 11, 214–234.PubMedCrossRefPubMedCentralGoogle Scholar
  90. George, M., & Abraham, T. E. (2006). Polyionic hydrocolloids for the intestinal delivery of protein drugs, alginate and chitosan – A review. Journal of Controlled Release, 114, 1–14.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Gildberg, A., Bøgwald, J., Johansen, A., & Stenberg, E. (1996). Isolation of acid peptide fractions from a fish protein hydrolysate with strong stimulatory effect on Atlantic salmon (Salmo salar) head kidney leucocytes. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 114, 97–101.CrossRefGoogle Scholar
  92. Glicksman, M. (1987). Utilization of seaweed hydrocolloids in the food industry. In M. A. Ragan & C. J. Bird (Eds.), Twelfth international seaweed symposium (Vol. 41, pp. 31–47). Dordrecht: Springer.  https://doi.org/10.1007/978-94-009-4057-4_3.CrossRefGoogle Scholar
  93. Gomez-Guillen, M. C., Gimenez, B., Lopez-Caballero, M. E., & Montero, M. P. (2011). Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloids, 25, 1813–1827.CrossRefGoogle Scholar
  94. Gong, Y., He, L., Li, J., Zhou, Q., Ma, Z., Gao, C., & Shen, J. (2007). Hydrogel-filled polylactide porous scaffolds for cartilage tissue engineering. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 82, 192–204.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Gueguen, Y., Herpin, A., Aumelas, A., Garnier, J., Fievet, J., Escoubas, J. M., Bulet, P., Gonzalez, M., Lelong, C., Favrel, P., & Bachère, E. (2006). Characterization of a defensin from the oyster Crassostrea gigas. Recombinant production, folding, solution structure, antimicrobial activities, and gene expression. The Journal of Biological Chemistry, 281(1), 313–323.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Hanaa, H. A. G., & Gihan, A. E. (2015). Antiviral activity of sulfated polysaccharides carrageenan from some marine seaweeds. International Journal of Current Pharmaceutical Review and Research, 7(1), 34–42.Google Scholar
  97. Harder, T., Dobretsov, S., & Qian, P. Y. (2004). Waterborne polar macromolecules act as algal antifoulants in the seaweed Ulva reticulata. Marine Ecology Progress Series, 274, 133–141.CrossRefGoogle Scholar
  98. Helbert, W. (2017). Marine polysaccharide sulfatases. Frontiers in Marine Science, 4(6), 1–10.  https://doi.org/10.3389/fmars.2017.00006.CrossRefGoogle Scholar
  99. Heu, M. S., Lee, J. H., Kim, H. J., Jee, S. J., Lee, J. S., Jeon, Y., Shahidi, F., & Kim, J. (2010). Characterization of acid- and pepsin-soluble collagens from flatfish skin. Food Science and Biotechnology, 19, 27–33.CrossRefGoogle Scholar
  100. Hidari, K. I., Takahashi, N., Arihara, M., Nagaoka, M., Morita, K., & Suzuki, T. (2008). Structure and anti-dengue virus activity of sulfated polysaccharide from a marine alga. Biochemical and Biophysical Research Communications, 376(1), 91–95.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Hjerpe, A., Engfeldt, B., Tsegenidis, T., Antonopoulos, C. A., Vynios, D. H., & Tsiganos, C. P. (1983). Analysis of the acid polysaccharides from squid cranial cartilage and examination of a novel polysaccharide. Biochimica et Biophysica Acta, 757, 85–91.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Holdt, S., & Kraan, S. (2011). Bioactive compounds in seaweed: Functional food applications and legislation. Journal of Applied Phycology, 23, 543–597.  https://doi.org/10.1007/s10811-010-9632-5.CrossRefGoogle Scholar
  103. Hori, Y., Winans, A. M., & Irvine, D. J. (2009). Modular injectable matrices based on alginate solution/microsphere mixtures that gel in situ and co-deliver immunomodulatory factors. Acta Biomaterialia, 5, 969–982.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Hosokawa, M., Okada, T., Mikami, N., Konishi, I., & Miyashta, K. (2009). Bio-functions of marine carotenoids. Food Science and Biotehnology, 18(1), 1–11.Google Scholar
  105. Howard, A., & Udenigwe, C. C. (2013). Mechanisms and prospects of food protein hydrolysates and peptide-induced hypolipidaemia. Food & Function, 4, 40–51.CrossRefGoogle Scholar
  106. Hsu, K. C., Lu, G. H., & Jao, C. L. (2009). Antioxidative properties of peptides prepared from tuna cooking juice hydrolysates with orientase (Bacillus subtilis). Food Research International, 42, 647–652.CrossRefGoogle Scholar
  107. Hsu, K. C., Li-Chan, E. C. Y., & Jao, C. L. (2011). Antiproliferative activity of peptides prepared from enzymatic hydrolysates of tuna dark muscle on human breast cancer cell line MCF-7. Food Chemistry, 126, 617–622.CrossRefGoogle Scholar
  108. Hu, S., Huang, J., Huang, W., Yeh, Y., Chen, M. H., Gong, H. Y., Chiou, T. T., Yang, T. H., Chen, T. T., Lu, J. K., & Wu, J. L. (2006). Structure and functison of antimicrobial peptide penaeidin-5 from the black tiger shrimp Penaeus monodon. Aquaculture, 260, 61–68.CrossRefGoogle Scholar
  109. Huang, W. S., Wang, K. J., Yang, M., Cai, J. J., Li, S. J., & Wang, G. Z. (2006). Purification and part characterization of a novel antibacterial protein scygonadin, isolated from the seminal plasma of mud crab, Scylla serrata (Forskal). Journal of Experimental Marine Biology and Ecology, 339, 37–42.CrossRefGoogle Scholar
  110. Huang, Y. C., Hsiao, P. C., & Chai, H. J. (2011). Hydroxyapatite extracted from fish scale: Effects on MG63 osteoblast-like cells. Ceramics International, 37, 1825–1831.CrossRefGoogle Scholar
  111. Huimin, Q., Tingting, Z., Quanbin, Z., Zhien, L., Zengqin, Z., & Ronge, X. (2005). Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa Kjellm (Chlorophyta). Journal of Applied Phycology, 17, 527–534.CrossRefGoogle Scholar
  112. Hussein, G., Sankawa, U., Goto, H., Matsumoto, K., & Watanabe, H. (2006). Astaxanthin, a carotenoid with potential in human health and nutrition. Journal of Natural Products, 69(3), 443–449.PubMedCrossRefPubMedCentralGoogle Scholar
  113. Hwang, J. H., Miuta, S., Yokoa, Y., & Yoshinaka, R. (2007). Purification and characterization of molecular species of collagen in the skin of skate (Raja kenojei). Food Chemistry, 100, 921–925.CrossRefGoogle Scholar
  114. Iijima, R., Kisugi, J., & Yamazaki, M. (2003). A novel antimicrobial peptide from the sea hare Dolabella auricularia. Developmental and Comparative Immunology, 27(4), 305–311.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Imjongjirak, A., Amparyup, P., & Tassanakajon, A. (2011). Two novel antimicrobial peptides, arasin-like Sp and GRPSp, from the mud crab Scylla paramamosain, exhibit the activity against some crustacean pathogenic bacteria. Fish & Shellfish Immunology, 30(2), 706–712.CrossRefGoogle Scholar
  116. Irhimeh, M. R., Fitton, J. H., & Lowenthal, R. M. (2007). Fucoidan ingestion increases the expression of CXCR4 on human CD34C cells. Experimental Hematology, 35, 989–994.PubMedCrossRefPubMedCentralGoogle Scholar
  117. Ivankovic, H., Orlic, S., Tkalcec, E., & Gallego Ferrer, G. (2007). Kinetics of hydroxyapatite formation from cuttlefish bones. In J. G. Heinrich & C. Aneziris (Eds.), Proceedings of 10th ECerS conference (pp. 942–947). Baden-Baden: Goller Verlag. ISBN:3-87264-022-4.Google Scholar
  118. Ivankovic, H., Tkalcec, E., Orlic, S., Ferrer, G. G., & Schaupererl, Z. (2010). Hydroxyapatite formation from cuttlefish bones: Kinetics. Journal of Materials Science: Materials in Medicine, 21, 2711–2722.PubMedPubMedCentralGoogle Scholar
  119. Iwa, K. (2008). Antidiabetic and antioxidant effects of polyphenols in brown alga Ecklonia stolonifera in genetically diabetic KK-Aymice. Plant Foods for Human Nutrition, 63, 163–169.CrossRefGoogle Scholar
  120. Jang, W., Kim, K., Lee, Y., Nam, M., & Lee, I. (2002). Halocidin: A new antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium. FEBS Letters, 521, 81–86.PubMedCrossRefPubMedCentralGoogle Scholar
  121. Jao, C. L., & Ko, W. E. N. C. (2002). Utilization of cooking juice of young tuna processed into canned tuna as condiments: Effect of enzymatic hydrolysis and membrane treatment. Fisheries Science, 70, 1121–1129.Google Scholar
  122. Je, J. Y., Qian, Z. J., Lee, S. H., Byun, H. G., & Kim, S. K. (2008). Purification and antioxidant properties of bigeye tuna (Thunnus obesus) dark muscle peptide on free radical-mediated oxidative systems. Journal of Medicinal Food, 11, 629–637.PubMedCrossRefPubMedCentralGoogle Scholar
  123. Jeong, H. S., Venkatesan, J., & Kim, S. K. (2013). Hydroxyapatite fucoidan nanocomposites for bone tissue engineering. International Journal of Biological Macromolecules, 57, 138–141.PubMedCrossRefPubMedCentralGoogle Scholar
  124. Jongjareonrak, A., Benjakul, S., Visesanguan, W., Nagai, T., & Tanaka, M. (2005). Isolation and characterization of acid and pepsin-solubilised collagens from the skin of Brownstripe red snapper (Lutjanus vitta). Food Chemistry, 93, 475–484.CrossRefGoogle Scholar
  125. Jorge, A. M., & Diamond, G. (2014). Antimicrobial peptides from fish. Pharmaceuticals, 7(3), 265–310.  https://doi.org/10.3390/ph7030265.CrossRefGoogle Scholar
  126. Jumeri, & Kim, S. M. (2011). Antioxidant and anticancer activities of enzymatic hydrolysates of solitary tunicate (Styela clava). Food Science and Biotechnology, 20, 1075–1085.CrossRefGoogle Scholar
  127. Jun, S. Y., Park, P. J., Jung, W. K., & Kim, S. K. (2004). Purification and characterization of an antioxidative peptide from enzymatic hydrolysate of yellowfin sole (Limanda aspera)frame protein. European Food Research and Technology, 219, 20–26.CrossRefGoogle Scholar
  128. Jung, W. K., & Kim, S. K. (2007). Calcium-binding peptide derived from pepsinolytic hydrolysates of hoki (Johnius belengerii) frame. European Food Research and Technology, 224, 763–767.CrossRefGoogle Scholar
  129. Jung, W. K., & Kim, S. K. (2009). Isolation and characterization of an anticoagulant oligopeptide from blue mussel, Mytilus edulis. Food Chemistry., 117, 687–692.CrossRefGoogle Scholar
  130. Jung, W. K., Mendis, E., Je, J. Y., Park, P. J., Son, B., Kim, H. C., Choi, Y. K., & Kim, S. K. (2006a). Angiotensin I-converting enzyme inhibitory peptide from yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats. Food Chemistry, 94, 26–32.CrossRefGoogle Scholar
  131. Jung, W. K., Kaarawita, R., Heo, S. J., Lee, B. J., Kim, S. K., & Jeon, Y. J. (2006b). Recovery of a novel Ca-binding peptide from Alaska pollock (Theragra chalcogramma) backbone by pepsinolytic hydrolysis. Process Biochemistry, 41, 2097–2100.CrossRefGoogle Scholar
  132. Karamanos, N. K., Aletras, A. J., Tsegenids, T., Tsiganos, C. P., & Antonopoulos, C. A. (1992). Isolation, characterization and properties of the oversulphated chondroitin sulphate proteoglycan from squid skin with peculiar glycosaminoglycan sulphation pattern. European Journal of Biochemistry, 204, 553–560.PubMedCrossRefPubMedCentralGoogle Scholar
  133. Kawabata, S., Nagayama, R., Hirata, M., Shigenaga, T., Agarwala, K. L., Saito, T., Cho, J., Nakajima, H., Takagi, T., & Iwanaga, S. (1996). Tachycitin, a small granular component in horseshoe crab hemocytes, is an antimicrobial protein with chitin-binding activity. Journal of Biochemistry, 120(6), 1253–1260.PubMedCrossRefPubMedCentralGoogle Scholar
  134. Khan, S. B., Qian, Z., Ryu, B. M., & Kim, S. (2009). Isolation and biochemical characterization of collagens from seaweed pipefish, Syngnathus schlegeli. Biotechnology and Bioprocess Engineering, 14, 436–442.CrossRefGoogle Scholar
  135. Khan, R., Khan, M. H., & Bey, A. (2011). Use of collagen as an implantable material in the reconstructive procedures – An over view. Biology and Medicine, 3, 25–32.Google Scholar
  136. Khoo, L., Robinette, D., & Noga, E. (1999). Callinectin, an antibacterial peptide from blue crab, Callinectes sapidus, hemocytes. Marine Biotechnology, 1, 44–51.PubMedCrossRefPubMedCentralGoogle Scholar
  137. Kim, S. K., Kim, Y., Byun, H. G., Nam, K. S., Joo, D. S., & Shahidi, F. (2001). Isolation and characterization of antioxidative peptide from gelatin hydrolysates of Alaska pollock skin. Journal of Agricultural and Food Chemistry, 49, 1984–1989.PubMedCrossRefPubMedCentralGoogle Scholar
  138. Kim, Y. H., Song, H., Riu, D. H., Kim, S. R., Kim, H. J., & Moon, J. H. (2005). Preparation of porous Si-incorporated hydroxyapatite. Current Applied Physics, 5, 538–541.CrossRefGoogle Scholar
  139. Kim, S. Y., Je, J. Y., & Kim, S. K. (2007). Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion. Journal of Nutritional Biochemistry, 18, 31–38.PubMedCrossRefPubMedCentralGoogle Scholar
  140. Kim, J. K., Lee, S. A., Shin, S., Lee, J. Y., Jeong, K. W., Nan, Y. H., Park, Y. S., Shin, S. Y., & Kim, Y. (2010). Structural flexibility and the positive charges are the key factors in bacterial cell selectivity and membrane penetration of peptoid-substituted analog of Piscidin 1. Biochimica et Biophysica Acta, 1798, 1913–1925.PubMedCrossRefPubMedCentralGoogle Scholar
  141. Kim, J. K., Cho, M. L., Karnjanapratum, S., Shin, I. S., & You, S. G. (2011). In vitro and in vivo immunomodulatory activity of sulfated polysaccharides from Enteromorpha prolifera. International Journal of Biological Macromolecules, 49(5), 1051–1058.PubMedCrossRefPubMedCentralGoogle Scholar
  142. Kimura, S., Miyauchi, Y., & Uchida, N. (1991). Scale and bone type I collagens of carp (Cyprinus carpio). Comparative Biochemistry and Physiology, 99B, 473–476.Google Scholar
  143. Kimura, M., Wakimoto, T., Egami, Y., Tan, K. C., Ise, Y., & Abe, I. (2012). Calyxamides A and B, cytotoxic cyclic peptides from the marine sponge Discodermia calyx. Journal of Natural Products, 75(2), 290–294.PubMedCrossRefPubMedCentralGoogle Scholar
  144. Kinoshita, A., Yamada, S., Haslam, S. M., Morris, H. R., Dell, A., & Sugahara, K. (1997). Novel tetrasaccharides isolated from squid cartilage chondroitin sulfate E contain unusual sulfated disaccharide units GlcA(3- O- sulfate)β1-3GalNAc(6 – O – sulfate) or GlcA (3 –O – sulfate) β 1-3GalNAc(4,6 – O- disulfate). The Journal of Biological Chemistry, 272, 19656–19665.PubMedCrossRefPubMedCentralGoogle Scholar
  145. Kitagawa, H., Tanaka, Y., Yamada, S., Seno, N., Haslam, S. M., Morris, H. R., Dell, A., & Sugahara, K. (1997). A novel pentasaccharide sequence GlcA(3 – sulfate)(β1 -3)GalNAc(4- sulfate)(β1 -4)(Fucα −3) – GlcA(β 1-3)GalNAc(4 – sulfate) in the oligosaccharides isolated from King Crab cartilage chondroitin sulfate K and its differential susceptibility to chondroitinases and hyaluronidase. Biochemistry, 36, 3998–4008.PubMedCrossRefPubMedCentralGoogle Scholar
  146. Kittiphattanabawon, P., Benjakul, S., Visesanguan, W., Nagai, T., & Tanaka, M. (2005). Characterization of acid-soluble collagen from skin and bone of bigeye snapper (Priacanthus tayenus). Food Chemistry, 89, 363–372.CrossRefGoogle Scholar
  147. Kofuji, K., Huang, Y., Tsubaki, K., Kokido, F., Nishikawa, K., Isobe, T., & Murata, Y. (2010). Preparation and evaluation of a novel wound dressing sheet comprised of beta-glucan-chitosan complex. Reactive and Functional Polymers, 70, 784–789.CrossRefGoogle Scholar
  148. Kongsri, S., Janparadit, K., Buapa, K., Techawongstien, S., & Chanthai, S. (2013). Nanocrystalline hydroxyapatite from fish scale waste: Preparation, characterization and application for selenium adsorption in aqueous solution. Chemical Engineering Journal, 215–216, 522–532.CrossRefGoogle Scholar
  149. Kruger, T. E., Miller, A. H., & Wang, J. (2013). Collagen scaffolds in bone sialoprotein-mediated bone regeneration. Scientific World Journal, 2013, 1–6.  https://doi.org/10.1155/2013/812718.CrossRefGoogle Scholar
  150. Krusong, K., Poolpipat, P., Supungul, P., & Tassanakajon, A. (2012). A comparative study of antimicrobial properties of crustinPm1 and crustinPm7 from the black tiger shrimp Penaeus monodon. Developmental and Comparative Immunology, 36(1), 208–215.PubMedCrossRefPubMedCentralGoogle Scholar
  151. Kusmanto, F., Walker, G., Gan, Q., Walsh, P., Bushanan, F., Dickson, G., McCaigue Maggs, C., & Dring, M. (2008). Development of composite tissue scaffolds containing naturally sourced microporous hydroxyapatite. Chemical Engineering Journal, 139, 398–407.CrossRefGoogle Scholar
  152. Landi, E., Celotti, G., Logroscino, G., & Tampieri, A. (2003). Carbonated hydroxyapatite as bone substitute. Journal of the European Ceramic Society, 23, 2931–2937.CrossRefGoogle Scholar
  153. Laparra, J. M., Tako, E., Glahn, R. P., & Miller, D. D. (2008). Isolated glycosaminoglycans from cooked haddock enhance nonheme iron uptake by Caco-2 cells. Journal of Agricultural and Food Chemistry, 56, 10346–10351.PubMedCrossRefPubMedCentralGoogle Scholar
  154. Laurienzo, P. (2010). Marine polysaccharides in pharmaceutical applications: An overview. Marine Drugs, 8, 2435–2465.  https://doi.org/10.3390/md8092435.CrossRefPubMedPubMedCentralGoogle Scholar
  155. Lauth, X., Shike, H., Burns, J. C., Westerman, M. E., Ostland, V. E., Carlberg, J. M., van Olst, J. C., Nizet, V., Taylor, S. W., Shimizu, C., & Bulet, P. (2002). Discovery and characterization of two isoforms of moronecidin, a novel antimicrobial peptide from hybrid striped bass. The Journal of Biological Chemistry, 277, 5030–5039.PubMedCrossRefPubMedCentralGoogle Scholar
  156. Leadbeater, B. S., & Thomsen, H. (2000). Order choanoflagellida. An illustrated guide to the protozoa (Vol. 451, 2nd ed., pp. 14–38). Lawrence: Society of Protozoologists.Google Scholar
  157. Ledward, C. A. (2000). Chapter 4: Gelatin. In G. O. Phillips & P. A. Williams (Eds.), Handbook of hydrocolloids. Boca Raton: CRC Press.Google Scholar
  158. Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Progress in Polymer Science, 7, 106–126.CrossRefGoogle Scholar
  159. Lee, I., Zhao, C., Nguyen, T., Menzel, L., Waring, A., Sherman, M., & Lehrer, R. (2001a). Clavaspirin, an antimicrobial and hemolytic peptide from Styela clava. Journal of Peptide Research, 58, 445–456.PubMedCrossRefPubMedCentralGoogle Scholar
  160. Lee, I. H., Lee, Y. S., Kim, C., Chung-Ryul, K., Hong, T., Menzel, L., Lee, B. M., Pohl, J., Sherman, M. A., Waring, A., & Lehrer, R. (2001b). Dicynthaurin: An antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium. Biochimica et Biophysica Acta, 1527, 141–148.PubMedCrossRefPubMedCentralGoogle Scholar
  161. Lee, S. H., Qian, Z. J., & Kim, S. K. (2010). A novel angiotensin I-converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its hypertensive effect in spontaneously hypertensive rats. Food Chemistry, 118, 96–102.CrossRefGoogle Scholar
  162. Leone, G., Vona, D., Lo, P. M., Urbano, L., Cicco, S., Gristina, R., Palumbo, F., Ragni, R., & Farinola, G. M. (2017). Ca2+−in vivo doped biosilica from living Thalassiosira weissflogii diatoms: Investigation on Saos-2 biocompatibility. MRS Advances, 2, 1047–1058.  https://doi.org/10.1557/adv.2017.49.CrossRefGoogle Scholar
  163. Li, C., Haug, T., Styrvold, O. B., Jorgensen, T. O., & Stensvag, K. (2008). Strongylocins, novel antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. Developmental and Comparative Immunology, 32(12), 1430–1440.PubMedCrossRefPubMedCentralGoogle Scholar
  164. Li, C., Haug, T., Moe, M. K., Styrvold, O. B., & Stensvag, K. (2010). Centrocins: Isolation and characterization of novel dimeric antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. Developmental and Comparative Immunology, 34(9), 959–968.PubMedCrossRefPubMedCentralGoogle Scholar
  165. Li, M., Zhu, L., Zhou, C. Y., Sun, S., Fan, Y. J., & Zhuang, Z. M. (2012). Molecular characterization and expression of a novel big defensin (Sb-BDef1) from ark shell, Scapharca broughtonii. Fish and Shellfish Immunology, 33, 1167–1173.PubMedCrossRefPubMedCentralGoogle Scholar
  166. Li, W., Jiang, N., Li, B., Wan, M., Chang, X., Liu, H., Zhang, L., Yin, S., Qi, H., & Liu, S. (2018). Antioxidant activity of purified ulvan in hyperlipidemic mice. International Journal of Biological Macromolecules, 113, 971–975.  https://doi.org/10.1016/j.ijbiomac.2018.02.104.CrossRefPubMedPubMedCentralGoogle Scholar
  167. Lin, M. G., Lasekan, O., Saari, N., & Khairunniza-Bejo, S. (2018). Effect of chitosan and carrageenan-based edible coatings on post-harvested longan (Dimocarpus longan) fruits. CyTA – Journal of Food, 16(1), 490–497.  https://doi.org/10.1080/19476337.2017.1414078.CrossRefGoogle Scholar
  168. Linnartz, H., Huibertus, T. V. S., Lin, C. C., Karim, H., Mass, S., Lai, H., Van den Berg, T., Salvatori, D., Luyten, G. P. M., & Jager, M. J. (2013). A fish scale – Derived collagen matrix as artificial cornea in rats: Properties and potential. Nanotechnology and Regenerative Medicine, 54, 3224–3233.Google Scholar
  169. Liu, H. Y., Li, D., & Guo, S. D. (2007a). Studies on collagen from the skin of channel catfish (Ictalurus punctatus). Food Chemistry, 101, 621–625.CrossRefGoogle Scholar
  170. Liu, Z., Zeng, M., Dong, S., Xu, J., Song, H., & Zhao, Y. (2007b). Effect of antifungal peptide from oyster enzymatic hydrolysates for control of gray mold (Botrytis cinerea) on harvested strawberries. Postharvest Biology and Technology, 46, 95–98.CrossRefGoogle Scholar
  171. Liu, Z., Dong, S., Xu, J., Zeng, M., Song, H., & Zhao, Y. (2008). Production of cysteine rich antimicrobial peptide by digestion of oyster (Crassostrea gigas) with Alcalase and bromelin. Food Control, 19, 231–235.CrossRefGoogle Scholar
  172. Liu, P., Jo, S., & Bean, B. P. (2012). Modulation of neuronal sodium channels by the sea anemone peptide BDS-I. Journal of Neurophysiology, 107(11), 3155–3167.PubMedPubMedCentralCrossRefGoogle Scholar
  173. Losic, D., Pillar, R. J., Dilger, T., Mitchell, J. G., & Voelcker, N. H. (2007). Atomic force microscopy (AFM) characterization of the porous silica nanostructure of two centric diatoms. Journal of Porous Materials, 14, 61–69. (for Biosilica SEM image permission required).CrossRefGoogle Scholar
  174. Lucas, F. B. N., Bianca, C. M., Lourivaldo, S. P., Delia, R. T., & Ana, P. R. (2016). Formation of carrageenan-CaCO3 bioactive membranes. Materials Science and Engineering C, 58, 1–6.CrossRefGoogle Scholar
  175. Lucinda-Silva, R. M., Salgado, H. R. N., & Evangelista, R. C. (2010). Alginate–chitosan systems: In vitro controlled release of triamcinolone and in vivo gastrointestinal transit. Carbohydrate Polymers, 81, 260–268.CrossRefGoogle Scholar
  176. Macha, I. J., Ozyegin, L., Oktar, F. N., & Ben-Nissan, B. (2015). Conversion of ostrich eggshells (Struthio camelus) to calcium phosphates. Journal of the Australian Ceramic Society, 51(1), 125–133.Google Scholar
  177. Madhavan, S., & Abirami. (2015). A review on hydrocolloids-agar and alginate. Journal of Pharmaceutical Sciences and Research, 7, 704–707.Google Scholar
  178. Maeda, H., Hosokawa, M., Sashima, T., Funayama, K., & Miyashita, K. (2005). Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCPI expression in white adipose tissues. Biochemical and Biophysical Research Communications, 332(2), 392–397.PubMedCrossRefPubMedCentralGoogle Scholar
  179. Maeda, H., Hosokawa, M., Sashima, T., & Miyashita, K. (2007). Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and decrease blood glucose in obese/diabetic KK-Ay mice. Journal of Agricultural and Food Chemistry, 55(19), 7701–7706.PubMedCrossRefPubMedCentralGoogle Scholar
  180. Maidaniuc, A., Dascălu, C.-A., Miculescu, M., Voicu, Ș. I., & Ciocoiu, R.-C. (2018). Chapter 6: Biomimetic calcium phosphates derived from marine and land bioresource. In Hydroxyapatite – Advances in composite nanomaterials, biomedical applications and its technological facets. Rijeka: Intech Open.  https://doi.org/10.5772/intechopen.71489.CrossRefGoogle Scholar
  181. Maier, V. H., Dorn, K. V., Gudmundsdottir, B. K., & Gudmundsson, G. H. (2008). Characterisation of cathelicidin gene family members in divergent fish species. Molecular Immunology, 45, 3723–3730.PubMedCrossRefPubMedCentralGoogle Scholar
  182. Makkar, H. P. S., Tran, G., Heuze, V., Giger-Reverdin, S., Lessire, M., Lebas, F., & Ankers, P. (2016). Seaweeds for livestock diets: A review. Animal Feed Science and Technology, 212, 1–17.CrossRefGoogle Scholar
  183. Matsuno, T. (2001). Aquatic animal carotenoids. Fisheries Sciences, 67(5), 771–783.CrossRefGoogle Scholar
  184. McHugh, D. J. (2003). A guide to seaweed industry. Rome: FAO Fisheries and Aquaculture Department.Google Scholar
  185. Mendis, E., Rajapakse, N., Byun, H. G., & Kim, S. K. (2005). Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sciences, 77, 2166–2178.PubMedCrossRefPubMedCentralGoogle Scholar
  186. Mitta, G., Hubert, F., Noel, T., & Roch, P. (1999a). Myticin, a novel cysteine-rich antimicrobial peptide isolated from haemocytes and plasma of the mussel Mytilus galloprovincialis. European Journal of Biochemistry, 265, 71–78.PubMedCrossRefPubMedCentralGoogle Scholar
  187. Mitta, G., Vandenbulcke, F., Hubert, F., & Roch, P. (1999b). Mussel defensins are synthesized and processed in granulocytes then released into the plasma after bacterial challenge. Journal of Cell Science, 112, 4233–4242.PubMedPubMedCentralGoogle Scholar
  188. Mitta, G., Vandenbulcke, F., Hubert, F., Salzet, M., & Roch, P. (2000). Involvement of mytilins in mussel antimicrobial defense. The Journal of Biological Chemistry, 275, 12954–12962.PubMedCrossRefPubMedCentralGoogle Scholar
  189. Miyashita, K. (2014). Marine antioxidants: Polyphenols and carotenoids from algae. In H. G. Kristinsson (Ed.), Antioxidants and functional components in aquatic foods (pp. 219–235). Chichester: Wiley.CrossRefGoogle Scholar
  190. Montero, P., & Gomez-Guillen, M. C. (2000). Extracting conditions for megrim (Lepidorhombus boscii) skin collagen affect functional properties of the resulting gelatin. Journal of Food Science, 65, 434–438.CrossRefGoogle Scholar
  191. Montero, P., Alvarez, C., Marti, M. A., & Borderias, A. J. (1995). Plaice skin collagen extraction and functional properties. Journal of Food Science, 60, 1–3.CrossRefGoogle Scholar
  192. Morelli, A., & Chiellini, F. (2010). Ulvan as a new type of biomaterial from renewable resources: Functionalization and hydrogel preparation. Macromolecular Chemistry and Physics, 211, 821–832.  https://doi.org/10.1002/macp.200900562.CrossRefGoogle Scholar
  193. Moshaverinia, A., Chen, C., Akiyama, K., Ansari, S., Xu, X., Chee, W. W., Schricker, S. R., & Shi, S. (2012). Alginate hydrogel as a promising scaffold for dental-derived stem cells: An in vitro study. Journal of Materials Science: Materials in Medicine, 23, 3041–3051.PubMedPubMedCentralGoogle Scholar
  194. Motta, G. J. (1989). Calcium alginate topical wound dressings, A new dimension in the cost-effective treatment for exudating dermal wounds and pressure sores. Ostomy Wound Management, 25, 52–56.Google Scholar
  195. Muller, W. E. G., Li, J., Schröder, H. C., Qiao, L., & Wang, X. (2007). The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: A review. Biogeosciences, 4(2), 219–232.  https://doi.org/10.5194/bg-4-219-2007.CrossRefGoogle Scholar
  196. Murugan, R., & Ramakrishna, S. (2004). Crystallographic study of hydroxyapatite bioceramics derived from various sources. Crystal Growth and Design, 5, 111–112.CrossRefGoogle Scholar
  197. Muthukumar, T., Prabu, P., Ghosh, K., & Sastry, T. P. (2014). Fish scale collagen sponge incorporated with Macrotyloma uniflorum plant extract as a possible wound or burn dressing material. Colloids and Surfaces B: Biointerfaces, 113, 207–212.  https://doi.org/10.1016/j.colsurfb.2013.09.019.CrossRefPubMedPubMedCentralGoogle Scholar
  198. Muyonga, J. H., Cole, C. G. B., & Duodu, K. G. (2004). Characterisation of acid soluble collagen from skins of young and adult Nile perch (Lates niloticus). Food Chemistry, 85, 81–89.CrossRefGoogle Scholar
  199. Nader, H. B., & Dietrich, C. P. (1989). Natural occurrence and possible biological role of heparin. In D. A. Lane & U. Lindahl (Eds.), Heparin: Chemical and biological properties, clinical applications (pp. 81–96). London: Edward Arnold Publishers.Google Scholar
  200. Nader, H. B., Ferreira, T. M. P. C., Paiva, J. F., Medeiros, M. G. L., Jeronimo, S. M. B., Paiva, V. M. P., & Dietrich, C. P. (1984). Isolation and structural studies of heparin sulfates and chondroitin sulfates from three species of molluscs. The Journal of Biological Chemistry, 259, 1431–1435.PubMedPubMedCentralGoogle Scholar
  201. Nagai, T. (2004). Characterization of collagen from Japanese sea bass caudal fin as waste material. European Food Research and Technology, 218, 424–427.CrossRefGoogle Scholar
  202. Nagai, T., & Suzuki, N. (2002). Collagen of the skin of ocellate puffer fish (Takifugu rubripes). Food Chemistry, 78, 173–177.CrossRefGoogle Scholar
  203. Nagai, T., Suzuki, N., Tanoue, Y., Kai, N., & Nagashima, T. (2010). Characterization of acid-soluble collagen from skins of surf smelt (Hypomesus pretiosus japonicus Brevoort). Food and Nutrition Sciences, 1, 59–66.CrossRefGoogle Scholar
  204. Najafian, L., & Babji, A. S. (2012). A review of fish-derived antioxidant and antimicrobial peptides: Their production, assessment, and applications. Peptides, 33, 178–185.PubMedCrossRefPubMedCentralGoogle Scholar
  205. Nakamura, T., Furunaka, H., Miyata, T., Tokunaga, F., Muta, T., & Iwanaga, S. (1988). Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure. The Journal of Biological Chemistry, 263(32), 16709–16713.PubMedPubMedCentralGoogle Scholar
  206. Nam, B. H., Moon, J. Y., Kim, Y. O., Kong, H. J., Kim, W. J., Lee, S. J., & Kim, K. K. (2010). Multiple beta-defensin isoforms identified in early developmental stages of the teleost Paralichthys olivaceus. Fish & Shellfish Immunology, 28, 267–274.CrossRefGoogle Scholar
  207. Nandini, C. D., Itoh, N., & Sugahara, K. (2005). Novel 70-kDa chondroitin sulfate/dermatan sulfate hybrid chains with a unique heterogenous sulfation pattern from shark skin, which exhibit neuritogenic activity and binding activities for growth factors and neurotrophic factors. The Journal of Biological Chemistry, 280, 4058–4069.PubMedCrossRefPubMedCentralGoogle Scholar
  208. Nasri, R., Amor, I. B., Bougatef, A., Nedjar-Arroume, N., Ghulster, P., Gargouri, J., Chaabouni, M. K., & Nasri, M. (2012). Anticoagulant activities of Goby muscle protein hydrolysates. Food Chemistry, 133, 835–841.CrossRefGoogle Scholar
  209. Neyrinck, A. M., Mouson, A., & Delzenne, N. M. (2007). Dietary supplementation with laminarin, a fermentable marine beta (1-3) glucan, protects against hepatotoxicity induced by LPS in rat by modulating immune response in the hepatic tissue. International Immunopharmacology, 7, 1497–1506.  https://doi.org/10.1016/j.intimp.2007.06.011.CrossRefPubMedPubMedCentralGoogle Scholar
  210. Ngo, D. H., & Kim, S. K. (2014). Antioxidant effects of chitin, chitosan, and their derivatives. Advances in Food and Nutrition Research, 73, 15–31.  https://doi.org/10.1016/B978-0-12-800268-1.00002-0.CrossRefPubMedPubMedCentralGoogle Scholar
  211. Ngo, D. H., Ryu, B., & Kim, S. K. (2014). Active peptides from skate (Okamejei kenojei) skin gelatin diminish angiotensin-I converting enzyme activity and intracellular free radical-mediated oxidation. Food Chemistry, 143, 246–255.PubMedCrossRefPubMedCentralGoogle Scholar
  212. Noga, E. J., Ullal, A. J., Corrales, J., & Fernandes, J. M. (2011). Application of antimicrobial polypeptide host defenses to aquaculture: Exploitation of downregulation and upregulation responses. Comparative Biochemistry and Physiology. Part D, Genomics & Proteomics, 6(1), 44–54.CrossRefGoogle Scholar
  213. Nozaki, M. (2013). Hypothalamic-pituitary-gonadal endocrine system in the hagfish. Frontiers in Endocrinology (Lausanne), 4, 200.Google Scholar
  214. Ogawa, M., Portier, R. J., Moody, M. W., Bell, J., Schexnayder, M. A., & Losso, J. N. (2004). Biochemical properties of bone and scale collagens isolated from the subtropical fish black drum (Pogonias cromis) and sheepshead seabream (Archosargus probatocephalus). Food Chemistry, 88, 495–501.CrossRefGoogle Scholar
  215. Olaizola, M. (2008). The production and health benefits of astaxanthin. In C. Barrow & F. Shahidi (Eds.), Marine nutraceuticals and functional foods (pp. 321–343). New York: CRC/Taylor & Francis.Google Scholar
  216. Ovchinnikova, T. V., Aleshina, G. M., Balandin, S. V., Krasnosdembskaya, A. D., Markelov, M. L., Frolova, E. I., Leonova, Y. F., Tagaev, A. A., Krasnodembsky, E. G., & Kokryakov, V. N. (2004). Purification and primary structure of two isoforms of arenicin, a novel antimicrobial peptide from marine polychaeta Arenicola marina. FEBS Letters, 577(1–2), 209–214.PubMedCrossRefPubMedCentralGoogle Scholar
  217. Ovchinnikova, T. V., Balandin, S. V., Aleshina, G. M., Tagaev, A. A., Leonova, Y. F., Krasnodembsky, E. D., Menshenin, A. V., & Kokryakov, V. N. (2006). Aurelin, a novel antimicrobial peptide from jellyfish Aurelia aurita with structural features of defensins and channel-blocking toxins. Biochemical and Biophysical Research Communications, 348(2), 514–523.PubMedCrossRefPubMedCentralGoogle Scholar
  218. Pacheco, R. G., Vicente, C. P., Zancan, P., & Mourao, P. A. S. (2000). Different antithrombotic mechanisms among glycosaminoglycans revealed with a new fucosylated chondroitin sulfate from an echinoderm. Blood Coagulation & Fibrinolysis, 11, 563–573.CrossRefGoogle Scholar
  219. Palthur, M. P., Sajala Palthur, S. S., & Chitta, S. K. (2010). Nutraceuticals: Concept and regulatory scenario. International Journal of Pharmacy and Pharmaceutical Sciences, 2, 14–20.Google Scholar
  220. Pan, W., Liu, X., Ge, F., Han, J., & Zheng, T. (2004). Perinerin, a novel antimicrobial peptide purified from the clamworm Perinereis aibuhitensis grube and its partial characterization. Journal of Biochemistry, 135(3), 297–304.PubMedCrossRefPubMedCentralGoogle Scholar
  221. Pan, C. Y., Chen, J. Y., Ni, I. H., Wu, J. L., & Kuo, C. M. (2008). Organization and promoter analysis of the grouper (Epinephelus coioides) epinecidin-1 gene. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 150, 358–367.CrossRefGoogle Scholar
  222. Pangestuti, R., Ryu, B., Himaya, S., & Kim, S. K. (2013). Optimization of hydrolysis conditions, isolation, and identification of neuroprotective peptides derived from seahorse Hippocampus trimaculatus. Amino Acids, 45, 369–381.PubMedCrossRefPubMedCentralGoogle Scholar
  223. Panwar, V., & Dutta, T. (2019). Diatom biogenic silica as a felicitous platform for biochemical engineering: Expanding frontiers. ACS Applied Bio Materials, 2(6), 2295–2316.CrossRefGoogle Scholar
  224. Park, C. B., Kim, M. S., & Kim, S. C. (1996). A novel antimicrobial peptide from Bufo bufo gargarizans. Biochemical and Biophysical Research Communications, 218, 408–413.PubMedCrossRefPubMedCentralGoogle Scholar
  225. Park, C. H., Valore, E. V., Waring, A. J., & Ganz, T. (2001). Hepcidin, a urinary antimicrobial peptide synthesized in the liver. The Journal of Biological Chemistry, 276, 7806–7810.PubMedCrossRefPubMedCentralGoogle Scholar
  226. Park, S. B., Chun, K. R., Kim, J. K., Suk, K., Jung, Y. M., & Lee, W. H. (2010). The differential effect of high and low molecular weight fucoidans on the severity of collagen-induced arthritis in mice. Phytotherapy Research, 24(9), 1384–1391.PubMedCrossRefPubMedCentralGoogle Scholar
  227. Park, S. C., Park, Y., & Hahm, K. S. (2011). The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation. International Journal of Molecular Sciences, 12(9), 5971–5992.  https://doi.org/10.3390/ijms12095971.CrossRefPubMedPubMedCentralGoogle Scholar
  228. Parys, S., Rosenbaum, A., Kehraus, S., Reher, G., Glombitza, K. W., & Konig, G. M. (2007). Evaluation of quantitative methods for the determination of polyphenols in algal extracts. Journal of Natural Products, 70(12), 1865–1870.PubMedCrossRefPubMedCentralGoogle Scholar
  229. Patil, N. P., Le, V., Sligar, A. D., Mei, L., Chavarria, D., Yang, E. Y., & Baker, A. B. (2018). Algal polysaccharides as therapeutic agents for atherosclerosis. Frontiers inCardiovascular Medicine, 5, 153.  https://doi.org/10.3389/fcvm.2018.00153.CrossRefGoogle Scholar
  230. Pavao, M. S. G., Aiello, K. R. M., Werneck, C. C., Silva, L. C., Valente, A. P., Mulloy, B., Colwell, M. S., Tollefsen, D. M., & Mourao, P. A. S. (1998). Highly sulfated dermatan sulfate from ascidians. Structure versus anticoagulant activity of these glycosaminoglycans. The Journal of Biological Chemistry, 273, 27848–27857.PubMedCrossRefPubMedCentralGoogle Scholar
  231. Pengzhan, Y., Ning, L., Xiguang, L., Gefei, Z., Quanbin, Z., & Pengcheng, L. (2003). Antihyperlipidemic effects of different molecular weight sulfated polysaccharides from Ulva pertusa (Chlorophyta). Pharmacological Research, 48, 543–549.  https://doi.org/10.1016/S1043-6618(03)00215-9.CrossRefPubMedPubMedCentralGoogle Scholar
  232. Pereira, L. (2011). A review of the nutrient composition of selected edible seaweeds. In V. H. Pomin (Ed.), Seaweed, ecology, nutrient composition and medicinal uses (pp. 15–47). New York: Nova Science Publishers.Google Scholar
  233. Pfeiler, E., Toyoda, H., Williams, M. D., & Nieman, R. A. (2002). Identification, structural analysis and function of hyaluronan in developing fish larvae (leptocephali). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 132, 443–451.CrossRefGoogle Scholar
  234. Piez, K. A. (1984). Molecular and aggregate structure of the collagens in extracellular matrix. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 42, 36–49.Google Scholar
  235. Plaza, A., Gustchina, E., Baker, H. L., Kelly, M., & Bewley, C. A. (2007). Mirabamides A-D. Depsipeptides from the sponge Siliquariaspongia mirabilis that inhibit HIV-1 fusion. Journal of Natural Products, 70(11), 1753–1760.PubMedCrossRefPubMedCentralGoogle Scholar
  236. Pomin, V. H., & Mourão, P. A. (2008). Structure, biology, evolution, and medical importance of sulfated fucans and galactans. Glycobiology, 18, 1016–1027.  https://doi.org/10.1093/glycob/cwn085.CrossRefPubMedPubMedCentralGoogle Scholar
  237. Pozzolini, M., Scarfì, S., Gallus, L., Castellano, M., Vicini, S., Cortese, K., Gagliani, M. C., Bertolino, M., Costa, G., & Giovine, M. (2018). Production, characterization and biocompatibility evaluation of collagen membranes derived from marine sponge Chondrosia reniformis Nardo, 1847. Marine Drugs, 16, 111.  https://doi.org/10.3390/md16040111.CrossRefPubMedCentralGoogle Scholar
  238. Prajapati, V. D., Mahereriya, P. M., Jani, G. K., & Soalnki, H. K. (2014). Carrageenan: A natural seaweed polysaccharide and its applications. Carbohydrate Polymers, 105, 97–112.PubMedCrossRefPubMedCentralGoogle Scholar
  239. Qi, H., & Sun, Y. (2015). Antioxidant activity of high sulfate content derivative of ulvan in hyperlipidemic rats. International Journal of Biological Macromolecules, 76, 326–329.  https://doi.org/10.1016/j.ijbiomac.2015.03.006.CrossRefPubMedPubMedCentralGoogle Scholar
  240. Qiao, L., Feng, Q., & Li, Z. (2007). Special vaterite found in freshwater lackluster pearls. Crystal Growth and Design, 7, 275–279.CrossRefGoogle Scholar
  241. Qin, Y. (2008). Alginate fibers, An overview of the production processes and applications in wound management. Polymer International, 57, 171–108.CrossRefGoogle Scholar
  242. Raghavan, S., & Kristinsson, H. G. (2009). ACE-inhibitory activity of tilapia protein hydrolysates. Food Chemistry, 117, 582–588.CrossRefGoogle Scholar
  243. Rahman, A. M. (2019). Collagen of extracellular matrix from marine invertebrates and its medical applications. Marine Drugs, 17, 118.  https://doi.org/10.3390/md17020118.CrossRefPubMedCentralGoogle Scholar
  244. Rajanbabu, V., Chen, J.-Y., & Wu, J.-L. (2015). Antimicrobial peptides from marine organisms. In S. K. Kim (Ed.), Springer handbook of marine biotechnology. Berlin/Heidelberg: Springer.Google Scholar
  245. Raman, M., & Gopakumar, K. (2018). Fish collagen and its applications in food and pharmaceutical industry: A review. EC Nutrition, 13(12), 752–767.Google Scholar
  246. Rashid, M. A., Gustafson, K. R., Cartner, L. K., Shigematsu, N., Pannell, L. K., & Boyd, M. R. (2001). Microspinosamide, a new HIV-inhibitory cyclic depsipeptide from the marine sponge Sidonops microspinosa. Journal of Natural Products, 64, 117–121.PubMedCrossRefPubMedCentralGoogle Scholar
  247. Regenstein, J., & Zhou, P. (2007). Collagen and gelatin from marine by-product. In Maximising the value of marine by-products (pp. 279–303). Boca Raton: CRC Press.  https://doi.org/10.1533/9781845692087.2.279.CrossRefGoogle Scholar
  248. Relf, J., Chisholm, J., Kemp, G., & Smith, V. (1999). Purification and characterization of a cysteine-rich 11.5-kDa antibacterial protein from the granular haemocytes of the shore crab, Carcinus maenas. European Journal of Biochemistry, 264(2), 350–357.PubMedCrossRefPubMedCentralGoogle Scholar
  249. Remminghorst, U., & Rehm, B. H. A. (2006). Bacterial alginates: From biosynthesis to applications. Biotechnology Letters, 28, 1701–1712.  https://doi.org/10.1007/s10529-006-9156-x.CrossRefPubMedPubMedCentralGoogle Scholar
  250. Rhein-Knudsen, N., Ale, M. T., & Meyer, A. S. (2015). Seaweed hydrocolloid production: An update on enzyme assisted extraction and modification technologies. Marine Drugs, 13, 3340–3359.PubMedPubMedCentralCrossRefGoogle Scholar
  251. Rigby, B. J. (1968). Aminoacid composition and thermal stability of the skin collagen of the Antartic ice fish. Nature, 219, 166–167.PubMedCrossRefPubMedCentralGoogle Scholar
  252. Rizk, M. Z., El-sherbiny, M., Borai, I. H., Ezz, M. K., Aly, H. F., Matloub, A. A., Farrag, A. E. R., & Fouad, G. I. (2016). Sulphated polysaccharides (SPS) from the green alga Ulva fasciata extract modulates liver and kidney function in high fat diet-induced hypercholesterolemic rats. International Journal of Pharmacy and Pharmaceutical Sciences, 8(6), 43–55.Google Scholar
  253. Rodrigues, P. N., Vazquez-Dorado, S., Neves, J. V., & Wilson, J. M. (2006). Dual function of fish hepcidin: Response to experimental iron overload and bacterial infection in sea bass (Dicentrarchus labrax). Developmental and Comparative Immunology, 30, 1156–1167.PubMedCrossRefPubMedCentralGoogle Scholar
  254. Rolland, J. L., Abdelouahab, M., Dupont, J., Lefevre, F., Bachère, E., & Romestand, B. (2010). Stylicins, a new family of antimicrobial peptides from the Pacific blue shrimp Litopenaeus stylirostris. Molecular Immunology, 47(6), 1269–1277.PubMedCrossRefPubMedCentralGoogle Scholar
  255. Rujitanapanich, S., Kumpapan, P., & Wanjanoi, P. (2014). Synthesis of hydroxyapatite from oyster shell via precipitation. Energy Procedia, 56, 112–117.CrossRefGoogle Scholar
  256. Ryu, B., & Kim, S. K. (2013). Potential beneficial effects of marine peptide on human neuron health. Current Protein & Peptide Science, 14, 173–176.CrossRefGoogle Scholar
  257. Ryu, B., Qian, Z.-J., Kim, M.-M., Nam, K. W., & Kim, S.-K. (2009). Anti-photoaging activity and inhibition of matrix metalloproteinase (MMP) by marine red alga, Corallina pilulifera methanol extract. Radiation Physics and Chemistry, 78, 98–105.CrossRefGoogle Scholar
  258. Sahithi, B., Ansari, S. K., Hameeda, S. K., Sahithya, G., Durga Prasad, M., & Lakshmi, Y. (2013). A review on collagen based drug delivery systems. Indian Journal of Research in Pharmacy and Biotechnology, 1, 461–468.Google Scholar
  259. Saito, T., Kawabata, S., Shigenaga, T., Takayenoki, Y., Cho, J., Nakajima, H., Hirata, M., & Iwanaga, S. (1995). A novel big defensin identified in horseshoe crab hemocytes: Isolation, amino acid sequence, and antibacterial activity. Journal of Biochemistry, 117(5), 1131–1137.PubMedCrossRefPubMedCentralGoogle Scholar
  260. Sakai, S., Kim, W. S., Lee, I. S., Kim, Y. S., Nakamura, A., Toida, T., & Imanari, T. (2003). Purification and characterization of dermatan sulfate from the skin of the eel, Anguilla japonica. Carbohydrate Research, 338, 263–269.PubMedCrossRefPubMedCentralGoogle Scholar
  261. Salampessy, J., Philips, M., Seneweera, S., & Kailasapathy, K. (2010). Release of antimicrobial peptides through bromelain hydrolysis of leatherjacket (Meuchenia sp.) insoluble proteins. Food Chemistry, 120, 556–560.CrossRefGoogle Scholar
  262. Samaranayaka, A. G. P., Kitts, D. D., & Li-Chan, E. C. Y. (2010). Antioxidative and angiotensin I-converting enzyme inhibitory potential of a Pacific hake (Merluccius productus) fish protein hydrolysate subjected to stimulated gastrointestinal digestion and caco-2 cell permeation. Journal of Agricultural and Food Chemistry, 58, 1535–1542.PubMedCrossRefPubMedCentralGoogle Scholar
  263. Sampath Kumar, N. S., Nazeer, R. A., & Jaiganesh, R. (2011). Purification and identification of antioxidant peptides from the skin protein hydrolysate of two marine fishes, horse mackerel (Megalaspis cordyla) and croaker (Otolithes ruber). Amino Acids, 42, 1641–1649.PubMedCrossRefPubMedCentralGoogle Scholar
  264. Sankar, S., Sekar, S., Mohan, R., Rani, S., Sundaraseelan, J., & Sastry, T. P. (2008). Preparation and partial characterization of collagen sheet from fish (Lates calcarifer) scales. International Journal of Biological Macromolecules, 42, 6–9.PubMedCrossRefPubMedCentralGoogle Scholar
  265. Santo, V. E., Frias, A. M., Carida, M., Cancedda, R., Gomes, M. E., Mano, J. F., & Reis, R. L. (2009). Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering applications. Biomacromolecules, 10, 1392–1401.PubMedCrossRefPubMedCentralGoogle Scholar
  266. Santos, E. A., Rocha, L. R. M., Pereira, N. M. L., Andrade, G. P. V., Nader, H. B., & Dietrich, C. P. (2002). Mast cells are present in epithelial layers of different tissues of the mollusk Anomalocardia brasiliana. In situ characterization of heparin and a correlation of heparin and histamine concentration. The Histochemical Journal, 34, 553–558.PubMedCrossRefPubMedCentralGoogle Scholar
  267. Schnapp, D., Kemp, G., & Smith, V. (1996). Purification and characterization of a proline-rich antibacterial peptide, with sequence similarity to bactenecin-7, from the haemocytes of the shore crab, Carcinus maenas. European Journal of Biochemistry, 240, 532–539.PubMedCrossRefPubMedCentralGoogle Scholar
  268. Schroder, H. C., Wang, X., Tremel, W., Ushijima, H., & Muller, W. E. (2008). Biofabrication of biosilica-glass by living organisms. Natural Product Reports, 25, 455–474.PubMedCrossRefPubMedCentralGoogle Scholar
  269. See, S. F., Hong, P. K., Ng, K. L., Wan Aida, W. M., & Babji, A. S. (2010). Physicochemical properties of gelatins extracted from skins of different freshwater fish species. International Food Research Journal, 17, 806–816.Google Scholar
  270. Senaratne, L. S., Park, P. J., & Kim, S. K. (2006). Isolation and characterization of collagen from brown backed toadfish (Lagocephalus gloveri) skin. Bioresource Technology, 97, 191–197.PubMedCrossRefPubMedCentralGoogle Scholar
  271. Sezer, A. D., Hatipoğlu, F., Cevher, E., Oğurtan, Z., Baş, A. L., & Akbuğa, J. (2007). Chitosan films containing fucoidan as a wound dressing for dermal burn healing, preparation and in vitro/in vivo evaluation. AAPS PharmSciTech, 8, E94–E101.PubMedCentralCrossRefGoogle Scholar
  272. Shanmugam, M., & Mody, K. H. (2000). Heparinoid-active sulphated polysaccharides from marine algae as potential blood anticoagulant agents. Current Science India, 79, 1672–1683.Google Scholar
  273. Shariffuddin, J. H., Jones, M. I., & Patterson, D. A. (2013). Greener photocatalysts: Hydroxyapatite derived from waste mussel shells for the photocatalytic degradation of a model azo dye wastewater. Chemical Engineering Research and Design.  https://doi.org/10.1016/j.cherd.2013.04.018.CrossRefGoogle Scholar
  274. Shetty, A. K., Kobayashi, T., Mizumoto, S., Narumi, M., Kudo, Y., Yamada, S., & Sugahara, K. (2009). Isolation and characterization of a novel chondroitin sulfate from squid liver integument rich in N- acetylgalactosamine(4,6-disulfate) and glucuronate(3-sulfate) residues. Carbohydrate Research, 344, 1526–1532.PubMedCrossRefPubMedCentralGoogle Scholar
  275. Shike, H., Lauth, X., Westerman, M. E., Ostland, V. E., Carlberg, J. M., van Olst, J. C., Shimizu, C., Bulet, P., & Burns, J. C. (2002). Bass hepcidin is a novel antimicrobial peptide induced by bacterial challenge. European Journal of Biochemistry, 269, 2232–2237.PubMedCrossRefPubMedCentralGoogle Scholar
  276. Soliev, A. V., Hosokawa, K., & Enomoto, K. (2011). Bioactive pigments from marine bacteria: Applications and physiological roles. Evidence-Based Complementary and Alternative Medicine, 2011, ID 670349, 17p.  https://doi.org/10.1155/2011/670349.CrossRefGoogle Scholar
  277. Sousa, A. P. A., Torres, M. R., Pessoa, C., Moraes, M. O., Rocha-Filho, F. D., Alves, A. P. N. N., & Costa-Lotufo, L. V. (2007). In vivo growth-inhibition of sarcoma 180 tumor by alginates from brown seaweed Sargassum vulgare. Carbohydrate Polymers, 69, 7–13.CrossRefGoogle Scholar
  278. Souza, A. R. C., Kozlowski, E. O., Cerqueira, V. R., Castelo-Branco, M. T. L., Costa, M. L., & Pavao, M. S. G. (2007). Chondroitin sulfate and keratan sulfate are the major glycosaminoglycans present in the adult zebrafish Danio rerio (Chordata-Cyprinidae). Glycoconjugate Journal, 24, 521–530.PubMedCrossRefGoogle Scholar
  279. Spicer, A. P., Tien, J. L., Joo, A., & Bowling, R. A., Jr. (2002). Investigation of hyaluronan function in the mouse through targeted mutagenesis. Glycoconjugate Journal, 19, 341–345.PubMedCrossRefPubMedCentralGoogle Scholar
  280. Stensvag, K., Haug, T., Sperstad, S. V., Rekdal, O., Indrevoll, B., & Styrvold, O. B. (2008). Arasin 1, a proline-arginine-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. Developmental and Comparative Immunology, 32(3), 275–285.PubMedCrossRefPubMedCentralGoogle Scholar
  281. Suarez-Jimenez, G. M., Burgos-Hernandez, A., & Ezquerra-Brauer, J. M. (2012). Bioactive peptides and depsipeptides with anticancer potential: Sources from marine animals. Marine Drugs, 10, 963–986.PubMedPubMedCentralCrossRefGoogle Scholar
  282. Sugahara, K., Nadanaka, S., Takeda, K., & Kojima, T. (1996). Structural analysis of unsaturated hexasaccharides isolated from shark cartilage chondroitin sulfate D that are substrates for the exolytic action of chondroitin ABC lyase. European Journal of Biochemistry, 239, 871–880.PubMedCrossRefPubMedCentralGoogle Scholar
  283. Sukhan, Z. P., Kitano, H., Selvaraj, S., Yoneda, M., Yamaguchi, A., & Matsuyama, M. (2013). Identification and distribution of three gonadotropin-releasing hormone (GNRH) isoforms in the brain of a clupeiform fish, Engraulis japonicus. Zoological Science, 30, 1081–1091.PubMedCrossRefPubMedCentralGoogle Scholar
  284. Summers, A. P., Koob-Emunds, M. M., Kajiura, S. M., & Koob, T. J. (2003). A novel fibrocartilaginous tendon from an elasmobranch fish (Rhinoptera bonasus). Cell and Tissue Research, 312, 221–227.PubMedPubMedCentralGoogle Scholar
  285. Sun, J. C., & Tan, H. P. (2013). Alginate-based biomaterials for regenerative medicine applications. Materials, 6, 1285–1309.PubMedPubMedCentralCrossRefGoogle Scholar
  286. Sun, D., Wu, S., Jing, C., Zhang, N., Liang, D., & Xu, A. (2012). Identification, synthesis and characterization of a novel antimicrobial peptide HKPLP derived from Hippocampus kuda Bleeker. Journal of Antibiotics (Tokyo), 65, 117–121.CrossRefGoogle Scholar
  287. Sunil, B. R., & Jagannatham, M. (2016). Producing hydroxyapatite from fish bones by heat treatment. Materials Letters, 185, 411–414.CrossRefGoogle Scholar
  288. Szekalska, M., Puciłowska, A., Szymanska, E., Ciosek, P., & Winnicka, K. (2016). Alginate: Current use and future perspectives in pharmaceutical and biomedical applications. International Journal of Polymer Science, 2016, 7697031/1–7697031/17.  https://doi.org/10.1155/2016/7697031.CrossRefGoogle Scholar
  289. Tang, Y. Q., Yuan, J., Osapay, G., Osapay, K., Tran, D., Miller, C. J., Ouellette, A. J., & Selsted, M. E. (1999). A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science, 286, 498–502.PubMedCrossRefPubMedCentralGoogle Scholar
  290. Targett, N. M., & Arnold, T. M. (1998). Predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans. Journal of Phycology, 34, 195–205.CrossRefGoogle Scholar
  291. Tasiemski, A., Schikorski, D., Le Marrec-Croq, F., Pontoire-Van Camp, C., Boidin-Wichlacz, C., & Sautière, P. E. (2007). Hedistin: A novel antimicrobial peptide containing bromotryptophan constitutively expressed in the NK cells-like of the marine annelid, Nereis diversicolor. Developmental and Comparative Immunology, 31(8), 749–762.PubMedCrossRefPubMedCentralGoogle Scholar
  292. Terova, G., Cattaneo, A. G., Preziosa, E., Bernardini, G., & Saroglia, M. (2011). Impact of acute stress on antimicrobial polypeptides mRNA copy number in several tissues of marine sea bass (Dicentrarchus labrax). BMC Immunology, 12, 69.  https://doi.org/10.1186/1471-2172-12-69.CrossRefPubMedPubMedCentralGoogle Scholar
  293. Theodore, A. E., & Kristinsson, H. G. (2007). Angiotensin converting enzyme inhibition of fish protein hydrolysates prepared from alkaline-aided channel catfish protein isolate. Journal of the Science of Food and Agriculture, 87, 2353–2357.CrossRefGoogle Scholar
  294. Tincu, J. A., Menzel, L. P., Azimov, R., Sands, J., Hong, T., Waring, A. J., Taylor, S. W., & Lehrer, R. I. (2003). Plicatamide, an antimicrobial octapeptide from Styela plicata hemocytes. The Journal of Biological Chemistry, 278(15), 13546–13553.PubMedCrossRefPubMedCentralGoogle Scholar
  295. Toskas, G., Heinemann, S., Heinemann, C., Cherif, C., Hund, R. D., Roussis, V., & Hanke, T. (2012). Ulvan and ulvan/chitosan polyelectrolyte nanofibrous membranes as a potential substrate material for the cultivation of osteoblasts. Carbohydrate Polymers, 89(3), 997–1002.PubMedCrossRefPubMedCentralGoogle Scholar
  296. Trapani, M. R., Parisi, M. G., Toubiana, M., Coquet, L., Jouenne, T., Roch, P., & Cammarata, M. (2014). First evidence of antimicrobial activity of neurotoxin-2 from Anemonia sulcata (Cnidaria). Invertebrate Survival Journal, 11(1), 182–191.Google Scholar
  297. Tsiapali, E., Whaley, S., Kalbfleisch, J., Ensley, H. E., Browder, I. W., & Williams, D. L. (2001). Glucans exhibit weak antioxidant activity, but stimulate macrophage free radical activity. Free Radical Biology & Medicine, 30(4), 393–402.  https://doi.org/10.1016/S0891-5849(00)00485-8.CrossRefGoogle Scholar
  298. Tsukui, T., Konno, K., Hosokawa, M., Maeda, H., Sashima, T., & Miyashitta, K. (2007). Fucoxanthin and fucoxanthinol enhance the amount of docosahexaenoic acid in the liver of KK-Ay mice. Journal of Agricultural and Food Chemistry, 55(13), 5025–5029.PubMedCrossRefPubMedCentralGoogle Scholar
  299. Turnbull, J., Powell, A., & Guimond, S. (2001). Heperan sulfate: Decoding a dynamic multifunctional cell regulator. Trends in Cell Biology, 11, 75–82.PubMedCrossRefPubMedCentralGoogle Scholar
  300. Uchisawa, H., Okuzaki, B., Ichita, J., & Matsue, H. (2001). Binding between calcium ions and chondroitin sulfate chains of salmon nasal cartilage glycosaminoglycan. International Congress Series, 1223, 205–220.CrossRefGoogle Scholar
  301. Ulrich, P. N., & Boon, J. K. (2001). The histological localization of heparin in the northern quahog clam, Mercenaria mercenaria. J. Invert. Pathol., 78, 155–159.CrossRefGoogle Scholar
  302. Usov, A. I. (2011). Polysaccharides of the red algae. Advances in Carbohydrate Chemistry and Biochemistry, 65, 115–217.PubMedCrossRefPubMedCentralGoogle Scholar
  303. Uthappa, U. T., Brahmkhatri, V., Sriram, G., Jung, H. Y., Yu, J., Kurkuri, N., Aminabhavi, T. M., Altalhi, T., Neelgund, G. M., & Kurkuri, M. D. (2018). Nature engineered diatom biosilica as drug delivery systems. Journal of Controlled Release, 281, 70–83.  https://doi.org/10.1016/j.jconrel.2018.05.013.CrossRefPubMedPubMedCentralGoogle Scholar
  304. Uzzell, T., Stolzenberg, E. D., Shinnar, A. E., & Zasloff, M. (2003). Hagfish intestinal antimicrobial peptides are ancient cathelicidins. Peptides, 24(11), 1655–1667.PubMedCrossRefPubMedCentralGoogle Scholar
  305. Venkatesan, J., Qian, Z. J., Ryu, M., Thomas, N. V., & Kim, S. K. (2011). A comparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus bone. Biomedical Materials, 6(035003), 12.Google Scholar
  306. Vo, T. S., & Kim, S. K. (2010). Potential anti-HIV agents from marine resources: An overview. Marine Drugs, 8(12), 2871–2892.  https://doi.org/10.3390/md8122871.CrossRefPubMedPubMedCentralGoogle Scholar
  307. Vynios, D. H., & Tsiganos, C. P. (1990). Squid proteoglycans: Isolation and characterization of three populations from cranial cartilage. Biochimica et Biophysica Acta, 1033, 139–147.PubMedCrossRefPubMedCentralGoogle Scholar
  308. Walsh, P. J., Walker, G. M., Maggs, C. A., & Buchanan, F. J. (2010). Thermal preparation of highly porous calcium phosphate bone filler derived from marine algae. Journal of Materials Science: Materials in Medicine, 21, 2281–2286.PubMedPubMedCentralGoogle Scholar
  309. Wang, L., An, X., Xin, Z., Zaho, L., & Hu, Q. (2007). Isolation and characterization of collagen from the skin of deep-sea redfish (Sebastes mentella). Journal of Food Science, 72, E450–E455.PubMedCrossRefPubMedCentralGoogle Scholar
  310. Wang, T., Jonsdottir, R., & Olafsdottir, G. (2009). Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chemistry, 116, 240–248.CrossRefGoogle Scholar
  311. Wang, Y. D., Kung, C. W., & Chen, J. Y. (2010a). Antiviral activity by fish antimicrobial peptides of epinecidin-1 and hepcidin 1–5 against nervous necrosis virus in medaka. Peptides, 31, 1026–1033.PubMedCrossRefPubMedCentralGoogle Scholar
  312. Wang, Y. K., He, H. L., Wang, G. F., Wu, H., Zhou, B. C., Chen, X. L., & Zhang, Y. Z. (2010b). Oyster (Crassostrea gigas) hydrolysates produced on a plant scale have antitumor activity and immunostimulating effects in BALB/c mice. Marine Drugs, 8, 255–268.PubMedPubMedCentralCrossRefGoogle Scholar
  313. Wickramaarachchi, W. D., De Zoysa, M., Whang, I., Wan, Q., & Lee, J. (2013). Kazal-type proteinase inhibitor from disk abalone (Haliotis discus discus): Molecular characterization and transcriptional response upon immune stimulation. Fish & Shellfish Immunology, 35, 1039–1043.CrossRefGoogle Scholar
  314. Wijesekara, I., & Karunarathna, W. K. D. S. (2017). Chapter 18 – Usage of seaweed polysaccharides as nutraceuticals. In Seaweed polysaccharides as nutraceuticals – Isolation, biological and biomedical applications (pp. 341–348). Saint Louis: Elsevier.  https://doi.org/10.1016/B978-0-12-809816-5.00018-9.CrossRefGoogle Scholar
  315. Wu, C. (1990). Properties, manufacture, and application of seaweed polysaccharides-agar, carrageenan, and algin. In C. Wu (Ed.), Training manual on Gracilaria culture and seaweed processing in China (pp. 2–46). Zhanjiang: FAO Fisheries and Aquaculture Department.Google Scholar
  316. Xia, S., Wang, K., Wan, L., Li, A., Hu, Q., & Zhang, C. (2013). Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Marine Drugs, 11, 2667–2681.  https://doi.org/10.3390/md11072667.CrossRefPubMedPubMedCentralGoogle Scholar
  317. Xu, Q., Cheng, C. H., Hu, P., Ye, H., Chen, Z., Cao, L., Chen, L., Shen, Y., & Chen, L. (2008). Adaptive evolution of hepcidin genes in antarctic notothenioid fishes. Molecular Biology and Evolution, 25, 1099–1112.PubMedCrossRefPubMedCentralGoogle Scholar
  318. Yaich, H., Amira, A. B., Abbes, F., Bouaziz, M., Besbes, S., Richel, A., Blecker, C., Attia, H., & Garna, H. (2017). Effect of extraction procedures on structural, thermal and antioxidant properties of ulvan from Ulva lactuca collected in Monastir coast. International Journal of Biological Macromolecules, 105, 1430–1439.  https://doi.org/10.1016/j.ijbiomac.2017.07.141.CrossRefPubMedPubMedCentralGoogle Scholar
  319. Yan, X. J., Li, X. C., Zhou, C. X., & Fan, X. (1996). Preservation of fish oil rancidity by phlorotannins from Sargassum kjellmanianum. Journal of Applied Phycology, 8, 201–203.CrossRefGoogle Scholar
  320. Yan, X., Chuda, Y., Suzuki, M., & Nagata, T. (1999). Fucoxanthin as the major antioxidant in Hijikia fusiformis, a common edible sea weed. Bioscience. Biotechnology and Biochemistry, 63(3), 605–607.CrossRefGoogle Scholar
  321. Yan, M., Li, B., Zhao, X., Ren, G., Zhuang, Y., Hou, H., Zhang, X., Chen, L., & Fan, Y. (2008). Characterization of acid- soluble collagen from the skin of walleye Pollock (Theragra chalcogramma). Food Chemistry, 107, 1581–1586.CrossRefGoogle Scholar
  322. Yang, C., Chung, D., Shin, I. S., Lee, H. Y., Kim, J. C., Lee, Y. J., & You, S. G. (2008). Effects of molecular weight and hydrolysis conditions on anticancer activity of fucoidans from sporophyll of Undaria pinnatifida. International Journal of Biological Macromolecules, 43, 433–437.PubMedCrossRefPubMedCentralGoogle Scholar
  323. Yang, R., Zhang, Z., Pei, X., Han, X., Wang, J., Wang, L., Long, Z., Shen, X., & Li, Y. (2009). Immunomodulatory effects of marine oligopeptide preparation from chum salmon (Oncorhynchus keta) in mice. Food Chemistry, 113, 464–470.CrossRefGoogle Scholar
  324. Ye, H., Wang, K., Zhou, C., Liu, J., & Zeng, X. (2008). Purification, antitumor and antioxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum. Food Chemistry, 111, 428–432.PubMedCrossRefPubMedCentralGoogle Scholar
  325. Yedery, R. D., & Reddy, K. V. (2009). Purification and characterization of antibacterial proteins from granular hemocytes of Indian mud crab, Scylla serrate. Acta Biochimica Polonica, 56(1), 71–82.PubMedCrossRefPubMedCentralGoogle Scholar
  326. Yoon, H. Y., Son, S., Lee, S. J., You, D. G., Yhee, J. Y., Park, J. H., Swierczewska, M., Lee, S., Kwon, I. C., Kim, S. H., Kim, K., & Pomper, M. G. (2014). Glycol chitosan nanoparticles as specialized cancer therapeutic vehicles: Sequential delivery of doxorubicin and Bcl-2 siRNA. Scientific Reports, 4, 6878.  https://doi.org/10.1038/srep06878.CrossRefPubMedPubMedCentralGoogle Scholar
  327. Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine drugs, 13, 1133–1174.  https://doi.org/10.3390/md13031133.CrossRefPubMedPubMedCentralGoogle Scholar
  328. Yu, S., Geng, J., Zhou, P., Wang, J., Chen, X., & Hu, J. (2008). New hydroxyapatite monolithic column for DNA extraction and its application in the purification of Bacillus subtilis crude lysate. Journal of Chromatography. A, 1183(1–2), 29–37.  https://doi.org/10.1016/j.chroma.2007.11.120. Epub 2007 Dec 26.CrossRefPubMedPubMedCentralGoogle Scholar
  329. Yuan, H., Song, J., Li, X., Li, N., & Dai, J. (2006). Immunomodulation and antitumor activity of κ-carrageenan oligosaccharides. Cancer Letters, 243, 228–234.PubMedCrossRefPubMedCentralGoogle Scholar
  330. Zahran, E., & Noga, E. J. (2010). Evidence for synergism of the antimicrobial peptide piscidin 2 with antiparasitic and antioomycete drugs. Journal of Fish Diseases, 33, 995–1003.PubMedCrossRefPubMedCentralGoogle Scholar
  331. Zelechowska, E., Sadowska, M., & Turk, M. (2010). Isolation and some properties of collagen from the backbone of Baltic cod (Gadus morhua). Food Hydrocolloids, 24, 325–329.CrossRefGoogle Scholar
  332. Zhang, X., & Vecchio, K. S. (2013). Conversion of natural marine skeletons as scaffolds for bone tissue engineering. Frontiers of Materials Science, 7(2), 103–117.CrossRefGoogle Scholar
  333. Zhang, Y., Liu, W. T., Li, G. Y., Shi, B., Miao, Y. Q., & Wu, X. H. (2007). Isolation and partial characterization of pepsin- soluble collagen from the skin of grass carp (Ctenopharyngodon idella). Food Chemistry, 103, 906–912.CrossRefGoogle Scholar
  334. Zhao, J., Song, L., Li, C., Ni, D., Wu, L., Zhu, L., Wang, H., & Xu, W. (2007). Molecular cloning, expression of a big defensin gene from bay scallop Argopecten irradians and the antimicrobial activity of its recombinant protein. Molecular Immunology, 44(4), 360–368.PubMedCrossRefPubMedCentralGoogle Scholar
  335. Zhou, G. T., & Zheng, Y. F. (1998). Synthesis of aragonite-type calcium carbonate by overgrowth technique at atmospheric pressure. Journal of Materials Science Letters, 17, 905–908.CrossRefGoogle Scholar
  336. Zhu, S., & Gao, B. (2013). Evolutionary origin of beta-defensins. Developmental and Comparative Immunology, 39(1–2), 79–84.PubMedCrossRefPubMedCentralGoogle Scholar
  337. Zhu, C. F., Li, G. Z., Peng, H. B., Zhang, F., Chen, Y., & Li, Y. (2010a). Treatment with marine collagen peptides modulates glucose and lipid metabolism in Chinese patients with type 2 diabetes mellitus. Applied Physiology, Nutrition, and Metabolism, 35, 797–804.PubMedCrossRefPubMedCentralGoogle Scholar
  338. Zhu, C. F., Peng, H. B., Liu, G. Q., Zhang, F., & Li, Y. (2010b). Beneficial effects of oligopeptides from marine salmon skin in a rat model of type 2 diabetes. Nutrition, 26, 1014–1020.PubMedCrossRefPubMedCentralGoogle Scholar
  339. Zou, J., Mercier, C., Koussounadis, A., & Secombes, C. (2007). Discovery of multiple beta-defensin like homologues in teleost fish. Molecular Immunology, 44(4), 638–647.PubMedCrossRefPubMedCentralGoogle Scholar
  340. Zou, Y., Qian, Z. J., Li, Y., Kim, M. M., Lee, S. H., & Kim, S. K. (2008). Antioxidant effect of phlorotannins isolated from Ishige okamurae in free radical mediated oxidative systems. Journal of Agricultural and Food Chemistry, 56(16), 7001–7009.PubMedCrossRefPubMedCentralGoogle Scholar
  341. Zubia, M., Robledo, D., & Freile-Pelegrin, Y. (2007). Antioxidant activities in tropical marine microalgae from the Yucatan Peninsula, Mexico. Journal of Applied Phycology, 19, 449–458.  https://doi.org/10.1007/s10811-006-9152-5.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Saleena Mathew
    • 1
  • Maya Raman
    • 2
  • Manjusha Kalarikkathara Parameswaran
    • 1
  • Dhanya Pulikkottil Rajan
    • 3
  1. 1.School of Industrial FisheriesCochin University of Science and TechnologyKochiIndia
  2. 2.Department of Food Science and Technology, School of Ocean Science and TechnologyKerala University of Fisheries and Ocean StudiesKochiIndia
  3. 3.Department of AquacultureM.E.S Asmabi CollegeKochiIndia

Personalised recommendations