Advertisement

Assessment of Nutritional Quality of Fish

  • Saleena Mathew
  • Maya Raman
  • Manjusha Kalarikkathara Parameswaran
  • Dhanya Pulikkottil Rajan
Chapter

Abstract

This chapter discusses about the nutritional quality of fish, including moisture, proteins, lipids, carbohydrates, minerals, etc., and the assessment techniques of these in detail. The analysis of macro- and micromolecular components assists in understanding the nutritional profile of the fish samples.

References

  1. AOAC. (2000). Association of Official Analytical Chemist, Official Methods of Analysis (16th ed.). Gaithersburg: AOAC International.Google Scholar
  2. AOAC. (2005). Association of Official Analytical Chemist, Official Methods of Analysis (18th ed.). Gaithersburg: AOAC International.Google Scholar
  3. Bradford, M. M. (1976). A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  4. Chatterjee, N. S., Ashok, K. K., Ajeeshkumar, K. K., Remya, K. R., Vishnu, K. V., Anandan, R., Mathew, S., & Ravishankar, C. N. (2017). Screening natural content of water-soluble B vitamins in fish: Enzymatic extraction, HILIC separation, and tandem mass spectrometric determination. Journal of AOAC International, 100(3), 579–585.  https://doi.org/10.5740/jaoacint.17-0056.CrossRefPubMedGoogle Scholar
  5. Cohen, N., Scott, C. G., Neukon, C., Lopresti, R. L., Weber, G., & Saucy, G. (1981). Total synthesis of all 8 stereoisomers of alpha-tocopheryl acetate. Analysis of their diastereomeric and enantiomeric purity by gas chromatography. Helvetica Chimica Acta, 64, 1158.CrossRefGoogle Scholar
  6. Damodaran, S., Parkin, K. L., & Fennema, O. R. (2007). Water and ice (chapter 2). In O. R. Fennema (Ed.), Fennema’s food chemistry (4th ed.). Boca Raton: CRC.Google Scholar
  7. David, B. M., & Wayne, C. E. (2014). Ash analysis, chapter. In S. S. Nielsen (Ed.), Food analysis laboratory manual (Food science texts series) (4th ed., p. 8). Boston, MA: Springer.Google Scholar
  8. DeLuca, H. F. (2008). Evolution of our understanding of vitamin D. Nutrition Reviews, 66(2), 573–587.Google Scholar
  9. DeLuca, F., Uyeda, J. A., Veronica, M., Mancilla, E. E., Yanovski, J. A., Barnes, K. M., Zile, M. H., & Bacon, J. (2000). Retinoic acid is a potent regulator of growth plate chondrogenesis. Endocrinology, 141, 346–353.CrossRefGoogle Scholar
  10. Denisava, N. A., & Booth, S. L. (2005). Vitamin K and sphingolipid metabolism: Evidence to date. Nutrition Reviews, 63(4), 111–121.CrossRefGoogle Scholar
  11. Eitenmiller, R. R., & Lee, J. (2004). Vitamin E, food chemistry, composition, and analysis. New York: Marcel Dekker Inc. 540 pp.CrossRefGoogle Scholar
  12. Gundberg, C. M., Lian, J. B., & Booth, S. L. (2012). Vitamin K-dependent carboxylation of osteocalcin: Friend or foe? Advances in Nutrition, 3(2), 149–157.CrossRefGoogle Scholar
  13. Gunlu, A., & Gunlu, N. (2014). Taste activity value, free amino acid content and proximate composition of mountain trout (Salmo trutta macrostigma Dumeril, 1858) muscles. Iranian Journal of Fisheries Sciences, 13(1), 58–72.Google Scholar
  14. Hedge, J. E., & Hofreiter, B. T. (1962). In R. L. Whistler & J. N. Be Miller (Eds.), Carbohydrate chemistry (Vol. 17). New York: Academic.Google Scholar
  15. Hong, H., Regenstein, J. M., & Luo, Y. (2017). The importance of ATP-related compounds for the freshness and flavor of post-mortem fish and shellfish muscle: A review. Critical Reviews in Food Science and Nutrition, 57(9), 1787–1798.PubMedGoogle Scholar
  16. Iverson, S. J. (2009). Chapter 12: Tracing aquatic food webs using fatty acids: From qualitative indicators to quantitative determination. In M. T. Arts, M. T. Brett, & M. J. Kainz (Eds.), Lipids in aquatic ecosystems (pp. 281–307). Dordrecht: Springer.Google Scholar
  17. Karnjanapratum, S., Benjakul, S., Kishimura, H., & Tsai, Y. (2013). Chemical compositions and nutritional value of Asian hard clam (Meretrix lusoria) from the coast of Andaman Sea. Food chemistry., 141, 4138–4145.  https://doi.org/10.1016/j.foodchem.2013.07.001.CrossRefPubMedGoogle Scholar
  18. Knothe, G., & Kenar, J. A. (2004). Determination of the fatty acid profile by 1H-NMR spectroscopy. European Journal of Lipid Science and Technology, 106, 88–96.  https://doi.org/10.1002/ejlt.200300880.CrossRefGoogle Scholar
  19. Kuehn, A., Swoboda, I., Arumugam, K., Hilger, C., & Hentges, F. (2014). Fish allergens at a glance: Variable allergenicity of parvalbumins, the major fish allergens. Frontiers in Immunology, 5, 179.  https://doi.org/10.3389/fimmu.2014.00179.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lehninger, A. L., Nelson, D. L., & Cox, M. M. (2000). Lehninger principles of biochemistry. New York: Worth Publishers.Google Scholar
  21. Lindsay, R. C. (1990). Fish flavours. Food Reviews International, 6(4), 437–455.CrossRefGoogle Scholar
  22. Love, R. M., & Robertson, I. (2007). The connective tissues of fish. International Journal of Food Science & Technology, 3, 215–221.  https://doi.org/10.1111/j.1365-2621.1968.tb01459.x.CrossRefGoogle Scholar
  23. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.PubMedPubMedCentralGoogle Scholar
  24. Lubran, M. M. (1978). The measurement of total serum proteins by the biuret method. Annals of Clinical and Laboratory Science, 8(2), 106–110.PubMedGoogle Scholar
  25. Mary, M. (2012). Nutritional metals in foods by AAS. In M. A. Farrukh (Ed.), Atomic absorption spectroscopy. ISBN: 978-953-307-817-5. InTech. Available from: http://www.intechopen.com/books/atomic-absorption-spectroscopy/nutritional-metals-in-foods-by-aas
  26. Maurice, R. M. (2014). Ash analysis, chapter. In S. S. Nielsen (Ed.), Food analysis laboratory manual (Food science texts series) (4th ed., p. 7). Boston, MA: Springer.Google Scholar
  27. Muzaddadi, A. U., Devatkal, S., & Oberoi, H. (2016). Seafood Enzymes and Their Application in Food Processing.  https://doi.org/10.1016/B978-0-12-802392-1.00009-5.CrossRefGoogle Scholar
  28. Paul, B. N., Chanda, S., Das, S., Singh, P., Pandey, B. K., & Giri, S. S. (2014). Mineral assay in atomic absorption spectroscopy. The Beats of Natural Sciences, 4, 1), 1–1),17.Google Scholar
  29. Pesillo, S. A., Freeman, L. M., & Rush, J. E. (2004). Assessment of lipid peroxidation and serum vitamin E concentration in dogs with immune-mediated hemolytic anemia. American Journal of Veterinary Research, 65(12), 1621–1624.Google Scholar
  30. Phillips, K. M., Ruggio, D. M., Jacob Exler, J., & Patterson, K. Y. (2012). Sterol composition of shellfish species commonly consumed in the United States. Food & Nutrition Research, 56.  https://doi.org/10.3402/fnr.v56i0.18931.CrossRefGoogle Scholar
  31. Rehman, S.-U., Rehman, S., Welter, D., Wildenauer, D., & Ackenheil, M. (2017). Simple and rapid separation and determination of phospholipids by HPLC-UV system. Annals of Pharmacology and Pharmaceutics, 2(12), 1063.Google Scholar
  32. Robert, L. B. (2014). Moisture and total solids analysis. In S. S. Nielsen (Ed.), Food analysis laboratory manual (Food science texts series) (4th ed.). Boston, MA: Springer.Google Scholar
  33. Rouser, G., Fkeischer, S., & Yamamoto, A. (1970). Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids, 5, 494–496.CrossRefGoogle Scholar
  34. Sarower, G. M., Hasanuzzaman, A. F., Biswas, B., & Abe, H. (2012). Taste producing components in fish and fisheries products: A review. International Journal of Food and Fermentation Technology., 2, 113–121.Google Scholar
  35. Scherr, C., Gagliardi, A. C., Miname, M. H., & Santos, R. D. (2015). Fatty acid and cholesterol concentrations in usually consumed fish in Brazil. Arquivosbrasileiros de cardiologia, 104(2), 152–158.  https://doi.org/10.5935/abc.20140176.CrossRefGoogle Scholar
  36. Shang, S. F., & Wang, H. (1996). Sensitive determination of amino acids in kelp by reverse phase high performance liquid chromatographywith pre column derivatization using phenylisothiocyanate. Chromatographia, 43, 309–312.CrossRefGoogle Scholar
  37. Sikorski, Z. E., & Borderias, J. A. (1994). Collagen in the muscles and skin of marine animals. In Z. E. Sikorski, B. S. Pan, & F. Shahidi (Eds.), Seafood proteins. New York: Springer.CrossRefGoogle Scholar
  38. Singh, A., & Benjakul, S. (2018). Proteolysis and its control using protease inhibitors in fish and fish products: A review. Comprehensive Reviews in Food Science and Food Safety, 17.  https://doi.org/10.1111/1541-4337.12337.CrossRefGoogle Scholar
  39. Spinelli, J., & Dassow, J. A. (1982). Fish proteins: Their modification and potential uses in the food industry. In R. E. Martin, G. J. Flick, C. E. Hebard, & D. R. Ward (Eds.), Chemistry & biochemistry of marine food products (pp. 13–37). Westport: AVI Publishing Company.Google Scholar
  40. Stancheva, M., & Dobreva, D. A. (2013). Bulgarian marine and freshwater fishes as a source of fat-soluble vitamins for a healthy human diet. Foods (Basel, Switzerland), 2(3), 332–337.  https://doi.org/10.3390/foods2030332.CrossRefGoogle Scholar
  41. Stewart, J. C. (1980). Colorimetric determination of phospholipids with ammoniumferrothiocyanate. Analytical Biochemistry, 104(1), 10–14.CrossRefGoogle Scholar
  42. Suttie, J. W., & Jackson, C. M. (1977). Prothrombin structure, activation, and biosynthesis. Physiological Reviews, 57, 1–70.CrossRefGoogle Scholar
  43. Van der Berg, C., & Bruin, S. (1981). Water activity and its estimation in food systems. In L. B. Rockland & G. F. Stewarts (Eds.), Theorical aspects in water activity: Influence on food quality (pp. 12–45). New York: Academic.Google Scholar
  44. Venugopal, V., & Gopakumar, K. (2017). Shellfish: Nutritive value, health benefits, and consumer safety. Comprehensive Reviews in Food Science and Food Safety, 16(6), 1219–1242.  https://doi.org/10.1111/1541-4337.12312.CrossRefGoogle Scholar
  45. Vermeer, C. (1986). Comparison between hepatic and nonhepatic vitamin K-dependent carboxylase. Haemostasis, 16, 239–245. www.fao.orgCrossRefGoogle Scholar
  46. Yamanaka, H., & Shimada, R. (1996). Post-mortem biochemical changes in the muscle of Japanese spiny lobster during storage. Fisheries Science, 62, 821–824.CrossRefGoogle Scholar
  47. Yu, S., & Paetau-Robinson, I. (2006). Dietary supplements of vitamins E and C and beta-carotene reduce oxidative stress in cats with renal insufficiency. Veterinary Research Communications, 30, 403–413.CrossRefGoogle Scholar
  48. Yurimoto, T. (2015). Seasonal changes in glycogen contents in various tissues of the edible bivalves, pen shell Atrina lischkeana, ark shell Scapharca kagoshimensis, and manila clam Ruditapes philippinarum in West Japan. Journal of Marine Biology, 2015, Article ID 593032, 5p.  https://doi.org/10.1155/2015/593032.CrossRefGoogle Scholar
  49. Zhou, X., & Arthur, G. (1992). Improved procedures for the determination of lipid phosphorus by malachite green. Journal of Lipid Research, 33, 1233–1236.PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Saleena Mathew
    • 1
  • Maya Raman
    • 2
  • Manjusha Kalarikkathara Parameswaran
    • 1
  • Dhanya Pulikkottil Rajan
    • 3
  1. 1.School of Industrial FisheriesCochin University of Science and TechnologyKochiIndia
  2. 2.Department of Food Science and Technology, School of Ocean Science and TechnologyKerala University of Fisheries and Ocean StudiesKochiIndia
  3. 3.Department of AquacultureM.E.S Asmabi CollegeKochiIndia

Personalised recommendations