Advertisement

Heavy Metal Exposure and Children’s Health

  • Yuhan Zhou
  • Wenjuan MaEmail author
Chapter

Abstract

Due to the unique physiological and behavioral characteristics, children are easier to be exposed to environmental pollutants than general population. Children are more sensitive to chemical exposure as their organs are still developing and not yet mature. With the globalization of environmental pollution and the rapid economic growth, the exposure of low concentrations of heavy metals in children is increasingly a global health concern. In this chapter, we systematically review the exposure levels of heavy metals (such as lead, mercury, and cadmium, etc.) and their adverse effects on children’s nerve system, kidney, and bone development. As a result, clarifying the major health effects of heavy metals on children will be beneficial for controlling the body burden of heavy metals.

Keywords

Heavy metals Children Health effects 

References

  1. 1.
    Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds [J]. Crit Rev Toxicol 36(8):609–662PubMedCrossRefGoogle Scholar
  2. 2.
    Mercury study report to congress, executive summary (1997)Google Scholar
  3. 3.
    Tan SY, Praveena SM, Abidin EZ et al (2016) A review of heavy metals in indoor dust and its human health-risk implications [J]. Rev Environ Health 31(4):447–456PubMedCrossRefGoogle Scholar
  4. 4.
    Bose-O’reilly S, Mccarty KM, Steckling N et al (2010) Mercury exposure and children’s health [J]. Curr Probl Pediatr Adolesc Health Care 40(8):186–215PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Schoeters G, Den Hond E, Zuurbier M et al (2006) Cadmium and children: exposure and health effects [J]. Acta Paediatr Suppl 95(453):50–54PubMedCrossRefGoogle Scholar
  6. 6.
    Van Vleet TR, Schnellmann RG (2003) Toxic nephropathy: environmental chemicals [J]. Semin Nephrol 23(5):500–508PubMedCrossRefGoogle Scholar
  7. 7.
    Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease [J]. Toxicology 283(2–3):65–87PubMedCrossRefGoogle Scholar
  8. 8.
    Rodier PM (1995) Developing brain as a target of toxicity [J]. Environ Health Perspect 103:73–76PubMedPubMedCentralGoogle Scholar
  9. 9.
    Grandjean P, Landrigan PJ (2014) Neurobehavioural effects of developmental toxicity [J]. Lancet Neurol 13(3):330–338PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Selevan SG, Kimmel CA, Mendola P (2000) Identifying critical windows of exposure for children’s health [J]. Environ Health Perspect 108(Suppl 3):451–455PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Lanphear BP (2015) The impact of toxins on the developing brain [J]. Annu Rev Public Health 36:211–230PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Rojas M, Espinosa C, Seijas D (2002) Toxicological profile of children monitored for lead exposure. Cituc, 1998-2000 [J]. Epidemiology 13(4):S208–S208Google Scholar
  13. 13.
    Nilsson U, Attewell R, Christoffersson JO et al (1991) Kinetics of lead in bone and blood after end of occupational exposure [J]. Pharmacol Toxicol 68(6):477–484PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Canfield RL, Henderson CR Jr, Cory-Slechta DA et al (2003) Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter [J]. N Engl J Med 348(16):1517–1526PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Rosen JF, Chesney RW, Hamstra A et al (1981) Reduction in 1,25-dihydroxyvitamin-d in children with increased lead absorption [J]. Gen Pharmacol 12(2):A10–A10Google Scholar
  16. 16.
    Ohsawa M (2009) Heavy metal-induced immunotoxicity and its mechanisms [J]. Yakugaku Zasshi-J Pharmaceut Soc Japan 129(3):305–319CrossRefGoogle Scholar
  17. 17.
    Needleman HL (1988) The persistent threat of lead: medical and sociological issues [J]. Curr Probl Pediatr 18(12):697–744PubMedPubMedCentralGoogle Scholar
  18. 18.
    Miranda ML, Kim D, Galeano MAO et al (2007) The relationship between early childhood blood lead levels and performance on end-of-grade tests [J]. Environ Health Perspect 115(8):1242–1247PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Lanphear BP, Hornung R, Khoury J et al (2005) Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis [J]. Environ Health Perspect 113(7):894–899PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Rodrigues EG, Bellinger DC, Valeri L et al (2016) Neurodevelopmental outcomes among 2-to 3-year-old children in Bangladesh with elevated blood lead and exposure to arsenic and manganese in drinking water [J]. Environ Health 15:44PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Lucchini RG, Zoni S, Guazzetti S et al (2012) Inverse association of intellectual function with very low blood lead but not with manganese exposure in italian adolescents [J]. Environ Res 118:65–71PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Boucher O, Burden MJ, Muckle G et al (2012) Response inhibition and error monitoring during a visual go/no-go task in inuit children exposed to lead, polychlorinated biphenyls, and methylmercury [J]. Environ Health Perspect 120(4):608–615PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Neugebauer J, Wittsiepe J, Kasper-Sonnenberg M et al (2015) The influence of low level pre- and perinatal exposure to pcdd/fs, pcbs, and lead on attention performance and attention-related behavior among german school-aged children: results from the Duisburg birth cohort study [J]. Int J Hyg Environ Health 218(1):153–162PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Choi WJ, Kwon HJ, Lim MH et al (2016) Blood lead, parental marital status and the risk of attention-deficit/hyperactivity disorder in elementary school children: a longitudinal study [J]. Psychiatry Res 236:42–46PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Liu JH, Liu XC, Wang W et al (2014) Blood lead concentrations and children’s behavioral and emotional problems a cohort study [J]. JAMA Pediatr 168(8):737–745PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Sioen I, Den Hond E, Nelen V et al (2013) Prenatal exposure to environmental contaminants and behavioural problems at age 7-8 years [J]. Environ Int 59:225–231PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Liu JA, Gao DG, Chen YM et al (2014) Lead exposure at each stage of pregnancy and neurobehavioral development of neonates [J]. Neurotoxicology 44:1–7PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Prozialeck WC, Edwards JR (2012) Mechanisms of cadmium-induced proximal tubule injury: new insights with implications for biomonitoring and therapeutic interventions [J]. J Pharmacol Exp Ther 343(1):2–12PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Wilson AK, Bhattacharyya MH (1997) Effects of cadmium on bone: an in vivo model for the early response [J]. Toxicol Appl Pharmacol 145(1):68–73PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Jarup L, Alfven T, Persson B et al (1998) Cadmium may be a risk factor for osteoporosis [J]. Occup Environ Med 55(7):435–439PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Uriu K, Morimoto I, Kai K et al (2000) Uncoupling between bone formation and resorption in ovariectomized rats with chronic cadmium exposure [J]. Toxicol Appl Pharmacol 164(3):264–272PubMedCrossRefGoogle Scholar
  32. 32.
    Kippler M, Tofail F, Hamadani JD et al (2012) Early-life cadmium exposure and child development in 5-year-old girls and boys: a cohort study in rural Bangladesh [J]. Environ Health Perspect 120(10):1462–1468PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Wang YW, Chen LM, Gao Y et al (2016) Effects of prenatal exposure to cadmium on neurodevelopment of infants in Shandong, China [J]. Environ Pollut 211:67–73PubMedCrossRefGoogle Scholar
  34. 34.
    Roberts AL, Lyall K, Hart JE et al (2013) Perinatal air pollutant exposures and autism spectrum disorder in the children of nurses’ health study ii participants [J]. Environ Health Perspect 121(8):978–984PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Markle JGM, Frank DN, Mortin-Toth S et al (2013) Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity [J]. Science 339(6123):1084–1088CrossRefPubMedGoogle Scholar
  36. 36.
    Chen Z, Myers R, Wei TY et al (2014) Placental transfer and concentrations of cadmium, mercury, lead, and selenium in mothers, newborns, and young children [J]. J Expos Sci Environ Epidem 24(5):537–544CrossRefGoogle Scholar
  37. 37.
    Scott R, Cunningham C, Mclelland A et al (1982) The importance of cadmium as a factor in calcified upper urinary-tract stone disease – a prospective 7-year study [J]. Br J Urol 54(6):584–589PubMedCrossRefGoogle Scholar
  38. 38.
    Zahran S, Mielke HW, Weiler S et al (2012) Associations between standardized school performance tests and mixtures of pb, zn, cd, ni, mn, cu, cr, co, and v in community soils of New Orleans [J]. Environ Pollut 169:128–135PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Kim Y, Ha EH, Park H et al (2013) Prenatal lead and cadmium co-exposure and infant neurodevelopment at 6 months of age: the mothers and children’s environmental health (moceh) study (vol 35, pg 15, 2013) [J]. Neurotoxicology 37:248–249CrossRefGoogle Scholar
  40. 40.
    Cory-Slechta DA, Weiss B, Cranmer J (2008) The environmental etiologies of neurobehavioral deficits and disorders: weaving complex outcomes and risk modifiers into the equation [J]. Neurotoxicology 29(5):759–760PubMedCrossRefGoogle Scholar
  41. 41.
    Antonio MT, Corpas I, Leret ML (1999) Neurochemical changes in newborn rat’s brain after gestational cadmium and lead exposure [J]. Toxicol Lett 104(1–2):1–9PubMedCrossRefGoogle Scholar
  42. 42.
    Antonio MT, Lopez N, Leret ML (2002) Pb and cd poisoning during development alters cerebellar and striatal function in rats [J]. Toxicology 176(1–2):59–66PubMedCrossRefGoogle Scholar
  43. 43.
    Leret ML, Millan JA, Antonio MT (2003) Perinatal exposure to lead and cadmium affects anxiety-like behaviour [J]. Toxicology 186(1–2):125–130PubMedCrossRefGoogle Scholar
  44. 44.
    Henn BC, Schnaas L, Ettinger AS et al (2012) Associations of early childhood manganese and lead coexposure with neurodevelopment [J]. Environ Health Perspect 120(1):126–131CrossRefGoogle Scholar
  45. 45.
    Tinggi U (2008) Selenium: its role as antioxidant in human health [J]. Environ Health Prev Med 13(2):102–108PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Chan TYK (2011) Inorganic mercury poisoning associated with skin-lightening cosmetic products [J]. Clin Toxicol 49(10):886–891CrossRefGoogle Scholar
  47. 47.
    Bellinger DC, Stiles KM, Needleman HL (1992) Low-level lead-exposure, intelligence and academic-achievement – a long-term follow-up-study [J]. Pediatrics 90(6):855–861PubMedGoogle Scholar
  48. 48.
    Vicente E, Boer M, Netto C et al (2004) Hippocampal antioxidant system in neonates from methylmercury-intoxicated rats [J]. Neurotoxicol Teratol 26(6):817–823PubMedCrossRefGoogle Scholar
  49. 49.
    Peng Y, Hu J, Li Y et al (2018) Exposure to chromium during pregnancy and longitudinally assessed fetal growth: findings from a prospective cohort [J]. Environ Int 121.(Pt 1:375–382PubMedCrossRefGoogle Scholar
  50. 50.
    Hawkesworth S, Wagatsuma Y, Kippler M et al (2013) Early exposure to toxic metals has a limited effect on blood pressure or kidney function in later childhood, rural Bangladesh [J]. Int J Epidemiol 42(1):176–185PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Smith AH, Marshall G, Yuan Y et al (2006) Increased mortality from lung cancer and bronchiectasis in young adults after exposure to arsenic in utero and in early childhood [J]. Environ Health Perspect 114(8):1293–1296PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Tsuji JS, Garry MR, Perez V et al (2015) Low-level arsenic exposure and developmental neurotoxicity in children: a systematic review and risk assessment [J]. Toxicology 337:91–107PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Wasserman GA, Liu XH, Parvez F et al (2011) Arsenic and manganese exposure and children’s intellectual function [J]. Neurotoxicology 32(4):450–457PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Wright RO, Amarasiriwardena C, Woolf AD et al (2006) Neuropsychological correlates of hair arsenic, manganese, and cadmium levels in school-age children residing near a hazardous waste site [J]. Neurotoxicology 27(2):210–216PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Rosado JL, Ronquillo D, Kordas K et al (2007) Arsenic exposure and cognitive performance in mexican schoolchildren [J]. Environ Health Perspect 115(9):1371–1375PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Yu ZM, Dummer TJ, Adams A et al (2014) Relationship between drinking water and toenail arsenic concentrations among a cohort of nova scotians [J]. J Expo Sci Environ Epidemiol 24(2):135–144PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Calderon J, Navarro ME, Jimenez-Capdeville ME et al (2001) Exposure to arsenic and lead and neuropsychological development in mexican children [J]. Environ Res 85(2):69–76PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Wasserman GA, Liu X, Loiacono NJ et al (2014) A cross-sectional study of well water arsenic and child iq in Maine schoolchildren [J]. Environ Health Glob Access Sci Sour 13(1):23Google Scholar
  59. 59.
    Wasserman GA, Liu X, Parvez F et al (2007) Water arsenic exposure and intellectual function in 6-year-old children in araihazar, Bangladesh [J]. Environ Health Perspect 115(2):285–289PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Public HealthFudan UniversityShanghaiChina
  2. 2.Key Laboratory of Public Health Safety, Ministry of EducationFudan UniversityShanghaiChina
  3. 3.MOE-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina

Personalised recommendations