Advertisement

Plasticizer Exposure and Reproductive Health: Phthalates and Bisphenol A

  • Pengpeng Wang
  • Yan Zhao
Chapter

Abstract

Phthalates and bisphenol A are among the most popular plasticizers used today, which are ubiquitous environmental chemical pollutants with endocrine disruption. In this chapter, we summarize the basic characteristics of phthalates and bisphenol A and their effects on male and female reproductive health. We focus on the effects of phthalates exposure on testosterone level, anogenital distance, semen quality and hypospadias incidence in the male, as well as on precocious puberty, endometriosis, abnormalities of pregnancy in the female. Moreover, the effects of bisphenol A exposure on male semen quality, reproductive cells, sex hormones and female steroid hormone levels, reproductive organ diseases, and adverse birth outcomes are discussed. Results indicate that exposure to phthalates and bisphenol can adversely affect male and female reproductive health. However, evidence is still controversial. More large-scale prospective cohort studies are needed to verify the effects of plasticizer exposure on reproductive health in humans.

Keywords

Plasticizer Phthalates Bisphenol A Reproductive health 

References

  1. 1.
    Wypych G (2017) Handbook of plasticizers [M], 3rd edn. ChemTec Publishing, Toronto, p xii, 858 pagesGoogle Scholar
  2. 2.
    Yoon K, Kwack SJ, Kim HS et al (2014) Estrogenic endocrine-disrupting chemicals: molecular mechanisms of actions on putative human diseases [J]. J Toxicol Environ Health B Crit Rev 17(3):127–174PubMedCrossRefGoogle Scholar
  3. 3.
    Minguez-Alarcon L, Hauser R, Gaskins AJ (2016) Effects of bisphenol a on male and couple reproductive health: a review [J]. Fertil Steril 106(4):864–870PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Benjamin S, Masai E, Kamimura N et al (2017) Phthalates impact human health: epidemiological evidences and plausible mechanism of action [J]. J Hazard Mater 340:360–383PubMedCrossRefGoogle Scholar
  5. 5.
    Johns LE, Cooper GS, Galizia A et al (2015) Exposure assessment issues in epidemiology studies of phthalates [J]. Environ Int 85:27–39PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Hauser R, Calafat A M. (2005) Phthalates and human health [J]. Occupat Environ Med 62(11):806–818PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Just AC, Adibi JJ, Rundle AG et al (2010) Urinary and air phthalate concentrations and self-reported use of personal care products among minority pregnant women in New York city [J]. J Expos Sci Environ Epidemiol 20(7):625–633CrossRefGoogle Scholar
  8. 8.
    Swan S H (2007) Human exposure to phthalates and their health effects [J]. International Seminars on Nuclear War and Planetary Emergencies – 36th Session, pp 230–237Google Scholar
  9. 9.
    Machtinger R, Gaskins AJ, Racowsky C et al (2018) Urinary concentrations of biomarkers of phthalates and phthalate alternatives and ivf outcomes [J]. Environ Int 111:23–31PubMedCrossRefGoogle Scholar
  10. 10.
    Frederiksen H, Skakkebaek NE, Andersson AM (2007) Metabolism of phthalates in humans [J]. Mol Nutr Food Res 51(7):899–911PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Messerlian C, Wylie BJ, Minguez-Alarcon L et al (2016) Urinary concentrations of phthalate metabolites and pregnancy loss among women conceiving with medically assisted reproduction [J]. Epidemiology 27(6):879–888PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Messerlian C, Souter I, Gaskins AJ et al (2016) Urinary phthalate metabolites and ovarian reserve among women seeking infertility care [J]. Hum Reprod 31(1):75–83PubMedCrossRefGoogle Scholar
  13. 13.
    Johnson KJ, Heger NE, Boekelheide K (2012) Of mice and men (and rats): phthalate-induced fetal testis endocrine disruption is species-dependent [J]. Toxicol Sci 129(2):235–248PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Swan SH (2008) Environmental phthalate exposure in relation to reproductive outcomes and other health endpoints in humans [J]. Environ Res 108(2):177–184PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    National Academies of Sciences E, Medicine. (2017) Application of systematic review methods in an overall strategy for evaluating low-dose toxicity from endocrine active chemicals [M]. The National Academies Press, Washington, DC, p 180Google Scholar
  16. 16.
    Main KM, Mortensen GK, Kaleva MM et al (2006) Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age [J]. Environ Health Perspect 114(2):270–276PubMedCrossRefGoogle Scholar
  17. 17.
    Lin LC, Wang SL, Chang YC et al (2011) Associations between maternal phthalate exposure and cord sex hormones in human infants [J]. Chemosphere 83(8):1192–1199PubMedCrossRefGoogle Scholar
  18. 18.
    Vander Borght M, Wyns C (2018) Fertility and infertility: definition and epidemiology [J]. Clin Biochem 62:2–10PubMedCrossRefGoogle Scholar
  19. 19.
    Singh S, Li SSL (2012) Epigenetic effects of environmental chemicals bisphenol a and phthalates [J]. Int J Mol Sci 13(8):10143–10153PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Radke EG, Braun JM, Meeker JD et al (2019) Phthalate exposure and male reproductive outcomes: a systematic review of the human epidemiological evidence (vol 121, pg 764, 2018) [J]. Environ Int 125:606–607PubMedCrossRefGoogle Scholar
  21. 21.
    Bloom MS, Whitcomb BW, Chen Z et al (2015) Associations between urinary phthalate concentrations and semen quality parameters in a general population [J]. Hum Reprod 30(11):2645–2657PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Axelsson J, Rylander L, Rignell-Hydbom A et al (2015) Phthalate exposure and reproductive parameters in young men from the general swedish population [J]. Environ Int 85:54–60PubMedCrossRefGoogle Scholar
  23. 23.
    Hauser R, Meeker JD, Singh NP et al (2007) DNA damage in human sperm is related to urinary levels of phthalate monoester and oxidative metabolites [J]. Hum Reprod 22(3):688–695PubMedCrossRefGoogle Scholar
  24. 24.
    Jurewicz J, Radwan M, Sobala W et al (2013) Human urinary phthalate metabolites level and main semen parameters, sperm chromatin structure, sperm aneuploidy and reproductive hormones [J]. Reprod Toxicol 42:232–241PubMedCrossRefGoogle Scholar
  25. 25.
    Thankamony A, Pasterski V, Ong KK et al (2016) Anogenital distance as a marker of androgen exposure in humans [J]. Andrology 4(4):616–625PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    National Academies of Sciences E, Medicine. Application of systematic review methods in an overall strategy for evaluating low-dose toxicity from endocrine active chemicals[M]. National Academies Press, 2017Google Scholar
  27. 27.
    Swan SH, Sathyanarayana S, Barrett ES et al (2015) First trimester phthalate exposure and anogenital distance in newborns [J]. Hum Reprod 30(4):963–972PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Martino-Andrade AJ, Liu F, Sathyanarayana S et al (2016) Timing of prenatal phthalate exposure in relation to genital endpoints in male newborns [J]. Andrology 4(4):585–593PubMedCrossRefGoogle Scholar
  29. 29.
    Bustamante-Montes LP, Hernandez-Valero MA, Flores-Pimentel D et al (2013) Prenatal exposure to phthalates is associated with decreased anogenital distance and penile size in male newborns [J]. J Dev Orig Health Dis 4(4):300–306PubMedCrossRefGoogle Scholar
  30. 30.
    Swan SH, Main KM, Liu F et al (2005) Decrease in anogenital distance among male infants with prenatal phthalate exposure [J]. Environ Health Perspect 113(8):1056–1061PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Jensen TK, Frederiksen H, Kyhl HB et al (2016) Prenatal exposure to phthalates and anogenital distance in male infants from a low-exposed danish cohort (2010-2012) [J]. Environ Health Perspect 124(7):1107–1113PubMedCrossRefGoogle Scholar
  32. 32.
    Mai CT, Isenburg J, Langlois PH et al (2015) Population-based birth defects data in the United States, 2008 to 2012: presentation of state-specific data and descriptive brief on variability of prevalence [J]. Birth Defects Res A-Clin Mol Teratol 103(11):972–993PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Jin L, Ye R, Zheng J et al (2010) Secular trends of hypospadias prevalence and factors associated with it in Southeast China during 1993-2005 [J]. Birth Def Res Part A Clin Mol Teratol 88(6):458–465CrossRefGoogle Scholar
  34. 34.
    Li M, Qiu L, Zhang Y et al (2013) Dose-related effect by maternal exposure to di-(2-ethylhexyl) phthalate plasticizer on inducing hypospadiac male rats [J]. Environ Toxicol Pharmacol 35(1):55–60PubMedCrossRefGoogle Scholar
  35. 35.
    Jensen MS, Norgaard-Pedersen B, Toft G et al (2012) Phthalates and perfluorooctanesulfonic acid in human amniotic fluid: temporal trends and timing of amniocentesis in pregnancy [J]. Environ Health Perspect 120(6):897–903PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Chevrier C, Petit C, Philippat C et al (2012) Maternal urinary phthalates and phenols and male genital anomalies [J]. Epidemiology 23(2):353–356PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Kay VR, Chambers C, Foster WG (2013) Reproductive and developmental effects of phthalate diesters in females [J]. Crit Rev Toxicol 43(3):200–219PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Frederiksen H, Sorensen K, Mouritsen A et al (2012) High urinary phthalate concentration associated with delayed pubarche in girls [J]. Int J Androl 35(3):216–226PubMedCrossRefGoogle Scholar
  39. 39.
    Hashemipour M, Kelishadi R, Amin MM et al (2018) Is there any association between phthalate exposure and precocious puberty in girls? [J]. Environ Sci Pollut Res 25(14):13589–13596CrossRefGoogle Scholar
  40. 40.
    Vercellini P, Vigano P, Somigliana E et al (2014) Endometriosis: pathogenesis and treatment [J]. Nat Rev Endocrinol 10(5):261–275PubMedCrossRefGoogle Scholar
  41. 41.
    Li R, Yu C, Gao RF et al (2012) Effects of dehp on endometrial receptivity and embryo implantation in pregnant mice [J]. J Hazard Mater 241:231–240PubMedCrossRefGoogle Scholar
  42. 42.
    Upson K, Sathyanarayana S, De Roos AJ et al (2013) Phthalates and risk of endometriosis [J]. Environ Res 126:91–97PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Masuyama H, Hiramatsu Y, Kodama JI et al (2003) Expression and potential roles of pregnane x receptor in endometrial cancer [J]. J Clin Endocrinol Metab 88(9):4446–4454PubMedCrossRefGoogle Scholar
  44. 44.
    Cobellis L, Latini G, Defelice C et al (2003) High plasma concentrations of di-(2-ethylhexyl)-phthalate in women with endometriosis [J]. Hum Reprod 18(7):1512–1515PubMedCrossRefGoogle Scholar
  45. 45.
    Kim SH, Chun S, Jang JY et al (2011) Increased plasma levels of phthalate esters in women with advanced-stage endometriosis: a prospective case-control study [J]. Fertil Steril 95(1):357–359PubMedCrossRefGoogle Scholar
  46. 46.
    Reddy BS, Rozati R, Reddy BV et al (2006) Association of phthalate esters with endometriosis in indian women [J]. BJOG 113(5):515–520PubMedCrossRefGoogle Scholar
  47. 47.
    Weuve J, Hauser R, Calafat AM et al (2010) Association of exposure to phthalates with endometriosis and uterine leiomyomata: findings from nhanes, 1999-2004 [J]. Environ Health Perspect 118(6):825–832PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Itoh H, Iwasaki M, Hanaoka T et al (2009) Urinary phthalate monoesters and endometriosis in infertile japanese women [J]. Sci Total Environ 408(1):37–42PubMedCrossRefGoogle Scholar
  49. 49.
    Huang PC, Tsai EM, Li WF et al (2010) Association between phthalate exposure and glutathione s-transferase m1 polymorphism in adenomyosis, leiomyoma and endometriosis [J]. Hum Reprod 25(4):986–994PubMedCrossRefGoogle Scholar
  50. 50.
    Xin W, Xinli S, Nan W et al (2011) Effect of monoethylhexyl phthalate on embryo implantation during early pregnancy and fetus development during medium and late pregnancy in the rat [J]. Chin J Clin (Electron edn) 5(16):4741–4744Google Scholar
  51. 51.
    Liao KW, Kuo PL, Huang HB et al (2018) Increased risk of phthalates exposure for recurrent pregnancy loss in reproductive-aged women [J]. Environ Poll (Barking, Essex: 1987) 241:969–977PubMedCrossRefGoogle Scholar
  52. 52.
    Gao H, Zhang YW, Huang K et al. (2017) Urinary concentrations of phthalate metabolites in early pregnancy associated with clinical pregnancy loss in chinese women [J]. Scientific Rep:7Google Scholar
  53. 53.
    Jukic AM, Calafat AM, Mcconnaughey DR et al (2016) Urinary concentrations of phthalate metabolites and bisphenol a and associations with follicular-phase length, luteal-phase length, fecundability, and early pregnancy loss [J]. Environ Health Perspect 124(3):321–328PubMedCrossRefGoogle Scholar
  54. 54.
    Lovekamp-Swan T, Davis BJ (2003) Mechanisms of phthalate ester toxicity in the female reproductive system [J]. Environ Health Perspect 111(2):139–145PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Fu ZQ, Zhao F, Chen KL et al (2017) Association between urinary phthalate metabolites and risk of breast cancer and uterine leiomyoma [J]. Reprod Toxicol 74:134–142PubMedCrossRefGoogle Scholar
  56. 56.
    Hauser R, Gaskins AJ, Souter I et al (2016) Urinary phthalate metabolite concentrations and reproductive outcomes among women undergoing in vitro fertilization: results from the earth study [J]. Environ Health Perspect 124(6):831–839PubMedCrossRefGoogle Scholar
  57. 57.
    Welshons WV, Nagel SC, Vom Saal FS (2006) Large effects from small exposures. Iii. Endocrine mechanisms mediating effects of bisphenol a at levels of human exposure [J]. Endocrinology 147(6 Suppl):S56–S69PubMedCrossRefGoogle Scholar
  58. 58.
    Lakind JS, Naiman DQ (2011) Daily intake of bisphenol a and potential sources of exposure: 2005-2006 national health and nutrition examination survey [J]. J Expo Sci Environ Epidemiol 21(3):272–279PubMedCrossRefGoogle Scholar
  59. 59.
    Haines DA, Murray J (2012) Human biomonitoring of environmental chemicals--early results of the 2007-2009 Canadian health measures survey for males and females [J]. Int J Hyg Environ Health 215(2):133–137PubMedCrossRefGoogle Scholar
  60. 60.
    Dong S, Terasaka S, Kiyama R (2011) Bisphenol a induces a rapid activation of erk1/2 through gpr30 in human breast cancer cells [J]. Environ Pollut 159(1):212–218PubMedCrossRefGoogle Scholar
  61. 61.
    Siracusa JS, Yin L, Measel E et al (2018) Effects of bisphenol a and its analogs on reproductive health: a mini review [J]. Reprod Toxicol 79:96–123PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Minguez-Alarcon L, Hauser R, Gaskins AJ (2016) Effects of bisphenol a on male and couple reproductive health: a review [J]. Fertil Steril 106(4):864–870PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Meeker JD, Ehrlich S, Toth TL et al (2010) Semen quality and sperm DNA damage in relation to urinary bisphenol a among men from an infertility clinic [J]. Reprod Toxicol 30(4):532–539PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Mendiola J, Jorgensen N, Andersson AM et al (2010) Are environmental levels of bisphenol a associated with reproductive function in fertile men? [J]. Environ Health Perspect 118(9):1286–1291PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Liu XQ, Miao MH, Zhou ZJ et al (2015) Exposure to bisphenol-a and reproductive hormones among male adults [J]. Environ Toxicol Pharmacol 39(2):934–941PubMedCrossRefGoogle Scholar
  66. 66.
    Liang H, Xu WP, Chen JP et al. (2017) The association between exposure to environmental bisphenol a and gonadotropic hormone levels among men [J]. PloS One 12(1)e0169217PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Mustieles V, Ocon-Hernandez O, Minguez-Alarcon L et al (2018) Bisphenol a and reproductive hormones and cortisol in peripubertal boys: the inma-Granada cohort [J]. Sci Total Environ 618:1046–1053PubMedCrossRefGoogle Scholar
  68. 68.
    Gurmeet K, Rosnah I, Normadiah MK et al (2014) Detrimental effects of bisphenol a on development and functions of the male reproductive system in experimental rats [J]. EXCLI J 13:151–160PubMedPubMedCentralGoogle Scholar
  69. 69.
    Quan C, Wang C, Duan P et al (2017) Bisphenol a induces autophagy and apoptosis concurrently involving the akt/mtor pathway in testes of pubertal sd rats [J]. Environ Toxicol 32(8):1977–1989PubMedCrossRefGoogle Scholar
  70. 70.
    Liu C, Duan WX, Zhang L et al (2014) Bisphenol a exposure at an environmentally relevant dose induces meiotic abnormalities in adult male rats [J]. Cell Tissue Res 355(1):223–232PubMedCrossRefGoogle Scholar
  71. 71.
    Lassen TH, Frederiksen H, Jensen TK et al (2014) Urinary bisphenol a levels in young men: association with reproductive hormones and semen quality [J]. Environ Health Perspect 122(5):478–484PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Goldstone AE, Chen Z, Perry MJ et al (2015) Urinary bisphenol a and semen quality, the life study [J]. Reprod Toxicol 51:7–13PubMedCrossRefGoogle Scholar
  73. 73.
    Louis GMB, Sundaram R, Sweeney AM et al (2014) Urinary bisphenol a, phthalates, and couple fecundity: the longitudinal investigation of fertility and the environment (life) study [J]. Fertil Steril 101(5):1359–1366PubMedCentralCrossRefPubMedGoogle Scholar
  74. 74.
    Dodge LE, Williams PL, Williams MA et al (2015) Paternal urinary concentrations of parabens and other phenols in relation to reproductive outcomes among couples from a fertility clinic [J]. Environ Health Perspect 123(7):665–671PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Wang T, Han J, Duan X et al (2016) The toxic effects and possible mechanisms of bisphenol a on oocyte maturation of porcine in vitro [J]. Oncotarget 7(22):32554–32565PubMedPubMedCentralGoogle Scholar
  76. 76.
    Nakano K, Nishio M, Kobayashi N et al (2016) Comparison of the effects of bpa and bpaf on oocyte spindle assembly and polar body release in mice [J]. Zygote 24(2):172–180PubMedCrossRefGoogle Scholar
  77. 77.
    Patel S, Brehm E, Gao L et al (2017) Bisphenol a exposure, ovarian follicle numbers, and female sex steroid hormone levels: results from a clarity-bpa study [J]. Endocrinology 158(6):1727–1738PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Mok-Lin E, Ehrlich S, Williams PL et al (2010) Urinary bisphenol a concentrations and ovarian response among women undergoing ivf [J]. Int J Androl 33(2):385–393PubMedCrossRefGoogle Scholar
  79. 79.
    Ehrlich S, Williams PL, Missmer SA et al (2012) Urinary bisphenol a concentrations and implantation failure among women undergoing in vitro fertilization [J]. Environ Health Perspect 120(7):978–983PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Galloway T, Cipelli R, Guralnik J et al (2010) Daily bisphenol a excretion and associations with sex hormone concentrations: results from the inchianti adult population study [J]. Environ Health Perspect 118(11):1603–1608PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Miao MH, Yuan W, Yang F et al (2015) Associations between bisphenol a exposure and reproductive hormones among female workers [J]. Int J Environ Res Public Health 12(10):13240–13250PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Scinicariello F, Buser MC (2016) Serum testosterone concentrations and urinary bisphenol a, benzophenone-3, triclosan, and paraben levels in male and female children and adolescents: Nhanes 2011-2012 [J]. Environ Health Perspect 124(12):1898–1904PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Buck Louis GM, Peterson CM, Chen Z et al. (2013) Bisphenol a and phthalates and endometriosis: The endometriosis: Natural history, diagnosis and outcomes study [J]. Fertil Steril 100(1):162–169, e161–162PubMedCentralCrossRefPubMedGoogle Scholar
  84. 84.
    Cobellis L, Colacurci N, Trabucco E et al (2009) Measurement of bisphenol a and bisphenol b levels in human blood sera from healthy and endometriotic women [J]. Biomed Chromatogr 23(11):1186–1190PubMedCrossRefGoogle Scholar
  85. 85.
    Hu Y, Wen S, Yuan DZ et al (2018) The association between the environmental endocrine disruptor bisphenol a and polycystic ovary syndrome: a systematic review and meta-analysis [J]. Gynecol Endocrinol 34(5):370–377PubMedCrossRefGoogle Scholar
  86. 86.
    Kandaraki E, Chatzigeorgiou A, Livadas S et al (2011) Endocrine disruptors and polycystic ovary syndrome (pcos): elevated serum levels of bisphenol a in women with pcos [J]. J Clin Endocrinol Metab 96(3):E480–E484PubMedCrossRefGoogle Scholar
  87. 87.
    Signorile PG, Spugnini EP, Mita L et al (2010) Pre-natal exposure of mice to bisphenol a elicits an endometriosis-like phenotype in female offspring [J]. Gen Comp Endocrinol 168(3):318–325PubMedCrossRefGoogle Scholar
  88. 88.
    Kendziorski JA, Belcher SM (2015) Strain-specific induction of endometrial periglandular fibrosis in mice exposed during adulthood to the endocrine disrupting chemical bisphenol a [J]. Reprod Toxicol 58:119–130PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Lathi RB, Liebert CA, Brookfield KF et al (2014) Conjugated bisphenol a in maternal serum in relation to miscarriage risk [J]. Fertil Steril 102(1):123–128PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Shen Y P, Zheng Y M, Jiang J T, et al. (2015) Higher urinary bisphenol a concentration is associated with unexplained recurrent miscarriage risk: evidence from a case-control study in eastern china [J]. PloS One 10(5):e0127886PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Jukic AM, Calafat AM, Mcconnaughey DR et al (2016) Urinary concentrations of phthalate metabolites and bisphenol a and associations with follicular-phase length, luteal-phase length, fecundability, and early pregnancy loss [J]. Environ Health Perspect 124(3):321–328PubMedCrossRefGoogle Scholar
  92. 92.
    Mikolajewska K, Stragierowicz J, Gromadzinska J (2015) Bisphenol A – application, sources of exposure and potential risks in infants, children and pregnant women [J]. Int J Occup Med Environ Health 28(2):209–241PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Pengpeng Wang
    • 1
    • 2
  • Yan Zhao
    • 3
  1. 1.School of Public HealthFudan UniversityShanghaiChina
  2. 2.Key Laboratory of Public Health Safety, Ministry of EducationFudan UniversityShanghaiChina
  3. 3.Shanghai First Maternity and Infant HospitalTongji University School of MedicineShanghaiChina

Personalised recommendations