Advertisement

Multi-task Learning of Structural MRI for Multi-site Classification

  • Dewen Hu
  • Ling-Li Zeng
Chapter

Abstract

With the advent of Big Data Imaging Analytics applied to neuroimaging, data from multiple sites need to be pooled into larger samples. However, heterogeneity across different scanners, protocols, and populations renders the task of finding underlying disease signatures challenging. In this chapter, three structural MRI datasets of schizophrenia were collected from different imaging sites. A multi-task learning method was developed to simultaneously learn the site-specific and site-shared features from the multi-site data, which were then used to discriminate schizophrenic patients from normal controls. Experiments show that classification accuracy of multi-site data by using multi-task feature learning outperformed that of single-site data and pooled data and also outperformed other comparison methods. The results indicate that the proposed multi-task learning method is robust in finding consistent and reliable structural brain abnormalities associated with schizophrenia across different sites, in the presence of multiple sources of heterogeneity.

Keywords

Multi-task learning Multi-site learning Sparsity Schizophrenia Classification MRI 

Notes

Acknowledgements

This chapter was modified from a paper reported by our group in NeuroImage: Clinical [36]. The related contents are reused with permission.

References

  1. 1.
    Brown, G.G., Mathalon, D.H., Stern, H., Ford, J., Mueller, B., Greve, D.N., McCarthy, G., Voyvodic, J., Glover, G., Diaz, M., Yetter, E., Ozyurt, I.B., Jorgensen, K.W., Wible, C.G., Turner, J.A., Thompson, W.K., Potkin, S.G., Function Biomedical Informatics Research Network: Multisite reliability of cognitive bold data. Neuroimage 54(3), 2163–2175 (2011). https://doi.org/10.1016/j.neuroimage.2010.09.076. http://www.ncbi.nlm.nih.gov/pubmed/20932915 http://ac.els-cdn.com/S1053811910012784/1-s2.0-S1053811910012784-main.pdf?_tid=578e2ca0-6ea7-11e5-a549-00000aab0f26&acdnat=1444410251_b63d1ede59b3980afcd0f5b9926f7482 PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Friedman, L., Glover, G.H., Krenz, D., Magnotta, V., First, B.: Reducing inter-scanner variability of activation in a multicenter fMRI study: role of smoothness equalization. Neuroimage 32(4), 1656–1668 (2006). https://doi.org/10.1016/j.neuroimage.2006.03.062. http://www.ncbi.nlm.nih.gov/pubmed/16875843 http://ac.els-cdn.com/S1053811906004435/1-s2.0-S1053811906004435-main.pdf?_tid=1c8de40a-70f6-11e5-9603-00000aab0f26&acdnat=1444663984_74b3d2e1777fd64ec537396cc04e40b7 PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Schnack, H.G., van Haren, N.E., Brouwer, R.M., van Baal, G.C., Picchioni, M., Weisbrod, M., Sauer, H., Cannon, T.D., Huttunen, M., Lepage, C., Collins, D.L., Evans, A., Murray, R.M., Kahn, R.S., Hulshoff Pol, H.E.: Mapping reliability in multicenter MRI: voxel-based morphometry and cortical thickness. Hum. Brain Mapp. 31(12), 1967–1982 (2010).  https://doi.org/10.1002/hbm.20991. http://www.ncbi.nlm.nih.gov/pubmed/21086550 http://onlinelibrary.wiley.com/store/10.1002/hbm.20991/asset/20991_ftp.pdf?v=1&t=ifjwbenu&s=52340c498f589b00e5ee6241e4bcc947e7c68065 PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Pearlson, G.: Multisite collaborations and large databases in psychiatric neuroimaging: advantages, problems, and challenges. Schizophr. Bull. 35(1), 1–2 (2009).  https://doi.org/10.1093/schbul/sbn166. http://www.ncbi.nlm.nih.gov/pubmed/19023121 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2643967/pdf/sbn166.pdf PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Segall, J.M., Turner, J.A., van Erp, T.G., White, T., Bockholt, H.J., Gollub, R.L., Ho, B.C., Magnotta, V., Jung, R.E., McCarley, R.W., Schulz, S.C., Lauriello, J., Clark, V.P., Voyvodic, J.T., Diaz, M.T., Calhoun, V.D.: Voxel-based morphometric multisite collaborative study on schizophrenia. Schizophr. Bull. 35(1), 82–95 (2009).  https://doi.org/10.1093/schbul/sbn150. http://www.ncbi.nlm.nih.gov/pubmed/18997157 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2643956/pdf/sbn150.pdf PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Glover, G.H., Mueller, B.A., Turner, J.A., van Erp, T.G., Liu, T.T., Greve, D.N., Voyvodic, J.T., Rasmussen, J., Brown, G.G., Keator, D.B., Calhoun, V.D., Lee, H.J., Ford, J.M., Mathalon, D.H., Diaz, M., O’Leary, D.S., Gadde, S., Preda, A., Lim, K.O., Wible, C.G., Stern, H.S., Belger, A., McCarthy, G., Ozyurt, B., Potkin, S.G.: Function biomedical informatics research network recommendations for prospective multicenter functional MRI studies. J. Magn. Reson. Imaging 36(1), 39–54 (2012).  https://doi.org/10.1002/jmri.23572. http://www.ncbi.nlm.nih.gov/pubmed/22314879 http://onlinelibrary.wiley.com/store/10.1002/jmri.23572/asset/23572_ftp.pdf?v=1&t=ifjweylg&s=e1aff2d00c18ec28cf4f6e7163d93e75ff7b77dc PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Sutton, B.P., Goh, J., Hebrank, A., Welsh, R.C., Chee, M.W., Park, D.C.: Investigation and validation of intersite fMRI studies using the same imaging hardware. J. Magn. Reson. Imaging 28(1), 21–28 (2008).  https://doi.org/10.1002/jmri.21419. http://www.ncbi.nlm.nih.gov/pubmed/18581342 http://onlinelibrary.wiley.com/store/10.1002/jmri.21419/asset/21419_ftp.pdf?v=1&t=ifjwazf4&s=b2bb0dca7503ed9b62af51bfaaa519dc02ec31f6 PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
  9. 9.
    Costafreda, S.G., Brammer, M.J., Vencio, R.Z., Mourao, M.L., Portela, L.A., de Castro, C.C., Giampietro, V.P., Amaro, J.E.: Multisite fMRI reproducibility of a motor task using identical MR systems. J. Magn. Reson. Imaging 26(4), 1122–1126 (2007).  https://doi.org/10.1002/jmri.21118. http://www.ncbi.nlm.nih.gov/pubmed/17896376 http://onlinelibrary.wiley.com/store/10.1002/jmri.21118/asset/21118_ftp.pdf?v=1&t=ifjwfywy&s=1dbc2233e781d2d03a7a0380bffdd2e50ecf953d PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Casey, B.J., Cohen, J.D., O’Craven, K., Davidson, R.J., Irwin, W., Nelson, C.A., Noll, D.C., Hu, X., Lowe, M.J., Rosen, B.R., Truwitt, C.L., Turski, P.A.: Reproducibility of fMRI results across four institutions using a spatial working memory task. Neuroimage 8(3), 249–261 (1998).  https://doi.org/10.1006/nimg.1998.0360. http://www.ncbi.nlm.nih.gov/pubmed/9758739 http://ac.els-cdn.com/S1053811998903603/1-s2.0-S1053811998903603-main.pdf?_tid=51950efe-6ea7-11e5-9a61-00000aab0f6c&acdnat=1444410241_e45237af701fe58e9baf5242a21e8ab3 PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Colby, J.B., Rudie, J.D., Brown, J.A., Douglas, P.K., Cohen, M.S., Shehzad, Z.: Insights into multimodal imaging classification of ADHD. Front. Syst. Neurosci. 6, 59 (2012).  https://doi.org/10.3389/fnsys.2012.00059. http://www.ncbi.nlm.nih.gov/pubmed/22912605 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3419970/pdf/fnsys-06-00059.pdf
  12. 12.
    Nielsen, J.A., Zielinski, B.A., Fletcher, P.T., Alexander, A.L., Lange, N., Bigler, E.D., Lainhart, J.E., Anderson, J.S.: Multisite functional connectivity MRI classification of autism: ABIDE results. Front. Hum. Neurosci. 7, 599 (2013).  https://doi.org/10.3389/fnhum.2013.00599. http://www.ncbi.nlm.nih.gov/pubmed/24093016 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3782703/pdf/fnhum-07-00599.pdf
  13. 13.
    Gee, D.G., McEwen, S.C., Forsyth, J.K., Haut, K.M., Bearden, C.E., Addington, J., Goodyear, B., Cadenhead, K.S., Mirzakhanian, H., Cornblatt, B.A., Olvet, D., Mathalon, D.H., McGlashan, T.H., Perkins, D.O., Belger, A., Seidman, L.J., Thermenos, H., Tsuang, M.T., van Erp, T.G., Walker, E.F., Hamann, S., Woods, S.W., Constable, T., Cannon, T.D.: Reliability of an fMRI paradigm for emotional processing in a multisite longitudinal study. Hum. Brain Mapp. 36(7), 2558–2579 (2015).  https://doi.org/10.1002/hbm.22791. http://www.ncbi.nlm.nih.gov/pubmed/25821147 http://onlinelibrary.wiley.com/store/10.1002/hbm.22791/asset/hbm22791.pdf?v=1&t=ifjwfbkj&s=5546d6585d79cbf4f1a09f96a80499b3e0f52ac5 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Jovicich, J., Minati, L., Marizzoni, M., Marchitelli, R., Sala-Llonch, R., Bartres-Faz, D., Arnold, J., Benninghoff, J., Fiedler, U., Roccatagliata, L., Picco, A., Nobili, F., Blin, O., Bombois, S., Lopes, R., Bordet, R., Sein, J., Ranjeva, J.P., Didic, M., Gros-Dagnac, H., Payoux, P., Zoccatelli, G., Alessandrini, F., Beltramello, A., Bargallo, N., Ferretti, A., Caulo, M., Aiello, M., Cavaliere, C., Soricelli, A., Parnetti, L., Tarducci, R., Floridi, P., Tsolaki, M., Constantinidis, M., Drevelegas, A., Rossini, P.M., Marra, C., Schonknecht, P., Hensch, T., Hoffmann, K.T., Kuijer, J.P., Visser, P.J., Barkhof, F., Frisoni, G.B., PharmaCog, C.: Longitudinal reproducibility of default-mode network connectivity in healthy elderly participants: a multicentric resting-state fMRI study. Neuroimage 124(Pt A), 442–454 (2015). https://doi.org/10.1016/j.neuroimage.2015.07.010. http://www.ncbi.nlm.nih.gov/pubmed/26163799 http://ac.els-cdn.com/S1053811915006199/1-s2.0-S1053811915006199-main.pdf?_tid=02e0f26e-6ea7-11e5-9708-00000aab0f01&acdnat=1444410109_1f6b6d4e9134ab98efa8f01faa3ec371 PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Cannon, T.D., Sun, F., McEwen, S.J., Papademetris, X., He, G., van Erp, T.G., Jacobson, A., Bearden, C.E., Walker, E., Hu, X., Zhou, L., Seidman, L.J., Thermenos, H.W., Cornblatt, B., Olvet, D.M., Perkins, D., Belger, A., Cadenhead, K., Tsuang, M., Mirzakhanian, H., Addington, J., Frayne, R., Woods, S.W., McGlashan, T.H., Constable, R.T., Qiu, M., Mathalon, D.H., Thompson, P., Toga, A.W.: Reliability of neuroanatomical measurements in a multisite longitudinal study of youth at risk for psychosis. Hum. Brain Mapp. 35(5), 2424–2434 (2014).  https://doi.org/10.1002/hbm.22338. http://www.ncbi.nlm.nih.gov/pubmed/23982962 http://onlinelibrary.wiley.com/store/10.1002/hbm.22338/asset/hbm22338.pdf?v=1&t=ifjwgfs5&s=93742b0dff52741c14865005443dc377b1806f54 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Jovicich, J., Marizzoni, M., Bosch, B., Bartres-Faz, D., Arnold, J., Benninghoff, J., Wiltfang, J., Roccatagliata, L., Picco, A., Nobili, F., Blin, O., Bombois, S., Lopes, R., Bordet, R., Chanoine, V., Ranjeva, J.P., Didic, M., Gros-Dagnac, H., Payoux, P., Zoccatelli, G., Alessandrini, F., Beltramello, A., Bargallo, N., Ferretti, A., Caulo, M., Aiello, M., Ragucci, M., Soricelli, A., Salvadori, N., Tarducci, R., Floridi, P., Tsolaki, M., Constantinidis, M., Drevelegas, A., Rossini, P.M., Marra, C., Otto, J., Reiss-Zimmermann, M., Hoffmann, K.T., Galluzzi, S., Frisoni, G.B., PharmaCog, C.: Multisite longitudinal reliability of tract-based spatial statistics in diffusion tensor imaging of healthy elderly subjects. Neuroimage 101, 390–403 (2014). https://doi.org/10.1016/j.neuroimage.2014.06.075. http://www.ncbi.nlm.nih.gov/pubmed/25026156 http://ac.els-cdn.com/S1053811914005527/1-s2.0-S1053811914005527-main.pdf?_tid=0610fab0-6ea7-11e5-9421-00000aacb360&acdnat=1444410114_5660c30d6a50f21d7510038081d68c01 PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Pfefferbaum, A., Adalsteinsson, E., Sullivan, E.V.: Replicability of diffusion tensor imaging measurements of fractional anisotropy and trace in brain. J. Magn. Reson. Imaging 18(4), 427–433 (2003).  https://doi.org/10.1002/jmri.10377. http://www.ncbi.nlm.nih.gov/pubmed/14508779 http://onlinelibrary.wiley.com/store/10.1002/jmri.10377/asset/10377_ftp.pdf?v=1&t=ifjwbrqn&s=5abcfe271d59a17c07149ab550d82d99d0f26962 PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Pan, S.J., Yang, Q.A.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010).  https://doi.org/10.1109/Tkde.2009.191. <Go to ISI>://WOS:000281000500001http://ieeexplore.ieee.org/ielx5/69/5550977/05288526.pdf?tp=&arnumber=5288526&isnumber=5550977 CrossRefGoogle Scholar
  19. 19.
  20. 20.
    You, X., Adjouadi, M., Guillen, M.R., Ayala, M., Barreto, A., Rishe, N., Sullivan, J., Dlugos, D., Vanmeter, J., Morris, D., Donner, E., Bjornson, B., Smith, M.L., Bernal, B., Berl, M., Gaillard, W.D.: Sub-patterns of language network reorganization in pediatric localization related epilepsy: a multisite study. Hum. Brain Mapp. 32(5), 784–799 (2011).  https://doi.org/10.1002/hbm.21066. http://www.ncbi.nlm.nih.gov/pubmed/21484949http://onlinelibrary.wiley.com/store/10.1002/hbm.21066/asset/21066_ftp.pdf?v=1&t=ifjwand9&s=32c77b1d2aff5f644f65c6970b0e037de11a8f51PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kim, D.I., Manoach, D.S., Mathalon, D.H., Turner, J.A., Mannell, M., Brown, G.G., Ford, J.M., Gollub, R.L., White, T., Wible, C., Belger, A., Bockholt, H.J., Clark, V.P., Lauriello, J., O’Leary, D., Mueller, B.A., Lim, K.O., Andreasen, N., Potkin, S.G., Calhoun, V.D.: Dysregulation of working memory and default-mode networks in schizophrenia using independent component analysis, an fBIRN and MCIC study. Hum. Brain Mapp. 30(11), 3795–3811 (2009).  https://doi.org/10.1002/hbm.20807. http://www.ncbi.nlm.nih.gov/pubmed/19434601 http://onlinelibrary.wiley.com/store/10.1002/hbm.20807/asset/20807_ftp.pdf?v=1&t=ifjwdh5e&s=5872542696fd16b093125a4a606d34a8905714f0 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Meda, S.A., Bhattarai, M., Morris, N.A., Astur, R.S., Calhoun, V.D., Mathalon, D.H., Kiehl, K.A., Pearlson, G.D.: An fMRI study of working memory in first-degree unaffected relatives of schizophrenia patients. Schizophr. Res. 104(1–3), 85–95 (2008). https://doi.org/10.1016/j.schres.2008.06.013. http://www.ncbi.nlm.nih.gov/pubmed/18678469 http://ac.els-cdn.com/S0920996408002910/1-s2.0-S0920996408002910-main.pdf?_tid=3e7c59e8-8c85-11e5-a20e-00000aacb360&acdnat=1447694141_7b643eb89f80c7f6d935d3f774f89519 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997). https://doi.org/10.1023/A:1007379606734. <Go to ISI>://WOS:A1997XW54200003http://download.springer.com/static/pdf/178/art CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Chen, J., Liu, J., Ye, J.: Learning incoherent sparse and low-rank patterns from multiple tasks. ACM Trans. Knowl. Discov. Data 5(4), 22 (2012). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783291/pdf/nihms-497373.pdf PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Kumar, A., Daume III, H.: Learning task grouping and overlap in multi-task learning. arXiv preprint. arXiv:1206.6417Google Scholar
  27. 27.
    Wang, X., Zhang, T., Chaim, T., Zanetti, M., Davatzikos, C.: Classification of mri under the presence of disease heterogeneity using multi-task learning: application to bipolar disorder. In: Proceeding of the 18th Annual International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), 9349, 125–132 (2015). https://doi.org/10.1007/978-3-319-24553-9_16 Google Scholar
  28. 28.
    Watanabe, T., Kessler, D., Scott, C., Sripada, C.: Multisite disease classification with functional connectomes via multitask structured sparse SVM. In: Second International Workshop on Sparsity Techniques in Medical Imaging (2014)Google Scholar
  29. 29.
    Yan, J., Li, T., Wang, H., Huang, H., Wan, J., Nho, K., Kim, S., Risacher, S.L., Saykin, A.J., Shen, L., Alzheimer’s Disease Neuroimaging Initiative: Cortical surface biomarkers for predicting cognitive outcomes using group l2,1 norm. Neurobiol. Aging 36(Suppl. 1), S185–S193 (2015). https://doi.org/10.1016/j.neurobiolaging.2014.07.045. http://www.ncbi.nlm.nih.gov/pubmed/25444599 http://ac.els-cdn.com/S0197458014005466/1-s2.0-S0197458014005466-main.pdf?_tid=924af044-6ea7-11e5-831e-00000aacb362&acdnat=1444410349_c3d39848ad84cf2366aacc5a1ab2c0ce PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Obozinski, G., Taskar, B., Jordan, M.I.: Joint covariate selection and joint subspace selection for multiple classification problems. Stat. Comput. 20(2), 231–252 (2010). https://doi.org/10.1007/s11222-008-9111-x. <Go to ISI>://WOS:000276075700010http://download.springer.com/static/pdf/111/art CrossRefGoogle Scholar
  31. 31.
    Rao, N.S., Cox, C.R., Nowak, R.D., Rogers, T.T.: Sparse overlapping sets lasso for multitask learning and its application to fMRI analysis. In: Conference on Neural Information Processing Systems (2013)Google Scholar
  32. 32.
    Zanetti, M.V., Schaufelberger, M.S., Doshi, J., Ou, Y., Ferreira, L.K., Menezes, P.R., Scazufca, M., Davatzikos, C., Busatto, G.F.: Neuroanatomical pattern classification in a population-based sample of first-episode schizophrenia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 43, 116–125 (2013)CrossRefGoogle Scholar
  33. 33.
    Davatzikos, C., Genc, A., Xu, D., Resnick, S.M.: Voxel-based morphometry using the ravens maps: methods and validation using simulated longitudinal atrophy. Neuroimage 14(6), 1361–1369 (2001).  https://doi.org/10.1006/nimg.2001.0937. http://www.ncbi.nlm.nih.gov/pubmed/11707092 PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Goldszal, A.F., Davatzikos, C., Pham, D.L., Yan, M.X., Bryan, R.N., Resnick, S.M.: An image-processing system for qualitative and quantitative volumetric analysis of brain images. J. Comput. Assist. Tomogr. 22(5), 827–837 (1998). http://www.ncbi.nlm.nih.gov/pubmed/9754125 PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Ou, Y., Sotiras, A., Paragios, N., Davatzikos, C.: Dramms: deformable registration via attribute matching and mutual-saliency weighting. Med. Image Anal. 15(4), 622–639 (2011). https://doi.org/10.1016/j.media.2010.07.002. http://www.ncbi.nlm.nih.gov/pubmed/20688559 PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Ma, Q.M., Zhang, T., Zanetti, M.V., Shen, H., Satterthwaite, T.D., Wolf, D.H., Gur, R.E., Fan, Y., Hu, D.W., Busatto, G.F., Davatzikos, C.: Classification of multi-site MR images in the presence of heterogeneity using multi-task learning. Neuroimage Clin. 18, 476–486 (2018)CrossRefGoogle Scholar
  37. 37.
    Azadi, S., Sra, S.: Towards an optimal stochastic alternating direction method of multipliers. In: Proceedings of the 31st International Conference on Machine Learning (ICML), PMLR 32(1), 620–628 (2014)Google Scholar
  38. 38.
    Golland, P., Fischl, B.: Permutation tests for classification: towards statistical significance in image-based studies. Inf. Process. Med. Imaging 18, 330–341 (2003). http://www.ncbi.nlm.nih.gov/pubmed/15344469 PubMedCrossRefGoogle Scholar
  39. 39.
    Zeng, L.L., Shen, H., Liu, L., Wang, L., Li, B., Fang, P., Zhou, Z., Li, Y., Hu, D.: Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain 135(Pt 5), 1498–1507 (2012).  https://doi.org/10.1093/brain/aws059. http://www.ncbi.nlm.nih.gov/pubmed/22418737 http://brain.oxfordjournals.org/content/brain/135/5/1498.full.pdf PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Diciotti, S., Ginestroni, A., Bessi, V., Giannelli, M., Tessa, C., Bracco, L., Mascalchi, M., Toschi, N.: Identification of mild alzheimer’s disease through automated classification of structural MRI features. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 428–431 (2012).  https://doi.org/10.1109/EMBC.2012.6345959. http://www.ncbi.nlm.nih.gov/pubmed/23365920 http://ieeexplore.ieee.org/ielx5/6320834/6345844/06345959.pdf?tp=&arnumber=6345959&isnumber=6345844
  41. 41.
    Heisele, B., Serre, T., Pontil, M., Vetter, T., Poggio, T.: Categorization by learning and combining object parts. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems, pp. 1239–1245. MIT Press, Cambridge, MA (2002)Google Scholar
  42. 42.
    Ji, S., Ye, J.: An accelerated gradient method for trace norm minimization. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 457–464. ACMGoogle Scholar
  43. 43.
    Xue, Y., Liao, X., Carin, L., Krishnapuram, B.: Multi-task learning for classification with Dirichlet process priors. J. Mach. Learn. Res. 8, 35–63 (2007)Google Scholar
  44. 44.
    Bernard, J.A., Mittal, V.A.: Dysfunctional activation of the cerebellum in schizophrenia: a functional neuroimaging meta-analysis. Clin. Psychol. Sci. 3(4), 545–566 (2015). https://doi.org/10.1177/2167702614542463. http://www.ncbi.nlm.nih.gov/pubmed/26392921 http://cpx.sagepub.com/content/3/4/545.full.pdf PubMedCentralCrossRefGoogle Scholar
  45. 45.
    Dum, R.P., Strick, P.L.: An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J. Neurophysiol. 89(1), 634–639 (2003). http://jn.physiology.org/content/jn/89/1/634.full.pdf PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Kelly, R.M., Strick, P.L.: Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J. Neurosci. 23(23), 8432–8444 (2003). http://www.jneurosci.org/content/23/23/8432.full.pdf PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Stoodley, C.J., Schmahmann, J.D.: Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44(2), 489–501 (2009). http://ac.els-cdn.com/S1053811908009725/1-s2.0-S1053811908009725-main.pdf?_tid=4d7ffc7e-8c85-11e5-a7a8-00000aab0f6c&acdnat=1447694166_3cf102c55de7c66f98da66854392c5f7 PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Stoodley, C.J., Schmahmann, J.D.: Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46(7), 831–844 (2010). http://ac.els-cdn.com/S0010945209003268/1-s2.0-S0010945209003268-main.pdf?_tid=54cee954-8c85-11e5-9943-00000aacb35d&acdnat=1447694178_e04f3b36f12f77094a4af533fd0b08ee PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Stoodley, C.J., Valera, E.M., Schmahmann, J.D.: Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage 59(2), 1560–1570 (2012). http://ac.els-cdn.com/S1053811911009827/1-s2.0-S1053811911009827-main.pdf?_tid=59b10f56-8c85-11e5-804f-00000aab0f01&acdnat=1447694186_556b19ea60539a8708e951fdcb9f1941 PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Mothersill, O., Knee-Zaska, C., Donohoe, G.: Emotion and theory of mind in schizophrenia-investigating the role of the cerebellum. Cerebellum. https://doi.org/10.1007/s12311-015-0696-2. http://www.ncbi.nlm.nih.gov/pubmed/26155761 http://download.springer.com/static/pdf/934/art http://download.springer.com/static/pdf/934/art CrossRefGoogle Scholar
  51. 51.
    Kim, D.J., Kent, J.S., Bolbecker, A.R., Sporns, O., Cheng, H., Newman, S.D., Puce, A., O’Donnell, B.F., Hetrick, W.P.: Disrupted modular architecture of cerebellum in schizophrenia: a graph theoretic analysis. Schizophr. Bull. 40(6), 1216–1226 (2014).  https://doi.org/10.1093/schbul/sbu059. http://www.ncbi.nlm.nih.gov/pubmed/24782561 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4193723/pdf/sbu059.pdf PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Kuhn, S., Romanowski, A., Schubert, F., Gallinat, J.: Reduction of cerebellar grey matter in Crus I and II in schizophrenia. Brain Struct. Funct. 217(2), 523–529 (2012). https://doi.org/10.1007/s00429-011-0365-2. http://www.ncbi.nlm.nih.gov/pubmed/22131119 http://download.springer.com/static/pdf/11/art PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
  54. 54.
    Borgwardt, S.J., Picchioni, M.M., Ettinger, U., Toulopoulou, T., Murray, R., McGuire, P.K.: Regional gray matter volume in monozygotic twins concordant and discordant for schizophrenia. Biol. Psychiatry 67(10), 956–964 (2010). http://ac.els-cdn.com/S0006322309012773/1-s2.0-S0006322309012773-main.pdf?_tid=28a2689c-8c85-11e5-80e3-00000aacb35d&acdnat=1447694104_8b346ddae5764739ca213856403a294a PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Davatzikos, C., Shen, D., Gur, R.C., Wu, X., Liu, D., Fan, Y., Hughett, P., Turetsky, B.I., Gur, R.E.: Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities. Arch. Gen. Psychiatry 62(11), 1218–1227 (2005).  https://doi.org/10.1001/archpsyc.62.11.1218. http://www.ncbi.nlm.nih.gov/pubmed/16275809 http://archpsyc.jamanetwork.com/data/Journals/PSYCH/5232/yoa30497.pdf PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Gaser, C., Volz, H.-P., Kiebel, S., Riehemann, S., Sauer, H.: Detecting structural changes in whole brain based on nonlinear deformations-application to schizophrenia research. Neuroimage 10(2), 107–113 (1999). http://ac.els-cdn.com/S1053811999904585/1-s2.0-S1053811999904585-main.pdf?_tid=32a579ec-8c85-11e5-98ac-00000aab0f02&acdnat=1447694121_4b8779bd5a38a870923fe5fb27d64978 PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Seiferth, N.Y. Pauly, K., Habel, U., Kellermann, T., Shah, N.J., Ruhrmann, S., Klosterkötter, J., Schneider, F., Kircher, T.: Increased neural response related to neutral faces in individuals at risk for psychosis. Neuroimage 40(1), 289–297 (2008). http://ac.els-cdn.com/S1053811907010476/1-s2.0-S1053811907010476-main.pdf?_tid=4b088df8-8c85-11e5-922a-00000aacb35e&acdnat=1447694162_d1c2c7b0e0dc2986d89deee53e713b9c PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Whalley, H.C., Simonotto, E., Moorhead, W., McIntosh, A., Marshall, I., Ebmeier, K.P., Owens, D.G., Goddard, N.H., Johnstone, E.C., Lawrie, S.M.: Functional imaging as a predictor of schizophrenia. Biol. Psychiatry 60(5), 454–462 (2006). http://ac.els-cdn.com/S0006322305014320/1-s2.0-S0006322305014320-main.pdf?_tid=6690d670-8c85-11e5-87c6-00000aab0f27&acdnat=1447694208_35f18a347139594d711bf2c0cf5e241b PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Cohen, M., Kosslyn, S., Breiter, H., DiGirolamo, G., Thompson, W., Anderson, A., Brookheimer, S., Rosen, B., Belliveau, J.: Changes in cortical activity during mental rotation. Brain 119(Pt 1), 89–100 (1996). http://brain.oxfordjournals.org/content/brain/119/1/89.full.pdf PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Kaas, J.H.: Theories of visual cortex organization in primates: areas of the third level. Prog. Brain Res. 112, 213–221 (1995)CrossRefGoogle Scholar
  61. 61.
    Di Rosa, E., Crow, T.J., Walker, M.A., Black, G., Chance, S.A.: Reduced neuron density, enlarged minicolumn spacing and altered ageing effects in fusiform cortex in schizophrenia. Psychiatry Res. 166(2–3), 102–115 (2009). https://doi.org/10.1016/j.psychres.2008.04.007. http://www.ncbi.nlm.nih.gov/pubmed/19250686 http://ac.els-cdn.com/S0165178108000905/1-s2.0-S0165178108000905-main.pdf?_tid=ca75090c-87be-11e5-9a59-00000aacb35e&acdnat=1447169101_663d7accb4349734e24096a3848e7f56 PubMedCrossRefGoogle Scholar
  62. 62.
    Lee, C.U., Shenton, M.E., Salisbury, D.F., Kasai, K., Onitsuka, T., Dickey, C.C., Yurgelun-Todd, D., Kikinis, R., Jolesz, F.A., McCarley, R.W.: Fusiform gyrus volume reduction in first-episode schizophrenia: a magnetic resonance imaging study. Arch. Gen. Psychiatry 59(9), 775–781 (2002). http://www.ncbi.nlm.nih.gov/pubmed/12215076 http://archpsyc.jamanetwork.com/data/Journals/PSYCH/5147/YOA01051.pdf PubMedCrossRefGoogle Scholar
  63. 63.
    Onitsuka, T., Nestor, P.G., Gurrera, R.J., Shenton, M.E., Kasai, K., Frumin, M., Niznikiewicz, M.A., McCarley, R.W.: Association between reduced extraversion and right posterior fusiform gyrus gray matter reduction in chronic schizophrenia. Am. J. Psychiatry 162(3), 599–601 (2005).  https://doi.org/10.1176/appi.ajp.162.3.599. http://www.ncbi.nlm.nih.gov/pubmed/15741479 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2770436/pdf/nihms152325.pdf PubMedCrossRefGoogle Scholar
  64. 64.
    Onitsuka, T., Shenton, M.E., Kasai, K., Nestor, P.G., Toner, S.K., Kikinis, R., Jolesz, F.A., McCarley, R.W.: Fusiform gyrus volume reduction and facial recognition in chronic schizophrenia. Arch. Gen. Psychiatry 60(4), 349–355 (2003).  https://doi.org/10.1001/archpsyc.60.4.349. http://www.ncbi.nlm.nih.gov/pubmed/12695311 http://archpsyc.jamanetwork.com/data/Journals/PSYCH/5172/YOA10347.pdf PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Takahashi, T., Zhou, S.Y., Nakamura, K., Tanino, R., Furuichi, A., Kido, M., Kawasaki, Y., Noguchi, K., Seto, H., Kurachi, M., Suzuki, M.: A follow-up MRI study of the fusiform gyrus and middle and inferior temporal gyri in schizophrenia spectrum. Prog. Neuropsychopharmacol. Biol. Psychiatry 35(8), 1957–1964 (2011). https://doi.org/10.1016/j.pnpbp.2011.07.009. http://www.ncbi.nlm.nih.gov/pubmed/21820482 http://ac.els-cdn.com/S0278584611002272/1-s2.0-S0278584611002272-main.pdf?_tid=ecc0b934-87be-11e5-a1e9-00000aab0f02&acdnat=1447169159_033cfcc4b9c3799bd8733ec60cb0c4f6 PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Dong, W., Liu, L., Zou, L.: Face perception in schizophrenia: a functional magnetic resonance imaging study. Chin. Ment. Health J. 20(12), 775 (2006)Google Scholar
  67. 67.
    Herrmann, M.J., Reif, A., Jabs, B.E., Jacob, C., Fallgatter, A.J.: Facial affect decoding in schizophrenic disorders: a study using event-related potentials. Psychiatry Res. 141(3), 247–252 (2006). http://ac.els-cdn.com/S0165178105003069/1-s2.0-S0165178105003069-main.pdf?_tid=393b269e-8c85-11e5-8d11-00000aab0f6c&acdnat=1447694132_b070d20434e5797c8190cd50d7bf3901 PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
  69. 69.
    Walther, S., Federspiel, A., Horn, H., Bianchi, P., Wiest, R., Wirth, M., Strik, W., Muller, T.J.: Encoding deficit during face processing within the right fusiform face area in schizophrenia. Psychiatry Res. 172(3), 184–191 (2009). https://doi.org/10.1016/j.pscychresns.2008.07.009. http://www.ncbi.nlm.nih.gov/pubmed/19398309 http://ac.els-cdn.com/S092549270800108X/1-s2.0-S092549270800108X-main.pdf?_tid=f903a47c-87be-11e5-86e8-00000aacb35d&acdnat=1447169179_fc99add60c1aff3e4b3cfc3d4b953357 PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Guo, W., Hu, M., Fan, X., Liu, F., Wu, R., Chen, J., Guo, X., Xiao, C., Quan, M., Chen, H., Zhai, J., Zhao, J.: Decreased gray matter volume in the left middle temporal gyrus as a candidate biomarker for schizophrenia: a study of drug naive, first-episode schizophrenia patients and unaffected siblings. Schizophr. Res. 159(1), 43–50 (2014). https://doi.org/10.1016/j.schres.2014.07.051. http://www.ncbi.nlm.nih.gov/pubmed/25156295 http://ac.els-cdn.com/S0920996414004083/1-s2.0-S0920996414004083-main.pdf?_tid=1a78d6f4-87bf-11e5-83e2-00000aab0f27&acdnat=1447169235_506571cc01eb8fd46b99dade64c48d3f http://ac.els-cdn.com/S0920996414004083/1-s2.0-S0920996414004083-main.pdf?_tid=34f331a8-8c85-11e5-bcd9-00000aacb35e&acdnat=1447694125_463149afa53884325f62fe9ef282a826 PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Kuroki, N., Shenton, M.E., Salisbury, D.F., Hirayasu, Y., Onitsuka, T., Ersner-Hershfield, H., Yurgelun-Todd, D., Kikinis, R., Jolesz, F.A., McCarley, R.W.: Middle and inferior temporal gyrus gray matter volume abnormalities in first-episode schizophrenia: an MRI study. Am. J. Psychiatry 163(12), 2103–2110 (2006).  https://doi.org/10.1176/appi.ajp.163.12.2103. http://www.ncbi.nlm.nih.gov/pubmed/17151161 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766919/pdf/nihms152466.pdf PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Onitsuka, T., Shenton, M.E., Salisbury, D.F., Dickey, C.C., Kasai, K., Toner, S.K., Frumin, M., Kikinis, R., Jolesz, F.A., McCarley, R.W.: Middle and inferior temporal gyrus gray matter volume abnormalities in chronic schizophrenia: an MRI study. Am. J. Psychiatry 161(9), 1603–1611 (2004).  https://doi.org/10.1176/appi.ajp.161.9.1603. http://www.ncbi.nlm.nih.gov/pubmed/15337650 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2793337/pdf/nihms162171.pdf PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Cabeza, R., Nyberg, L.: Imaging cognition II: an empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci. 12(1), 1–47 (2000)PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Chao, L.L., Haxby, J.V., Martin, A.: Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nat. Neurosci. 2(10), 913–919 (1999)PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Tranel, D., Damasio, H., Damasio, A.R.: A neural basis for the retrieval of conceptual knowledge. Neuropsychologia 35(10), 1319–1327 (1997)PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Price, C.J.: The anatomy of language: contributions from functional neuroimaging. J. Anat. 197(3), 335–359 (2000)PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
  78. 78.
    Ojemann, G., Schoenfield-McNeill, J., Corina, D.: Anatomic subdivisions in human temporal cortical neuronal activity related to recent verbal memory. Nat. Neurosci. 5(1), 64–71 (2002). http://www.nature.com/neuro/journal/v5/n1/pdf/nn785.pdf PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Belin, P., Zatorre, R.J., Lafaille, P., Ahad, P., Pike, B.: Voice-selective areas in human auditory cortex. Nature 403(6767), 309–312 (2000). http://www.nature.com/nature/journal/v403/n6767/pdf/403309a0.pdf PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Wright, T.M., Pelphrey, K.A., Allison, T., McKeown, M.J., McCarthy, G.: Polysensory interactions along lateral temporal regions evoked by audiovisual speech. Cereb. Cortex 13(10), 1034–1043 (2003). http://cercor.oxfordjournals.org/content/13/10/1034.full.pdf PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Bunney, W.E., Bunney, B.G.: Evidence for a compromised dorsolateral prefrontal cortical parallel circuit in schizophrenia. Brain Res. Brain Res. Rev. 31(2–3), 138–146 (2000). http://www.ncbi.nlm.nih.gov/pubmed/10719142 http://ac.els-cdn.com/S0165017399000314/1-s2.0-S0165017399000314-main.pdf?_tid=d7210108-c051-11e5-a783-00000aab0f01&acdnat=1453389524_4ee7ba11175813a3aee462557fbca768
  82. 82.
    Potkin, S.G., Turner, J.A., Brown, G.G., McCarthy, G., Greve, D.N., Glover, G.H., Manoach, D.S., Belger, A., Diaz, M., Wible, C.G., Ford, J.M., Mathalon, D.H., Gollub, R., Lauriello, J., O’Leary, D., van Erp, T.G., Toga, A.W., Preda, A., Lim, K.O., FBIRN: Working memory and DLPFC inefficiency in schizophrenia: the FBIRN study. Schizophr. Bull. 35(1), 19–31 (2009).  https://doi.org/10.1093/schbul/sbn162. http://www.ncbi.nlm.nih.gov/pubmed/19042912 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2643959/pdf/sbn162.pdf PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Lewis, D.A.: Neuroplasticity of excitatory and inhibitory cortical circuits in schizophrenia. Dialogues Clin. Neurosci. 11(3), 269–280 (2009). http://www.ncbi.nlm.nih.gov/pubmed/19877495 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3075863/pdf/DialoguesClinNeurosci-11-269.pdf
  84. 84.
    McDowell, J.E., Clementz, B.A.: Behavioral and brain imaging studies of saccadic performance in schizophrenia. Biol. Psychol. 57(1–3), 5–22 (2001). http://www.ncbi.nlm.nih.gov/pubmed/11454432 http://ac.els-cdn.com/S0301051101000874/1-s2.0-S0301051101000874-main.pdf?_tid=e9e553c0-c051-11e5-b8a3-00000aab0f6c&acdnat=1453389555_fc41fc1fdcc52f46f62f182f6de2d917
  85. 85.
    Ragland, J.D., Yoon, J., Minzenberg, M.J., Carter, C.S.: Neuroimaging of cognitive disability in schizophrenia: search for a pathophysiological mechanism. Int. Rev. Psychiatry 19(4), 417–427 (2007). https://doi.org/10.1080/09540260701486365. http://www.ncbi.nlm.nih.gov/pubmed/17671874 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4332575/pdf/nihms-662795.pdf PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Tu, P.C., Lee, Y.C., Chen, Y.S., Li, C.T., Su, T.P.: Schizophrenia and the brain’s control network: aberrant within- and between-network connectivity of the frontoparietal network in schizophrenia. Schizophr. Res. 147(2–3), 339–347 (2013). https://doi.org/10.1016/j.schres.2013.04.011. http://www.ncbi.nlm.nih.gov/pubmed/23706416 http://ac.els-cdn.com/S0920996413002119/1-s2.0-S0920996413002119-main.pdf?_tid=f310ae04-c051-11e5-a74a-00000aab0f02&acdnat=1453389570_7a9df565e561d1c3e486d873eaef3555 PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Dewen Hu
    • 1
  • Ling-Li Zeng
    • 1
  1. 1.College of Intelligence Science and TechnologyNational University of Defense TechnologyChangshaChina

Personalised recommendations