Multi-task Learning of Structural MRI for Multi-site Classification

  • Dewen Hu
  • Ling-Li Zeng


With the advent of Big Data Imaging Analytics applied to neuroimaging, data from multiple sites need to be pooled into larger samples. However, heterogeneity across different scanners, protocols, and populations renders the task of finding underlying disease signatures challenging. In this chapter, three structural MRI datasets of schizophrenia were collected from different imaging sites. A multi-task learning method was developed to simultaneously learn the site-specific and site-shared features from the multi-site data, which were then used to discriminate schizophrenic patients from normal controls. Experiments show that classification accuracy of multi-site data by using multi-task feature learning outperformed that of single-site data and pooled data and also outperformed other comparison methods. The results indicate that the proposed multi-task learning method is robust in finding consistent and reliable structural brain abnormalities associated with schizophrenia across different sites, in the presence of multiple sources of heterogeneity.


Multi-task learning Multi-site learning Sparsity Schizophrenia Classification MRI 



This chapter was modified from a paper reported by our group in NeuroImage: Clinical [36]. The related contents are reused with permission.


  1. 1.
    Brown, G.G., Mathalon, D.H., Stern, H., Ford, J., Mueller, B., Greve, D.N., McCarthy, G., Voyvodic, J., Glover, G., Diaz, M., Yetter, E., Ozyurt, I.B., Jorgensen, K.W., Wible, C.G., Turner, J.A., Thompson, W.K., Potkin, S.G., Function Biomedical Informatics Research Network: Multisite reliability of cognitive bold data. Neuroimage 54(3), 2163–2175 (2011). PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Friedman, L., Glover, G.H., Krenz, D., Magnotta, V., First, B.: Reducing inter-scanner variability of activation in a multicenter fMRI study: role of smoothness equalization. Neuroimage 32(4), 1656–1668 (2006). PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Schnack, H.G., van Haren, N.E., Brouwer, R.M., van Baal, G.C., Picchioni, M., Weisbrod, M., Sauer, H., Cannon, T.D., Huttunen, M., Lepage, C., Collins, D.L., Evans, A., Murray, R.M., Kahn, R.S., Hulshoff Pol, H.E.: Mapping reliability in multicenter MRI: voxel-based morphometry and cortical thickness. Hum. Brain Mapp. 31(12), 1967–1982 (2010). PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Pearlson, G.: Multisite collaborations and large databases in psychiatric neuroimaging: advantages, problems, and challenges. Schizophr. Bull. 35(1), 1–2 (2009). PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Segall, J.M., Turner, J.A., van Erp, T.G., White, T., Bockholt, H.J., Gollub, R.L., Ho, B.C., Magnotta, V., Jung, R.E., McCarley, R.W., Schulz, S.C., Lauriello, J., Clark, V.P., Voyvodic, J.T., Diaz, M.T., Calhoun, V.D.: Voxel-based morphometric multisite collaborative study on schizophrenia. Schizophr. Bull. 35(1), 82–95 (2009). PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Glover, G.H., Mueller, B.A., Turner, J.A., van Erp, T.G., Liu, T.T., Greve, D.N., Voyvodic, J.T., Rasmussen, J., Brown, G.G., Keator, D.B., Calhoun, V.D., Lee, H.J., Ford, J.M., Mathalon, D.H., Diaz, M., O’Leary, D.S., Gadde, S., Preda, A., Lim, K.O., Wible, C.G., Stern, H.S., Belger, A., McCarthy, G., Ozyurt, B., Potkin, S.G.: Function biomedical informatics research network recommendations for prospective multicenter functional MRI studies. J. Magn. Reson. Imaging 36(1), 39–54 (2012). PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Sutton, B.P., Goh, J., Hebrank, A., Welsh, R.C., Chee, M.W., Park, D.C.: Investigation and validation of intersite fMRI studies using the same imaging hardware. J. Magn. Reson. Imaging 28(1), 21–28 (2008). PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
  9. 9.
    Costafreda, S.G., Brammer, M.J., Vencio, R.Z., Mourao, M.L., Portela, L.A., de Castro, C.C., Giampietro, V.P., Amaro, J.E.: Multisite fMRI reproducibility of a motor task using identical MR systems. J. Magn. Reson. Imaging 26(4), 1122–1126 (2007). PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Casey, B.J., Cohen, J.D., O’Craven, K., Davidson, R.J., Irwin, W., Nelson, C.A., Noll, D.C., Hu, X., Lowe, M.J., Rosen, B.R., Truwitt, C.L., Turski, P.A.: Reproducibility of fMRI results across four institutions using a spatial working memory task. Neuroimage 8(3), 249–261 (1998). PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Colby, J.B., Rudie, J.D., Brown, J.A., Douglas, P.K., Cohen, M.S., Shehzad, Z.: Insights into multimodal imaging classification of ADHD. Front. Syst. Neurosci. 6, 59 (2012).
  12. 12.
    Nielsen, J.A., Zielinski, B.A., Fletcher, P.T., Alexander, A.L., Lange, N., Bigler, E.D., Lainhart, J.E., Anderson, J.S.: Multisite functional connectivity MRI classification of autism: ABIDE results. Front. Hum. Neurosci. 7, 599 (2013).
  13. 13.
    Gee, D.G., McEwen, S.C., Forsyth, J.K., Haut, K.M., Bearden, C.E., Addington, J., Goodyear, B., Cadenhead, K.S., Mirzakhanian, H., Cornblatt, B.A., Olvet, D., Mathalon, D.H., McGlashan, T.H., Perkins, D.O., Belger, A., Seidman, L.J., Thermenos, H., Tsuang, M.T., van Erp, T.G., Walker, E.F., Hamann, S., Woods, S.W., Constable, T., Cannon, T.D.: Reliability of an fMRI paradigm for emotional processing in a multisite longitudinal study. Hum. Brain Mapp. 36(7), 2558–2579 (2015). PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Jovicich, J., Minati, L., Marizzoni, M., Marchitelli, R., Sala-Llonch, R., Bartres-Faz, D., Arnold, J., Benninghoff, J., Fiedler, U., Roccatagliata, L., Picco, A., Nobili, F., Blin, O., Bombois, S., Lopes, R., Bordet, R., Sein, J., Ranjeva, J.P., Didic, M., Gros-Dagnac, H., Payoux, P., Zoccatelli, G., Alessandrini, F., Beltramello, A., Bargallo, N., Ferretti, A., Caulo, M., Aiello, M., Cavaliere, C., Soricelli, A., Parnetti, L., Tarducci, R., Floridi, P., Tsolaki, M., Constantinidis, M., Drevelegas, A., Rossini, P.M., Marra, C., Schonknecht, P., Hensch, T., Hoffmann, K.T., Kuijer, J.P., Visser, P.J., Barkhof, F., Frisoni, G.B., PharmaCog, C.: Longitudinal reproducibility of default-mode network connectivity in healthy elderly participants: a multicentric resting-state fMRI study. Neuroimage 124(Pt A), 442–454 (2015). PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Cannon, T.D., Sun, F., McEwen, S.J., Papademetris, X., He, G., van Erp, T.G., Jacobson, A., Bearden, C.E., Walker, E., Hu, X., Zhou, L., Seidman, L.J., Thermenos, H.W., Cornblatt, B., Olvet, D.M., Perkins, D., Belger, A., Cadenhead, K., Tsuang, M., Mirzakhanian, H., Addington, J., Frayne, R., Woods, S.W., McGlashan, T.H., Constable, R.T., Qiu, M., Mathalon, D.H., Thompson, P., Toga, A.W.: Reliability of neuroanatomical measurements in a multisite longitudinal study of youth at risk for psychosis. Hum. Brain Mapp. 35(5), 2424–2434 (2014). PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Jovicich, J., Marizzoni, M., Bosch, B., Bartres-Faz, D., Arnold, J., Benninghoff, J., Wiltfang, J., Roccatagliata, L., Picco, A., Nobili, F., Blin, O., Bombois, S., Lopes, R., Bordet, R., Chanoine, V., Ranjeva, J.P., Didic, M., Gros-Dagnac, H., Payoux, P., Zoccatelli, G., Alessandrini, F., Beltramello, A., Bargallo, N., Ferretti, A., Caulo, M., Aiello, M., Ragucci, M., Soricelli, A., Salvadori, N., Tarducci, R., Floridi, P., Tsolaki, M., Constantinidis, M., Drevelegas, A., Rossini, P.M., Marra, C., Otto, J., Reiss-Zimmermann, M., Hoffmann, K.T., Galluzzi, S., Frisoni, G.B., PharmaCog, C.: Multisite longitudinal reliability of tract-based spatial statistics in diffusion tensor imaging of healthy elderly subjects. Neuroimage 101, 390–403 (2014). PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Pfefferbaum, A., Adalsteinsson, E., Sullivan, E.V.: Replicability of diffusion tensor imaging measurements of fractional anisotropy and trace in brain. J. Magn. Reson. Imaging 18(4), 427–433 (2003). PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Pan, S.J., Yang, Q.A.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010). <Go to ISI>://WOS:000281000500001 CrossRefGoogle Scholar
  19. 19.
  20. 20.
    You, X., Adjouadi, M., Guillen, M.R., Ayala, M., Barreto, A., Rishe, N., Sullivan, J., Dlugos, D., Vanmeter, J., Morris, D., Donner, E., Bjornson, B., Smith, M.L., Bernal, B., Berl, M., Gaillard, W.D.: Sub-patterns of language network reorganization in pediatric localization related epilepsy: a multisite study. Hum. Brain Mapp. 32(5), 784–799 (2011). Scholar
  21. 21.
    Kim, D.I., Manoach, D.S., Mathalon, D.H., Turner, J.A., Mannell, M., Brown, G.G., Ford, J.M., Gollub, R.L., White, T., Wible, C., Belger, A., Bockholt, H.J., Clark, V.P., Lauriello, J., O’Leary, D., Mueller, B.A., Lim, K.O., Andreasen, N., Potkin, S.G., Calhoun, V.D.: Dysregulation of working memory and default-mode networks in schizophrenia using independent component analysis, an fBIRN and MCIC study. Hum. Brain Mapp. 30(11), 3795–3811 (2009). PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Meda, S.A., Bhattarai, M., Morris, N.A., Astur, R.S., Calhoun, V.D., Mathalon, D.H., Kiehl, K.A., Pearlson, G.D.: An fMRI study of working memory in first-degree unaffected relatives of schizophrenia patients. Schizophr. Res. 104(1–3), 85–95 (2008). PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997). <Go to ISI>://WOS:A1997XW54200003 CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Chen, J., Liu, J., Ye, J.: Learning incoherent sparse and low-rank patterns from multiple tasks. ACM Trans. Knowl. Discov. Data 5(4), 22 (2012). PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Kumar, A., Daume III, H.: Learning task grouping and overlap in multi-task learning. arXiv preprint. arXiv:1206.6417Google Scholar
  27. 27.
    Wang, X., Zhang, T., Chaim, T., Zanetti, M., Davatzikos, C.: Classification of mri under the presence of disease heterogeneity using multi-task learning: application to bipolar disorder. In: Proceeding of the 18th Annual International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), 9349, 125–132 (2015). Google Scholar
  28. 28.
    Watanabe, T., Kessler, D., Scott, C., Sripada, C.: Multisite disease classification with functional connectomes via multitask structured sparse SVM. In: Second International Workshop on Sparsity Techniques in Medical Imaging (2014)Google Scholar
  29. 29.
    Yan, J., Li, T., Wang, H., Huang, H., Wan, J., Nho, K., Kim, S., Risacher, S.L., Saykin, A.J., Shen, L., Alzheimer’s Disease Neuroimaging Initiative: Cortical surface biomarkers for predicting cognitive outcomes using group l2,1 norm. Neurobiol. Aging 36(Suppl. 1), S185–S193 (2015). PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Obozinski, G., Taskar, B., Jordan, M.I.: Joint covariate selection and joint subspace selection for multiple classification problems. Stat. Comput. 20(2), 231–252 (2010). <Go to ISI>://WOS:000276075700010 CrossRefGoogle Scholar
  31. 31.
    Rao, N.S., Cox, C.R., Nowak, R.D., Rogers, T.T.: Sparse overlapping sets lasso for multitask learning and its application to fMRI analysis. In: Conference on Neural Information Processing Systems (2013)Google Scholar
  32. 32.
    Zanetti, M.V., Schaufelberger, M.S., Doshi, J., Ou, Y., Ferreira, L.K., Menezes, P.R., Scazufca, M., Davatzikos, C., Busatto, G.F.: Neuroanatomical pattern classification in a population-based sample of first-episode schizophrenia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 43, 116–125 (2013)CrossRefGoogle Scholar
  33. 33.
    Davatzikos, C., Genc, A., Xu, D., Resnick, S.M.: Voxel-based morphometry using the ravens maps: methods and validation using simulated longitudinal atrophy. Neuroimage 14(6), 1361–1369 (2001). PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Goldszal, A.F., Davatzikos, C., Pham, D.L., Yan, M.X., Bryan, R.N., Resnick, S.M.: An image-processing system for qualitative and quantitative volumetric analysis of brain images. J. Comput. Assist. Tomogr. 22(5), 827–837 (1998). PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Ou, Y., Sotiras, A., Paragios, N., Davatzikos, C.: Dramms: deformable registration via attribute matching and mutual-saliency weighting. Med. Image Anal. 15(4), 622–639 (2011). PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Ma, Q.M., Zhang, T., Zanetti, M.V., Shen, H., Satterthwaite, T.D., Wolf, D.H., Gur, R.E., Fan, Y., Hu, D.W., Busatto, G.F., Davatzikos, C.: Classification of multi-site MR images in the presence of heterogeneity using multi-task learning. Neuroimage Clin. 18, 476–486 (2018)CrossRefGoogle Scholar
  37. 37.
    Azadi, S., Sra, S.: Towards an optimal stochastic alternating direction method of multipliers. In: Proceedings of the 31st International Conference on Machine Learning (ICML), PMLR 32(1), 620–628 (2014)Google Scholar
  38. 38.
    Golland, P., Fischl, B.: Permutation tests for classification: towards statistical significance in image-based studies. Inf. Process. Med. Imaging 18, 330–341 (2003). PubMedCrossRefGoogle Scholar
  39. 39.
    Zeng, L.L., Shen, H., Liu, L., Wang, L., Li, B., Fang, P., Zhou, Z., Li, Y., Hu, D.: Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain 135(Pt 5), 1498–1507 (2012). PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Diciotti, S., Ginestroni, A., Bessi, V., Giannelli, M., Tessa, C., Bracco, L., Mascalchi, M., Toschi, N.: Identification of mild alzheimer’s disease through automated classification of structural MRI features. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 428–431 (2012).
  41. 41.
    Heisele, B., Serre, T., Pontil, M., Vetter, T., Poggio, T.: Categorization by learning and combining object parts. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems, pp. 1239–1245. MIT Press, Cambridge, MA (2002)Google Scholar
  42. 42.
    Ji, S., Ye, J.: An accelerated gradient method for trace norm minimization. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 457–464. ACMGoogle Scholar
  43. 43.
    Xue, Y., Liao, X., Carin, L., Krishnapuram, B.: Multi-task learning for classification with Dirichlet process priors. J. Mach. Learn. Res. 8, 35–63 (2007)Google Scholar
  44. 44.
    Bernard, J.A., Mittal, V.A.: Dysfunctional activation of the cerebellum in schizophrenia: a functional neuroimaging meta-analysis. Clin. Psychol. Sci. 3(4), 545–566 (2015). PubMedCentralCrossRefGoogle Scholar
  45. 45.
    Dum, R.P., Strick, P.L.: An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J. Neurophysiol. 89(1), 634–639 (2003). PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Kelly, R.M., Strick, P.L.: Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J. Neurosci. 23(23), 8432–8444 (2003). PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Stoodley, C.J., Schmahmann, J.D.: Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44(2), 489–501 (2009). PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Stoodley, C.J., Schmahmann, J.D.: Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46(7), 831–844 (2010). PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Stoodley, C.J., Valera, E.M., Schmahmann, J.D.: Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage 59(2), 1560–1570 (2012). PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Mothersill, O., Knee-Zaska, C., Donohoe, G.: Emotion and theory of mind in schizophrenia-investigating the role of the cerebellum. Cerebellum. CrossRefGoogle Scholar
  51. 51.
    Kim, D.J., Kent, J.S., Bolbecker, A.R., Sporns, O., Cheng, H., Newman, S.D., Puce, A., O’Donnell, B.F., Hetrick, W.P.: Disrupted modular architecture of cerebellum in schizophrenia: a graph theoretic analysis. Schizophr. Bull. 40(6), 1216–1226 (2014). PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Kuhn, S., Romanowski, A., Schubert, F., Gallinat, J.: Reduction of cerebellar grey matter in Crus I and II in schizophrenia. Brain Struct. Funct. 217(2), 523–529 (2012). PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
  54. 54.
    Borgwardt, S.J., Picchioni, M.M., Ettinger, U., Toulopoulou, T., Murray, R., McGuire, P.K.: Regional gray matter volume in monozygotic twins concordant and discordant for schizophrenia. Biol. Psychiatry 67(10), 956–964 (2010). PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Davatzikos, C., Shen, D., Gur, R.C., Wu, X., Liu, D., Fan, Y., Hughett, P., Turetsky, B.I., Gur, R.E.: Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities. Arch. Gen. Psychiatry 62(11), 1218–1227 (2005). PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Gaser, C., Volz, H.-P., Kiebel, S., Riehemann, S., Sauer, H.: Detecting structural changes in whole brain based on nonlinear deformations-application to schizophrenia research. Neuroimage 10(2), 107–113 (1999). PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Seiferth, N.Y. Pauly, K., Habel, U., Kellermann, T., Shah, N.J., Ruhrmann, S., Klosterkötter, J., Schneider, F., Kircher, T.: Increased neural response related to neutral faces in individuals at risk for psychosis. Neuroimage 40(1), 289–297 (2008). PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Whalley, H.C., Simonotto, E., Moorhead, W., McIntosh, A., Marshall, I., Ebmeier, K.P., Owens, D.G., Goddard, N.H., Johnstone, E.C., Lawrie, S.M.: Functional imaging as a predictor of schizophrenia. Biol. Psychiatry 60(5), 454–462 (2006). PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Cohen, M., Kosslyn, S., Breiter, H., DiGirolamo, G., Thompson, W., Anderson, A., Brookheimer, S., Rosen, B., Belliveau, J.: Changes in cortical activity during mental rotation. Brain 119(Pt 1), 89–100 (1996). PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Kaas, J.H.: Theories of visual cortex organization in primates: areas of the third level. Prog. Brain Res. 112, 213–221 (1995)CrossRefGoogle Scholar
  61. 61.
    Di Rosa, E., Crow, T.J., Walker, M.A., Black, G., Chance, S.A.: Reduced neuron density, enlarged minicolumn spacing and altered ageing effects in fusiform cortex in schizophrenia. Psychiatry Res. 166(2–3), 102–115 (2009). PubMedCrossRefGoogle Scholar
  62. 62.
    Lee, C.U., Shenton, M.E., Salisbury, D.F., Kasai, K., Onitsuka, T., Dickey, C.C., Yurgelun-Todd, D., Kikinis, R., Jolesz, F.A., McCarley, R.W.: Fusiform gyrus volume reduction in first-episode schizophrenia: a magnetic resonance imaging study. Arch. Gen. Psychiatry 59(9), 775–781 (2002). PubMedCrossRefGoogle Scholar
  63. 63.
    Onitsuka, T., Nestor, P.G., Gurrera, R.J., Shenton, M.E., Kasai, K., Frumin, M., Niznikiewicz, M.A., McCarley, R.W.: Association between reduced extraversion and right posterior fusiform gyrus gray matter reduction in chronic schizophrenia. Am. J. Psychiatry 162(3), 599–601 (2005). PubMedCrossRefGoogle Scholar
  64. 64.
    Onitsuka, T., Shenton, M.E., Kasai, K., Nestor, P.G., Toner, S.K., Kikinis, R., Jolesz, F.A., McCarley, R.W.: Fusiform gyrus volume reduction and facial recognition in chronic schizophrenia. Arch. Gen. Psychiatry 60(4), 349–355 (2003). PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Takahashi, T., Zhou, S.Y., Nakamura, K., Tanino, R., Furuichi, A., Kido, M., Kawasaki, Y., Noguchi, K., Seto, H., Kurachi, M., Suzuki, M.: A follow-up MRI study of the fusiform gyrus and middle and inferior temporal gyri in schizophrenia spectrum. Prog. Neuropsychopharmacol. Biol. Psychiatry 35(8), 1957–1964 (2011). PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Dong, W., Liu, L., Zou, L.: Face perception in schizophrenia: a functional magnetic resonance imaging study. Chin. Ment. Health J. 20(12), 775 (2006)Google Scholar
  67. 67.
    Herrmann, M.J., Reif, A., Jabs, B.E., Jacob, C., Fallgatter, A.J.: Facial affect decoding in schizophrenic disorders: a study using event-related potentials. Psychiatry Res. 141(3), 247–252 (2006). PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
  69. 69.
    Walther, S., Federspiel, A., Horn, H., Bianchi, P., Wiest, R., Wirth, M., Strik, W., Muller, T.J.: Encoding deficit during face processing within the right fusiform face area in schizophrenia. Psychiatry Res. 172(3), 184–191 (2009). PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Guo, W., Hu, M., Fan, X., Liu, F., Wu, R., Chen, J., Guo, X., Xiao, C., Quan, M., Chen, H., Zhai, J., Zhao, J.: Decreased gray matter volume in the left middle temporal gyrus as a candidate biomarker for schizophrenia: a study of drug naive, first-episode schizophrenia patients and unaffected siblings. Schizophr. Res. 159(1), 43–50 (2014). PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Kuroki, N., Shenton, M.E., Salisbury, D.F., Hirayasu, Y., Onitsuka, T., Ersner-Hershfield, H., Yurgelun-Todd, D., Kikinis, R., Jolesz, F.A., McCarley, R.W.: Middle and inferior temporal gyrus gray matter volume abnormalities in first-episode schizophrenia: an MRI study. Am. J. Psychiatry 163(12), 2103–2110 (2006). PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Onitsuka, T., Shenton, M.E., Salisbury, D.F., Dickey, C.C., Kasai, K., Toner, S.K., Frumin, M., Kikinis, R., Jolesz, F.A., McCarley, R.W.: Middle and inferior temporal gyrus gray matter volume abnormalities in chronic schizophrenia: an MRI study. Am. J. Psychiatry 161(9), 1603–1611 (2004). PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Cabeza, R., Nyberg, L.: Imaging cognition II: an empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci. 12(1), 1–47 (2000)PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Chao, L.L., Haxby, J.V., Martin, A.: Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nat. Neurosci. 2(10), 913–919 (1999)PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Tranel, D., Damasio, H., Damasio, A.R.: A neural basis for the retrieval of conceptual knowledge. Neuropsychologia 35(10), 1319–1327 (1997)PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Price, C.J.: The anatomy of language: contributions from functional neuroimaging. J. Anat. 197(3), 335–359 (2000)PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
  78. 78.
    Ojemann, G., Schoenfield-McNeill, J., Corina, D.: Anatomic subdivisions in human temporal cortical neuronal activity related to recent verbal memory. Nat. Neurosci. 5(1), 64–71 (2002). PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Belin, P., Zatorre, R.J., Lafaille, P., Ahad, P., Pike, B.: Voice-selective areas in human auditory cortex. Nature 403(6767), 309–312 (2000). PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Wright, T.M., Pelphrey, K.A., Allison, T., McKeown, M.J., McCarthy, G.: Polysensory interactions along lateral temporal regions evoked by audiovisual speech. Cereb. Cortex 13(10), 1034–1043 (2003). PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Bunney, W.E., Bunney, B.G.: Evidence for a compromised dorsolateral prefrontal cortical parallel circuit in schizophrenia. Brain Res. Brain Res. Rev. 31(2–3), 138–146 (2000).
  82. 82.
    Potkin, S.G., Turner, J.A., Brown, G.G., McCarthy, G., Greve, D.N., Glover, G.H., Manoach, D.S., Belger, A., Diaz, M., Wible, C.G., Ford, J.M., Mathalon, D.H., Gollub, R., Lauriello, J., O’Leary, D., van Erp, T.G., Toga, A.W., Preda, A., Lim, K.O., FBIRN: Working memory and DLPFC inefficiency in schizophrenia: the FBIRN study. Schizophr. Bull. 35(1), 19–31 (2009). PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Lewis, D.A.: Neuroplasticity of excitatory and inhibitory cortical circuits in schizophrenia. Dialogues Clin. Neurosci. 11(3), 269–280 (2009).
  84. 84.
    McDowell, J.E., Clementz, B.A.: Behavioral and brain imaging studies of saccadic performance in schizophrenia. Biol. Psychol. 57(1–3), 5–22 (2001).
  85. 85.
    Ragland, J.D., Yoon, J., Minzenberg, M.J., Carter, C.S.: Neuroimaging of cognitive disability in schizophrenia: search for a pathophysiological mechanism. Int. Rev. Psychiatry 19(4), 417–427 (2007). PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Tu, P.C., Lee, Y.C., Chen, Y.S., Li, C.T., Su, T.P.: Schizophrenia and the brain’s control network: aberrant within- and between-network connectivity of the frontoparietal network in schizophrenia. Schizophr. Res. 147(2–3), 339–347 (2013). PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Dewen Hu
    • 1
  • Ling-Li Zeng
    • 1
  1. 1.College of Intelligence Science and TechnologyNational University of Defense TechnologyChangshaChina

Personalised recommendations